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Abstract: The data validity of safe driving in the Internet of Vehicles (IoV) is the basis of improving
the safety of vehicles. Different from a traditional information systems, the data anomaly analysis of
vehicle safety driving faces the diversity of data anomaly and the randomness and subjectivity of the
driver’s driving behavior. How to combine the characteristics of the IOV data with the driving style
analysis to provide effective real-time anomaly data detection has become an important issue in the
IOV applications. This paper aims at the critical safety data analysis, considering the large computing
cost generated by the real-time anomaly detection of all data in the data package. We preprocess it
through the traffic cellular automata model which is built to achieve the ideal abnormal detection
effect with limited computing resources. On the basis of this model, the Anomaly Detection based
on Driving style (ADD) algorithm is proposed to realize real-time and online detection of anomaly
data related to safe driving. Firstly, this paper designs the driving coefficient and proposes a driving
style quantization model to represent the driving style of the driver. Then, based on driving style
quantization model and vehicle driving state information, a data anomaly detection algorithm
is developed by using Gaussian mixture model (GMM). Finally, combining with the application
scenarios of multi-vehicle collaboration in the Internet of Vehicles, this paper uses real data sets and
simulation data sets to analyze the effectiveness of the proposed ADD algorithm.

Keywords: Internet of Vehicles; data anomaly detection; driving style; Gaussian mixed model; traffic
cellular automata

1. Introduction

The Internet of Vehicles (IOV), a new Ad Hoc Network composed of the basic communication
units of mobile vehicles and their surroundings, with the ability of perception, computing, storage
and wireless communication running on the road, is an effective measure to improve safe driving.
It achieves the communication between vehicle and vehicle, vehicle and road, as well as vehicle
and Internet, which is a typical application of Internet of Things (IoT) technology in the field of
transportation systems [1]. Multi-vehicle collaboration is a critical technology to solve the problem
of unmanned driving, assisted driving and to improve the safety of driving in the IOV. It is the
most widely used in IOV application. When dismounted networking is the most widely used field,
the most important thing in the scene of assisted driving is to ensure the coordination between vehicles.
Data for IOV applications are mainly divided into three categories: critical safety, traffic efficiency,
and non-safety. The data of safety driving (e.g., vehicle distance, speed, vehicle control commands), as
the basic data of critical safety applications is the foundation of IOV applications. How to guarantee
the validity of data in the aspect of safety driving is one of the challenges facing the IOV applications.

Different from the traditional data security prevention methods in the Internet, the data security
problems facing the IOV mainly exist in both internal and external causes. On the one hand, the internal
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safety prevention defects of vehicles are mainly reflected in the existing Internet communication
protocols [2], that is, the vehicle lacks an effective verification mechanism for the data transmitted on
the Internet, such as Controller Area Network (CAN) protocol. On the other hand, data attacks are
diversified due to the open architecture and application of the IOV [3]. For example, hackers remotely
controlled the BMW’s onboard system, the Connected Drive, using the security flaw in January 2015.
In 2016, Toyota chairman Takeshi Uchiyamada, who has been Chairman of Toyota, claimed that two
hackers had also used a computer to access the Prius’ control system before and then removed the car
from the driver’s control completely. In June 2018, GCN published a report claiming that connected
cars can lie [4], posing a new threat to smart cities.

The research on data anomaly detection method is the key technology for validity and authenticity
of interactive data of current multi-vehicle collaboration process in combination with the characteristics
of IOV data and driving style analysis. At present, there have been a number of studies on data
anomaly detection, such as anomaly detection of traffic flow data based on Turkey smoothing
algorithm proposed by Xu et al. [5], and the data cleaning algorithm for redundant data proposed
by Wang et al. [6]. However, due to the particularity of IOV application scenario, human behavior is
an important parameter that cannot be ignored in the IOV, and driving style has a great influence on
the data of IOV. Klauer et al. collected the driving data of 100 incidents; after a deep analysis of the
driver’s behavior, they found there was a direct relationship between driving style and vehicle data [7].
Furthermore, different driving styles reflect different characteristics in the data, which is very helpful
for us to detect data anomalies. For example, conservative drivers generally have stable data, and
frequent data changes are abnormal. For aggressive drivers, this frequent change is a normal behavior.
Therefore, this paper combines driving style with anomaly detection. Therefore, this paper aims to
propose an anomaly detection algorithm combined with driving style.

Based on the WAVE protocol standard, which defines three types of data for IOV [8]: critical safety,
traffic efficiency, and non-safety, this paper aims to analyze security key data, considering that the
real-time anomaly detection of all data in the data packet will cause a large computing cost. Thus, in
this paper, the traffic cellular automata model is constructed to preprocess the data in order to achieve
a desired anomaly detection effect with limited computing resources. On the basis of this model,
the Anomaly Detection based on Driving style (ADD) algorithm is proposed based on driving style.
In order to quantify driving style better, a new driving style quantization model is proposed, which can
more comprehensively quantify driving style via data. The driving style parameter (e) obtained from
aforementioned model, velocity (v), acceleration (a), and distance (d) are detected via the Gaussian
mixture model (GMM). The experiments show that the ADD algorithm proposed in this paper have
good performance in data anomaly detection (This work has been published on GitHub. The URL is
https://github.com/IoTLabDLUT/Data-Anomaly-Detection-for-Vehicular-AdHoc-Networks).

2. Relative Works

2.1. Traffic Flow Model

According to the definition of traffic flow theory, it is recognized that the measurement scale
of traffic flow is divided by two variables [9]: time and space, and the traffic flow model is divided
into micro, medium, and macro models. The following model is a typical micro traffic flow model.
In the 1950s, John Mitchell and Pipes studied the following theory and built the following theoretical
analysis method [10]. After that, scholars did a number of systematic research studies on the following
model, published numerous achievements which can be divided into the following categories [11]:
the stimulus-response model, the safety distance model, and the physical-mental model. However,
the micro-model of a vehicle is also an ideal model with strong assumptions, which is still far from
the actual driver’s decision and vehicle behavior (simply describing the local vehicle flow state with
less than 10 vehicles on the road, which is mostly used to solve the coordination problem among
a small number of vehicles). After the 1990s, researchers built hybrid system models to describe
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complex traffic flow states based on the theory of a hybrid system and the continuous and discrete
characteristics of traffic flow. Lighthill and Whitham first described the one-dimensional theoretical
model of fluid dynamics applicable to highway traffic flow on Kinetic waves [12]. After that, many
researchers modified the dynamics equation of the model based on traffic practice. Based on the
introduction above, Li et al. proposed a new high-order continuous model and carried out a series of
calculations to conduct the trend modeling for traffic time series [13].

Prigogine, a famous physicist, and Herman, a famous traffic fluid expert, believed that the
influence of individual vehicle behaviors on traffic flow could not be ignored [14]. If using a particle
to represent a car, the traffic flow will be considered by many interacting particles gas. Based on the
description of the statistical physics in gas motion, the gas dynamic traffic flow model is built by
introducing the particle distribution function and establishing a similar Boltzmann equation. Therefore,
a number of scholars have proposed many improvements, including changing the relaxation effect
term, introducing the correlation between continuous vehicles, investigating the multi-lane effect, and
considering imperfect driving, limited space requirements, hybrid vehicles, etc. [15,16]. In addition,
many researchers in physics, mathematics, and other disciplines have studied traffic flow problems for
the reason of the nonlinearity, complexity, and discreteness of traffic flow. Driven by the science of
nonlinearity and complexity, cellular automata model appears, which describes the characteristics of
corresponding macro traffic flow by simulating the micro behavior of vehicles. Cellular automata have
the characteristics of time discretization, space discretization [17], interaction localization, and dynamic
evolution synchronization, which are consistent with the characteristics of traffic flow problems. It has
been widely used in the research of traffic flow problems for its simple rules, flexibility, adjustability,
and easy simulating [18].

2.2. Data Anomaly Detection

Traditional data validity analysis methods focus on simple vehicle data. Lin et al. [19] proposed
the pure software CAN bus security mechanism (IDTB-C) to analyze the validity of CAN bus data,
which used a CAN message ID table and message counter to generate a message authentication code
(MAC) for authentication. Muter et al. [20] designed a method based on sensor detection: multiple
sensors with different functions were placed in the corresponding subnet of the CAN bus network, and
the data in the CAN bus network was effectively analyzed and detected via the sensors. Xu et al. [5]
provided a new way to analyze the validity of traffic flow data by the Turkey smoothing algorithm,
and provided an algorithm for recovering invalid data. Their method aimed at screening invalid data.
Volkovs et al. [21] introduced a continuous data cleaning framework that can be used in a dynamic
data and constraint environment, which allowed both data and their semantics to evolve and suggest
repairs based on the accumulated evidence to date. Khodayari et al. [22] took the reaction time as
one of the input variables of the model on the basis of the existing models, established the vehicle’s
following model by using the neural network to determine whether the data were wrong, and used
the traffic data to verify the validity of the model.

In recent years, research also analyzed driving style via data. Precht et al. [23], based on natural
driving data from the second strategic highway research program (SHRP 2), found that anger might
influence significantly on driving behavior. Klauer et al. [7] collected driving data of 100 accidents,
deeply analyzed driver behavior, and then pointed out that there was a direct relationship between
driving style and vehicle data. After constructing a determinate relationship between driving style and
vehicle data, researchers quantified driving style via models. Qi et al. [24] proposed a new three-layer
structure for driving mode by imitating the modified latent Dirichlet allocation (mLDA) model. Langari
et al. [25] used the standard deviation value of acceleration to quantify the driving behavior; Murphey
et al. [26] used an acceleration derivative as a parameter to analyze driver behavior; Aljaafreh et al. [27]
used triaxial accelerations to extract transverse acceleration, longitudinal acceleration, and vertical
acceleration as parameters, respectively, which also achieved good results. Other researchers combined
multiple data for quantification. Kedar-Dongarkar et al. [28] used acceleration, brake, speed, and
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throttle to generate a model to analyze driving style. Fugiglando et al. [29] proposed a new method
to classify driver behavior by analyzing the selected subset of CAN bus signals, which including
accelerator pedal position, brake pedal pressure, steering wheel angle, steering wheel momentum,
velocity, revolutions per minute (RPM), and face and lateral acceleration, etc.

In this paper, a traffic cellular automata model that is applicable to variable density is built based
on a hybrid system and the cellular automata theory. On the basis of this model, a new driving style
quantitative method is proposed combining the acceleration and the vehicle distance. Then, a data
quality analysis algorithm, which conducts the real-time data anomaly detection in order to guarantee
driving safety, is designed by adding quantized driving style into data anomaly detection.

3. Model and Description

3.1. Traffic Cellular Automata

Based on the theory of a hybrid system and cellular automata, a traffic flow model of cellular
automata adoptive to variable density is constructed. Cellular automata are a dynamical system with
discrete space and time, different from a general dynamics model. Instead of being determined by the
strict definition of a physical equation or function, it is composed of a series of model construction
rule sets, which include the cellular space and states of cellular automata, neighbor states, and space
motion rules.

In the TCA (Traffic Cellular Automata), as shown in Figure 1, L represents discrete grids of
traffic cellular automata model. It is composed of L lanes, each lane has k cellular, and every
cellular is dominated by only one vehicle or being idle in a step time. A vehicle can span multiple
sequential cellular, the state of the nth vehicle represented by the speed vn ∈ {0, 1, ..., vmax} and position
xn ∈ {1, 2, ..., k}, and vmax represents maximum permitted speed.

Figure 1. Traffic cellular automata.

The specific process of cellular automata is as follows:
(1) Initialize the traffic cellular automata model

According to previous experience, each cellular automaton corresponds to a road of 7.5 m [30];
however, the TCA model constructed in this way can only be applicable to a specific scenario. For
example, on the highway, the vehicle flow density is small, while the vehicle speed and the vehicle
distance are large, so that there will be a large number of idle cellular automata in the TCA model,
which is not conducive to analysis. Another example is that, in a city with a high traffic density and a
small vehicle speed and vehicle distance, all cellular automata will be occupied in the TCA model,
or even the same cellular automaton may be occupied by multiple vehicles, so that the TCA model
cannot be built correctly. Aiming at this situation, this paper decided to calculate the road length of
each cellular automaton according to the average vehicle speed on the road. The formula is as follows:

xc =
1
2

vn, (1)

where xc is the length of the road that corresponds to each cellular, and vn is the discrete velocity of
the nth vehicle at this moment.
(2) Calculation of the safe distance
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In order to ensure traffic safety, each vehicle must keep a proper distance from the vehicle in front.
Too much distance will reduce the road traffic flow, and too small distance is prone to traffic accidents.
A safe distance dsa f e is obtained according to the traffic laws [31], as shown in Table 1.

Table 1. Safety distance.

Driving Type Condition (km/h) Safety Distance

high speed driving v > 100 s ≥ 100 m
fast speed driving 70 < v ≤ 100 s ≥ 80 m

medium speed driving 40 < v ≤ 70 s ≥ 60 m
low speed driving 20 < v ≤ 40 s ≥ 30 m

turtle speed driving v ≤ 20 s ≥ 10 m

(3) Update vehicle status based on rule set
The states of all vehicles are updated according to the defined acceleration rules,

overtaking/lane-changing rules, deceleration rules, and random slowing rules. The specific evolution
rules are given in Section 3.2.
(4) Update the position according to the vehicle status

At the moment of t + 1, the position of the vehicle is updated according to the updated speed.
When the position is greater than the length of road segment L, the vehicle is regarded as leaving the
road segment. Then, remove the vehicle, and the total number of vehicles in the road segment N is
reduced. Update the location and remove the vehicle according to the following rules:

xn(t + 1) = xn(t) + vn(t + 1). (2)

From the above steps, we can obtain the evolution of our TCA model.

3.2. Rule Set of Traffic Cellular Automata

3.2.1. Accelerate Rule

When the distance between the nth vehicle and its front vehicle is too large, which this paper
stipulates as the safety distance being greater than two times, and the speed does not reach the
maximum speed that is dn ≥ 2dsa f e and vn < vmax, (dn is the distance between the nth vehicle and its
front vehicle, vn is the current speed of the nth vehicle), and the vehicle can continue to speed up with
an acceleration an (general set to 1). The vehicle accelerates according to the following rules:

vn(t + 1) = min (vn(t) + an, vmax) . (3)

3.2.2. Overtaking/Lane-Changing Rule

When the nth vehicle satisfies the overtaking/lane-change condition, it can overtake or change
lanes; otherwise, the mandatory deceleration rule is implemented, and the specific conditions are as
follows: 

dn < min (vn + 1, vmax),
dn−other > dn,
dn−back > dsa f e,

(4)

where dn_other is the distance between the nth vehicle and the front vehicle in the adjacent lane (change
lane), and dn_back is the vehicle distance between the nth vehicle and the behind vehicle in the adjacent
lane, dsa f e is the safety distance. The first formula indicates that the distance between the nth vehicle
and the front vehicle in the same lane is no longer able to satisfy the following accelerating driving
conditions at time t. The second formula indicates that the driving conditions of adjacent lane are
better, which can satisfy the acceleration of the nth vehicle. The third formula is the safety condition,
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indicating that the lane change of the nth car will not cause congestion to the behind vehicle in the
adjacent lane.

3.2.3. Mandatory Deceleration Rule

When the speed of the nth vehicle is too high or the distance from the front vehicle is too small,
it is stipulated in this paper that, if vn > vmax or dn < dsa f e, and overtaking/lane change rule is not
satisfied, the mandatory deceleration rule should be implemented. The vehicle decelerates according
to the following rule:

vn(t + 1) = max (vn(t)− an, 0) . (5)

3.2.4. Random Slowing Rule

In order to get closer to the measured data, according to the sensitive driving model proposed by
Larraga et al. [30], considering the driver’s uncertain behavior, the vehicle speed is randomly slowed,
and the random slowing probability pn is introduced to randomly slow with acceleration an. The
vehicle is randomly slowed according to the following rules:

vn(t + 1) =

{
max (vn(t)− an, 0), pn ≤ 1

3 ,
vn(t), pn > 1

3 .
(6)

The rule is to simulate random behavior, and pn is a random value.

3.3. Driving Style Quantization Model

According to the multidimensional driving style table, driving styles are classified in a broad
sense [32]. This paper divides driving styles into three types: cautious type (C), normal type (N), and
aggressive type (A). There are generally two angles for quantifying driving style via data. The first
Angle is quantized according to the speed and acceleration of vehicles. The driver style recognition
coefficient Rdriver proposed by Murphey et al. [26] is a very classical algorithm. The second Angle is
quantized according to the vehicle distance. At present, all of the research is simply quantized from
one aspect, so that there is a certain deviation from the actual situation, which will lead to inaccurate
quantization results. As shown in Figure 2: (a) When the distance between the vehicle and its front
car is too large, the behind car can be considered as free driving, and frequent changes in acceleration
are normal. However, from the perspective of acceleration, the driver of the behind vehicle will be
judged as aggressive with a high probability; (b) In the case of the same vehicle distance, drivers with
frequent changes in acceleration (speed) must have different driving style types from drivers with
stable acceleration (speed), but it cannot be reflected by vehicle distance analysis alone.

(a) (b)

Figure 2. The defect of unilateral quantization.

In this paper, based on the driver style recognition coefficient Rdriver proposed by Murphey et
al. [26], a new concept–driving style recognition coefficient Rde is proposed by combining acceleration
and vehicle distance, and driving style is quantified by using acceleration and vehicle distance.
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Define vehicle distance ratio p:

p =
s
d

, (7)

where d is the vehicle distance, and s is the shortest safe distance, which is obtained according to the
safe distance specified in the traffic laws [31], as shown in Table 1.

If the vehicle distance d is less than the safe distance s, the driver is considered to be aggressive
(A), and the driving style recognition coefficient Rde is not required to be calculated.

Then, the driver style recognition coefficient Rdriver is calculated as follows:

J(t) =
d2v(t)

dt2 , (8)

R driver =
RJ

J
. (9)

J(t) is the impact, defined in physics as the rate of acceleration change; J̄ is the average impact of normal
drivers under the same condition; RJ is the standard deviation of the impact within a time period with
a time window ω. Through a large number of experiments and studies, Murphey suggested setting
the time window as 6 s or 9 s, which will have a high recognition precision [26]. This paper refers to
this setting.

Driving style recognition coefficient Rde can be expressed as:

Rde = R driver × p =
RJ

J
× s

d
. (10)

Finally, the calculated driving style coefficient is compared with two thresholds: the normal
threshold Normthreshold and the aggressive threshold Aggthreshold. Through a lot of experiments, this
paper suggests that the two thresholds are 0.5 and 1.0, respectively.

4. Add Algorithm: Anomaly Detection Based on Driving Style

Considering that part of the attacking data in the actual situation will not affect the safety of
driving, regarding it as normal data can effectively reduce the calculation cost without affecting the
accuracy, thus this paper adopts the following methods to preprocess all the data:

C =

{
0, ∃ f ∈ F → a = f (d),
1, else .

(11)

C is the preliminary screening index for anomaly, and C is 1 for possible anomaly, while C is 0 for
normal data. F is the rule set of cellular automata traffic flow model, f is one of these rules, a is the
decision of the vehicle, and d is the data of the vehicle. Equation (11) shows that, if the vehicle data
can keep the TCA system steady, we believe that the data are normal data; otherwise, it is considered
suspected abnormal data and proceeds to the next step for further judgment.

The formula for the driving style recognition coefficient Rde is given in Section 3.3.
After obtaining Rde, this paper converted it into the corresponding driving style coefficient e, in

order to conduct anomaly detection via GMM later. The corresponding relation of Rde and e is shown
as Table 2:

Table 2. Driving style coefficient contrast table.

Rde Driving Style Coefficient e

Rde < Normthreshold Cautious (C) 1
Norm ≤ Rde ≤ Agg Normal (N) 2
Rde > Aggthreshold Aggressive (A) 3
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Where Normthreshold is normal threshold, Aggthreshold is aggressive threshold (according to the
experiment results, it is suggested that two thresholds are valued 0.5 and 1.5 respectively).

4.1. Gaussian Mixed Model (GMM)

After obtaining driving style parameter e, data anomaly detection is conducted. For the sake
of research, this paper extracts the velocity v, acceleration a, distance d, and quantized driving style
parameter e from the data packet for anomaly detection.

Since Gaussian mixture model (GMM) is applicable to continuous variables and can reflect the
correlation between dimensions, this paper uses the GMM to carry out this work, as shown in Figure 3:

velocity v 

acceleration 

a 

distance d 

driving style 

coefficient e 

Gauss mixed 

model! GMM 

test set 

data 

anomaly 

list 

Figure 3. Gaussian Mixed Model parameter.

GMM is often used in clustering. Taking a point in GMM distribution randomly can be divided
into two steps: first, choose one component from K components randomly; the probability of selecting
each component is actually its coefficient πk. After selecting components, separately consider selecting
one point from this component’s distribution; here, it has returned to normal Gaussian distribution
and has converted to known issues. Thus, GMM is used for clustering, and we only need to deduce
the probability distribution of GMM according to the data.

The random variable X is set; then, the Gaussian mixture model can be expressed as follows:

P(X) =
K

∑
k=1

πkN (x|µk, Σk) , (12)

where N (x|µk, ΣK) is the kth component of the mixture model. Given two clusters, which can be
represented by two two-dimensional Gaussian distributions, then the component K = 2. πk is the
mixture coefficient that satisfies:

K

∑
k

πk = 1, 0 ≤ πk ≤ 1, (13)

where πk is equivalent to the weight of each component N (x|µk, ΣK); then, the form of two clustering
GMM is shown in the formula:

P(X) = π1N (x|µ1, Σ1) + π2N (x|µ2, Σ2) . (14)

The problem of GMM parameter estimation is how to determine the value of π1 and π2

automatically based on data. To solve this problem, we can use the Expect–Maximization (EM)
algorithm. With the EM algorithm, we can iteratively calculate (πk,xk,Σk) in GMM.

The EM algorithm has two steps. The first step is to obtain the rough value of the estimating
parameter; the second step is to use the value of the first step to maximize likelihood function. Thus,



Sensors 2019, 19, 4926 9 of 19

the likelihood function of GMM should be obtained first; there are three parameters in GMM model to
estimate: π, µ and Σ. Rewrite Equation (12):

P(x|π, µ, Σ) =
K

∑
k−1

πkN (x|µk, Σk). (15)

In order to estimate the three parameters, the maximum likelihood function of the three
parameters needs to be solved respectively. First, solve the maximum likelihood function of µk.
Take the logarithm of Formula (15) and then take the derivative of µk and set the derivative to 0, the
maximum likelihood function can be obtained:

0 = −
N

∑
n−1

πkN (xn|µk, Σk)
∑ jπjN

(
xn|µj, Σj

) ∑ k (xn − µk) . (16)

Both sides multiply ∑ k−1, rearranging to get:

µk =
1

Nk

N

∑
n−1

γ (znk) xn, (17)

where:

Nk =
N

∑
n−1

γ (Znk) , (18)

γ (zk) = p (zk = 1|x) = πkN (x|µk, Σk)

∑K
j−1 πjN

(
x|µj, Σj

)
.

(19)

As shown in Formula (19), γ(zk) is defined to represent the posterior probability of the kth
component. In Formulas (17) and (18), N is the number of points, then γ(znk) can represent the
posterior probability of n (xn) belonging to cluster k, µk is the weighted average of all points, and
∑N

n−1 γ(znk) is the weight of each point, which is related to the kth cluster.
Calculate the maximum likelihood function of Σk in the same way; we can obtain:

Σk =
1

Nk

N

∑
n−1

γ (znk) (xn − µk) (xn − µk)
T . (20)

Finally, the maximum likelihood function of πk remains; it can be regarded as the prior probability
of zk = 1. Note that there are constraints ∑K

k−1 πk = 1 of πk, so we need to add the Lagrangian
operator:

ln p(x|π, µ, Σ) + λ

(
K

∑
k−1

πk − 1

)
. (21)

To calculate the maximum likelihood function of πk above in the same way, we can obtain:

0 =
N

∑
n−1

N (xn|µk, Σk)
∑ jπjN

(
xn|µj, Σj

) + λ. (22)

Both sides multiply πk, and we can obtain λ = −N, which leads to a more concise expression of
πk:

πk =
Nk
N

. (23)

Using the EM algorithm to estimate GMM parameters is to maximize Formulas (17), (20) and (23),
Formulas (17), (19), (20) and (23) are required. First, assign the initial value of π,µ and Σ, which is
substituted into Formula (19) to obtain γ(znk). Then, substitute γ(znk) into Formulas (18), (20) and
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(23) to obtain πk, µk and Σk. Subsequently, substitute πk, µk and Σk into Formula (19) to obtain new
γ(znk), then substitute new γ(znk) into Formulas (17), (20) and (23). Repeat the former steps until the
algorithm converges.

4.2. Add Algorithm

Anomaly detection algorithm of IOV data, ADD, is proposed based on driving style. The state
transition diagram of ADD algorithm is shown in Figure 4.

SO.Pre­

detection by 

TCA 

54. 

Gauss Mixed 

Model(GMM) 

51.Data

preprocessing 

I ) 

0 

〈飞

53.0btaining 
Driving style 
Parameter e 

S2. Calculating 

Rae 

Figure 4. State transition diagram.

The main process is as follows:
S0: Pre-detection by traffic flow model. If the vehicle data conforms to the TCA model (C = 0),

determine it as normal data and continue S0; if the vehicle data does not conform to the TCA model
(C = 1), anomalies may exist and further comprehensive determination is needed, and proceed to S1.

S1: Data preprocessing. Speed v, acceleration a and distance d are extracted from the data packet.
The distance d and the minimum safe distance s are compared. If d ≥ s, proceed to S2; otherwise,
proceed to S3.

S2: The driving style recognition coefficient Rde is calculated according to the Formula (10).
S3: The driving style coefficient e is obtained according to the comparison table of driving style

parameters.
S4: The obtained driving style coefficient e, velocity v, acceleration a, and distance d are used to

obtain the anomalies list via the Gaussian mixture model (GMM).For a given m-dimensional data set
{x1, x2, ..., xm}, x ∈ R, using a Gaussian mixture model to calculate mathematical expectation µ and
build the covariance matrix Σ of all the characteristics, as shown in Formulas (24) and (25):

µ =
1
m

m

∑
i=1

xi, (24)

Σ =
1
m

m

∑
i=1

(xi − µ)(xi − µ)T . (25)

The probability density function is as shown in Formula (26):

P(x; µ, σ2) =
1

(2π)
π
2 |Σ| 12

exp(−1
2
(x− µ)TΣ−1(x− µ)). (26)



Sensors 2019, 19, 4926 11 of 19

The probability density function calculated in Formula (26) is used to judge the new data, and
P(x) can be compared with the adaptive threshold to detect anomaly data; finally, the anomalies list
can be obtained through output.

5. Experiment and Analysis

In this paper, the ADD algorithm is proposed to analyze the validity of IOV data. Two data sets
are used in the simulation experiment.

Data set 1: NGSIM data set for experimental simulation [33]. Researchers collected detailed vehicle
trajectory data on southbound US 101 and Lankershim Boulevard in Los Angeles, CA, USA eastbound
I-80 in Emeryville, CA, USA and Peachtree Street in Atlanta, GA, USA. Data were collected through
a network of synchronized digital video cameras. NGVIDEO, a customized software application
developed for the NGSIM program (Dataset 1.1; USDOT; Los Angeles, California; Emeryville,
California; Atlanta, Georgia; America), transcribed the vehicle trajectory data from the video. This
vehicle trajectory data provided the precise location of each vehicle within the study area every 0.1 s,
resulting in detailed lane positions and locations relative to other vehicles.

Data set 2: The self-made data set simulated by Simulation of Urban MObility (SUMO), using
a “five-car model” and custom vehicle to generate autonomous vehicles required by the experiment.
In order to distinguish the two different types of vehicles, we use red vehicles to represent autonomous
vehicles and yellow vehicles to represent environmental vehicles, as shown in Figure 5. Then, collect
the simulated data and analyze it as the interactive data between vehicles.

Figure 5. Simulation of Urban MObility simulation platform.

This paper only changes the speed to simulate anomaly data. According to the actual situation
and the investigation of Chen et al. [34], four types of anomaly data are defined, as Figure 6:

1. a = 0, |∆v| ≥ 5%, the acceleration is 0, but the speed changes;
2. a 6= 0, |∆v| ≤ 5%, the acceleration is not 0, but the speed remains unchanged;
3. The distance(d) is too small when the speed or acceleration is large;
4. |∆v| > 50%, a step occurs in speed or acceleration.

(a) the first type of
anomaly

(b) the second type of
anomaly

(c) the third type of
anomaly

(d) the fourth type of
anomaly

Figure 6. Data anomalies definition.



Sensors 2019, 19, 4926 12 of 19

In order to prove the performance of the algorithm proposed in this paper, two algorithms
are adopted for comparison: (1) HTM algorithm: Hole et al. [35] carried out anomaly detection
on the time series data, whose data set was derived from the collected time series data of various
industries, including the vehicle speed in the IOV. In this paper, the HTM algorithm is only used for
anomaly detection of one-dimensional data, velocity v, for comparison. (2) LSTM algorithm: Filonov
et al. [36] adopted a method based on LSTM neural network to monitor and detect anomalies in
multivariable time series data. In this paper, the LSTM algorithm is used to detect the anomalies of the
three-dimensional IOV data (speed, acceleration, distance) without driving style for comparison.

In this paper, ten cars in the NGSIM data set are randomly selected as the GMM training data set.
Figure 7 shows the speed trend of the training set, where the velocity step between two vehicles is
marked as anomaly 4.

Figure 7. Speed diagram of training set.

There are 11 anomaly intervals in the graph above, the specific situation is as follows:
Anomaly intervals (5) and (8): when the acceleration is 0, the velocity changes (anomaly 1);
Anomaly intervals (6) and (9): when the acceleration is not 0, the velocity remains unchanged

(anomaly 2);
Anomaly interval (1) and (11): when the vehicle distance d is small, the speed or acceleration is

large (anomaly 3);
Anomaly intervals (2), (3), (4), (7), and (10): when velocity or acceleration step is generated, which

is not normalcy (anomaly 4).
GMM test data set is composed of two parts. Test set 1 is the vehicles randomly selected from the

NGSIM data set, and the following three test sets are obtained:
State 1 selects the vehicles as 14, 233, 999, and 2333. The anomaly data include all four anomaly

conditions. The schematic diagram is shown in Figure 8a. Figure 8b is the preliminary screening index
of anomalies obtained via the cellular automata traffic flow model.
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(a) speed diagram (b) preliminary screening index

Figure 8. Schematic diagram of the first situation.

State 2 selects the vehicles as 28 and 78, and the anomaly data includes anomaly 1, 2, and 3. All
these three anomalies are considered to be related to each other; the schematic diagram is shown in
Figure 9a. Figure 9b is the preliminary screening index of anomalies obtained via the cellular automata
traffic flow model.

(a) speed diagram (b) preliminary screening index

Figure 9. Schematic diagram of the second situation.

State 3 selects the vehicles as 59 and 1202, and there is only anomaly 4. In this case, there was
only step anomaly of speed, as shown in Figure 10a. Figure 10b is the preliminary screening index of
anomalies obtained via the cellular automata traffic flow model.

(a) speed diagram (b) marked abnormal interval

Figure 10. Schematic diagram of the third situation.

Test set 2 is obtained by adding the anomaly data (including all four anomalies, in the first
situation) into the SUMO simulation data set, as shown in Figure 11.
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(a) speed diagram (b) marked abnormal interval

Figure 11. Schematic diagram of SUMO data set.

5.1. Experimental Results and Analysis

According to the actual situation and the study of Murphey et al. [26], the changes of driving
style are not a mutation process reflected in the data; thus, this paper proposes that the driving style e
is a transient data, which is quantified by a sliding time window (it is suggested that the time window
should be consistent with ω). The driving style quantification result of a vehicle (Id: 562) is shown in
Figure 12.

Figure 12. The driving style quantification result.

When comparing the experimental results of the test set, the three parameters–Precision, Recall
and F1 score, which are commonly used in the field of data anomaly identification, are selected as the
evaluation criteria. The common method for calculating Precision, Recall, and F1 scores is shown in
Formulas (27) to (29):

Precision =
Tp

Tp + Fp
, (27)

Recall =
Tp

Tp + Fn
, (28)

F1 =
2 ∗ Precision ∗ Recall

Recall + Precision
, (29)

where Tp represents the number of correctly detected, Fp represents the number of false positives, and
Fn represents the number of false negatives. As shown in Formulas (27)–(29), the number of Tp, Fp

and Fn will determine the Precision and Recall. The precision is used for judging how sensitive the
anomaly detection algorithm is to anomalies. The recall rate reflects the ability of the algorithm to
detect anomalies. The accuracy and recall values together affect the final F1 score, which represents the
overall performance of the anomaly detection algorithm.



Sensors 2019, 19, 4926 15 of 19

5.1.1. Experimental Results Analysis of the First Situation

In the first situation, data anomaly detection results are shown in Tables 3 and 4, where Table 3
is the result of test set 1 (NGSIM data set) and Table 4 is the result of test set 2 (SUMO simulation
data set).

Table 3. Results of test set 1.

(a) Precision

ID HTM LSTM ADD

14 0.76 0.89 0.90
233 0.67 0.86 0.90
999 0.60 0.81 0.88
2333 0.74 0.89 0.91
AVG 0.69 0.86 0.90

(b) Recall

ID HTM LSTM ADD

14 0.36 0.81 0.94
233 0.39 0.87 0.95
999 0.43 0.89 0.86
2333 0.44 0.95 0.95
AVG 0.40 0.88 0.95

(c) F1 score

ID HTM LSTM ADD

14 0.49 0.84 0.92
233 0.49 0.86 0.92
999 0.50 0.85 0.92
2333 0.55 0.92 0.93
AVG 0.51 0.87 0.92

HTM: Hierarchical Temporal Memory. LSTM: Long short-term memory. ADD: Anomaly Detection Based on
Driving Style.

Table 4. Results of test set 2.

pre rec f1

HTM 0.75 0.36 0.49
GMM 0.79 0.64 0.71
ADD 0.83 0.74 0.78

HTM: Hierarchical Temporal Memory. LSTM: Long short-term memory. ADD: Anomaly Detection Based on
Driving Style. pre: Precision; rec: Recall; f1: F1 score.

It can be seen from the table that the HTM algorithm only performs anomaly detection on
one-dimensional speed data, and its Precision is generally high, but Recall is very low because the
HTM algorithm can detect step anomalies well and has low false positive (Fp). The correlation between
multidimensional data cannot be taken into account in the HTM algorithm, which will result in high
false negative (Fn). Therefore, the Recall of each group is very low, and the final calculated F1 score is
also very low.

The Precision of the LSTM algorithm is not much different from that of the ADD algorithm;
however, the Recall of the LSTM algorithm is significantly higher than that of the former. Because the
ADD algorithm takes into account the driving style, the detection is more comprehensive, the false
negative (Fn) detection result is very low, and the final calculated F1 score is also significantly higher
than the other two algorithms.
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5.1.2. Experimental Results Analysis of the Second Situation

In the second situation, the results of anomaly data detection are shown in Table 5. The HTM
algorithm used for detection has low Precision and Recall, and the final calculated F1 score will be far
lower than the latter two. The results of LSTM algorithm and ADD algorithm are not much different
from the first situation. The Precision of the ADD algorithm is similar to the former, but the Recall is
higher than the former, and the final F1 score is also higher than the former.

Table 5. Results of the second situation.

(a) Precision

ID HTM LSTM ADD

28 0.31 0.77 0.84
78 0.30 0.81 0.82

AVG 0.30 0.79 0.83

(b) Recall

ID HTM LSTM ADD

28 0.16 0.67 0.87
78 0.13 0.72 0.91

AVG 0.14 0.69 0.89

(c) F1 score

ID HTM LSTM ADD

28 0.21 0.72 0.86
78 0.18 0.76 0.86

AVG 0.19 0.74 0.86

HTM: Hierarchical Temporal Memory. LSTM: Long short-term memory. ADD: Anomaly Detection Based on
Driving Style.

5.1.3. Experimental Results Analysis of the Third Situation

In the third situation, the results of anomaly data detection are shown in Table 6. There is only
velocity step anomaly, and any algorithm used for detection will have high Precision and Recall. The
final calculated F1 score will be close to each other. The detection effects of the three algorithms will
not be much different.

We can clearly determine that the performance used multidimensional data to carry out validity
analysis is much better than using only one-dimensional speed data via the comparison among three
situations because it will not consider the correlation between multidimensional data, which will lead
to high false negative results and a very low final calculated F1 score. In the same situations above,
the method of adding the driving style parameter e is better than the method irrespective of that.
Although it will create unnecessary mistakes and increase false positive (Fp), more comprehensive
calculation can detect more anomalies, decrease false negative (Fn), and improve Recall; finally, the
F1 score calculated by combining Precision and Recall will be significantly higher than the method
irrespective of driving style.
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Table 6. Results of the third situation.

(a) Precision

ID HTM LSTM ADD

59 0.95 0.89 0.91
1202 0.91 0.82 0.86
AVG 0.93 0.86 0.88

(b) Recall

ID HTM LSTM ADD

59 0.92 0.95 0.95
1202 0.91 0.92 0.94
AVG 0.91 0.93 0.94

(c) F1 score

ID HTM LSTM ADD

59 0.93 0.92 0.93
1202 0.91 0.87 0.89
AVG 0.91 0.89 0.91

HTM: Hierarchical Temporal Memory. LSTM: Long short-term memory. ADD: Anomaly Detection Based on
Driving Style.

6. Conclusions

This paper builds a traffic cellular automata model based on the hybrid system and cellular
automata theory, and preprocesses the data of IOV according to this model, in order to achieve an
ideal anomaly detection effect with limited computing resources. On the basis of this model, a new
driving style quantization method is proposed by combining acceleration and vehicle distance, and
the ADD algorithm, a data validity detection method for IOV, is proposed based on driving style
demonstrated in Section 4, which is more reasonable. Then, NGSIM data sets and SUMO simulation
data are used to verify the proposed method. Experiments show that adding driving style parameters
to data validity analysis will bring better performance, and the method proposed in this paper is
reasonable and feasible.
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