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Abstract: This paper explores the energy efficiency (EE) maximization problem in single-hop
multiple-input multiple-output (MIMO) half-duplex wireless sensor networks (WSNs) with simultaneous
wireless information and power transfer (SWIPT). Such an energy efficiency maximization problem is
considered in two different scenarios, in which the number of energy-harvesting (EH) sensor nodes are
different. In the scenario where the single energy-harvesting sensor node is applied, the modeled network
consists of two multiple-antenna transceivers, of which the energy-constrained energy-harvesting sensor
node harvests energy from the signals transmitted from the source by a power splitting (PS) scheme.
In the scenario of multiple EH sensor nodes, K energy-constrained sensor nodes are applied and the
same quantity of antennas are equiped on each of them. The optimization problem is formulated to
maximize the energy efficiency by jointly designing the transceivers’ precoding matrices and the PS factor
of the energy-harvesting sensor node. The considered constraints are the required harvested energy, the
transmission power limit and the requirement on the data rate. The joint design of the precoding matrices
and the PS factor can be formulated as an optimization problem, which can be transformed into two
sub-problems. An alternating algorithm based on Dinkelbach is proposed to solve the two sub-problems.
The convergence of the proposed alternating algorithm, the solution optimality and the computational
complexity are analyzed in the paper. Simulation results demonstrate the convergence and effectiveness
of our proposed algorithm for realizing the maximum energy efficiency.

Keywords: energy efficiency; multiple-input multiple-output; precoding matrices; simultaneous wireless
information and power transfer; wireless sensor networks

1. Introduction

The emergence of tens of billions of intelligent Internet-of-Things (IoT) devices have attracted serious
concerns about their-energy waste and the radiation pollution. Green communications technology opens a
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new road for energy exploitations and gradually promotes its popularity nowadays [1]. Simultaneous
wireless information and power transfer (SWIPT) was first proposed in [2], and can be regarded as the
candidate technology that meets the idea of green communications because it aims at realizing a high
data rate and at enabling energy reuse. It enables the energy-constrained nodes to harvest recyclable
energy and to decode information on the same radio frequency (RF) signals. The tendency inspires a
feasible scheme to extend the lifetime of the energy constrained nodes in wireless sensor networks. In
SWIPT, the EH receiver and information-decoding (ID) receiver can be functioned in two modes, i.e.,
co-located and separated [3]. For the co-located receiver, Zhang, R. et al. in [4] proposed two efficient
information transmission mechanisms, known as power-splitting (PS) and time-switching (TS). In the
PS mechanism, the co-located receiver divides the received signal power into two power streams in an
appropriate proportion, one for information decoding and the other for energy harvesting. In the TS
mechanism, the co-located receiver is designed to switch its modes from energy harvesting to information
decoding in different time slots.

Following these pioneering works, SWIPT began its applications in the single-input single-output
(SISO) system [5] and is now developed to be used in scenarios, e.g., the multiple-input single-output
(MISO) systems [6–8], multiple-input multiple-output (MIMO) systems [9–11], broadcast systems [12],
orthogonal frequency-division multiplexing (OFDM) relay systems [13], etc. In [8], the two-way
multi-antenna relay networks are considered, where the beamforming of relay antennas is designed
to maximize the sum rate under the energy constraint. Jiang, R. et al. in [12] studied the broadcast
networks system, where the transmitting power of a hybrid access point (H-AP) equipped with multiple
antennas is minimized under constraints such as the minimum signal-to-interference-plus-noise ratio
(SINR) and the power harvested at each user with a single antenna. Shen, Y. et al. in [13] investigated
the resource optimization problem in TS relay networks, which take into account a realistic energy
consumption model. It is worth noting that MIMO technology has been widely used in modern mobile
communication networks due to its considerable diversity gain and effective resistance to path loss. The
combination of MIMO and SWIPT is the cutting edge research direction at present. Following this research
trend, Zhang, R. et al. in [4] studied the rate-energy trade-off region under the constraint of nonlinear
energy harvesting. By giving an actual EH model, the optimal trade-off between the harvested energy
and data rate was explored in [4]. By optimizing the precoding at the source and the relay, the achievable
transmission rate with TS or with PS schemes, respectively, in a two-hop decode-and-forward (AF) relay
network are investigated in [9]. In [11], the two-user MIMO interference channel is proposed and secure
communication is realized by designing optimal precoding on transmitters.

However, few of the above studies were concerned with the energy efficiency, but energy efficiency
has developed to be the performance metric of energy-constrained networks due to the requirement on
energy management [14–17]. Energy efficiency is defined as the ratio of the network sum rate to the total
energy consumption. In [10], all of the desired receivers decode information and harvest energy in a
point-to-point communication system with a PS scheme. The desired receivers can achieve the optimal
energy efficiency by jointly optimizing the transmission precoding matrix, the artificial noise covariance
matrix and the power splitting ratios. Not only that, the probability of eavesdropping is also reduced.
In [14], Ng, D.W.K. et al. study the resource allocation algorithm design for OFDM downlink systems to
maximize the energy efficiency. An alternating iteration algorithm is developed in [15] to infer the optimal
precoding matrix at the relay and transmitters in the two-way relay networks. Zhou, X. et al. in [16] studied
a two-way amplify-and-forward relay networks. An iterative algorithm based on the constrained concave
convex procedure (CCCP) is proposed to jointly design the sources’ and relay’s precoding matrices and
the PS ratios. The iterative algorithm maximizes the energy efficiency of the network. Similarly, the energy
efficiency is maximized in [17], in which a distributed antenna system is studied. Through adjusting the
PS ratios, this enables the IoT devices to coordinate the energy harvesting and information decoding.
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The users of the wireless powered communication networks in [18] can harvest energy from dedicated
power station, which ensures that the information can be transmitted to the information reception station.
Then the authors Wu, Q. et al. in [18] maximize the energy efficiency of the system via the joint optimization
of slot allocation and power control. A utility function is proposed in a MISO system [19] with the purpose
of maximizing the ratio of the achieved utility to the total power consumption. A MISO downlink data
transmission link is considered in [20], in which the zero-forcing (ZF) algorithm was applied by the base
station. The energy efficiency of the system is maximized through joint optimization of beamforming and
power splitting.

The realizations of the above works all benefited from the development of EH technologies.
They paved the way for filling up the deficiencies of the energy constrained networks. In recent years, EH
technologies continue to be developed, i.e., recyclable energy can be harvested from either the surrounding
environment or the dedicated RF signals and the lifetime of wireless networks can be improved [21].
Gui, L. et al. in [22] propose a new secure system model with both fixed and mobile jammers to guarantee
secrecy in the worst-case scenario, where all jammers are thought to have EH capability. In [23], sensor
nodes harvest energy from mobile phones’ RF signals and, in order to acquire available power use from
the ambient mobile phones, a contract theory based incentive scheme is investigated. With the linear EH
model, the harvested energy in unit time is usually proportional to the power of the received RF signals.
By analyzing the experimental results, Boshkovska, E. et al. in [24] validate that for the EH device there
exists a nonlinear relationship between the power of output direct current (DC) and the power of input
RF signals. However, as in the conclusion given in [17], the linear EH model is still applicable for the low
input power devices. The main reasons are described as follows. Firstly, the nonlinear EH model can be
approximated to be a piecewise linear model when the EH devices are assigned with relatively low or high
input power, separately. With such assumption, the linear EH model has acceptable accuracy. Secondly,
the intelligent IoT devices are usually exposed in an electromagnetic surrounding filled with low power
RF signals.

In this paper, the maximization of energy efficiency is studied in MIMO half-duplex SWIPT wireless
sensor networks with a linear EH model. In fact, some efforts have been made to achieve highly efficient
utilization of network resources in WSNs. Guo, W. et al. in [25] propose a soft real-time fault-tolerant task
allocation algorithm (FTAOA) for WSNs to support the fault tolerance mechanism to improve resource
utilization. To reduce the total traffic cost, Yao, Y. et al. in [26] develop the data collection protocol EDAL.
In [27], a node scheduling strategy is proposed to reduce the number of active nodes and the amount of
messages in the network. The strategy proposed in [27] reduces the energy consumption and improves
the network lifetime. Moreover, in order to ensure the communication reliability in wireless networks,
the proposal in [28] studies the distributed scheduling problem, by which the scheduling cycle length is to
be minimized.

This paper incorporates SWIPT with WSNs, in which the energy efficiency maximization problem is
studied. The main contributions of this paper are summarized as follows:

• The EE maximization problem in the SWIPT-based MIMO wireless sensor network is considered by
employing the PS mechanism. Our goal is to maximize the energy efficiency by jointly optimizing
the power splitting factor and the precoding matrices of transceivers. Moreover, the upper limit on
the power supply and the required data rate for quality of service (QoS) guarantee is bounded as
the constraints.

• For the proposed optimization problem, the objective function is non-convex. The eigenvalue
decomposition and singular value decomposition are applied to reduce the dimensionality.
Meanwhile, the original coupling problem can be transformed to two sub-problems. For these two
sub-problems, an alternating algorithm based on Dinkelbach is used to guarantee the convergence.
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• Excluding the convergence analysis, the computational complexity is given in the paper and the
feasibility of our proposal is also verified by simulation results. The performance comparisons
between our proposal and the other selected baseline algorithms validate the effectiveness of
our proposal.

The rest of the paper is organized as follows: Section 2 introduces the system model. In Section 3,
the optimization problem of power allocation for EE maximization is formulated and then an alternating
algorithm based on Dinkelbach is introduced to solve the problem. The convergence and computational
complexity of the algorithm are also analyzed in Section 3. Section 4 shows the extended energy efficiency
maximization problem in the scenario of the multiple EH sensor nodes used. Section 5 shows the simulation
results and performance comparisons. Section 6 concludes the paper.

2. Single EH Sensor Nodes System Model

2.1. Notations

This paper specifies that the bold italics uppercase and the bold italics lowercase letters denote
matrices and vectors, respectively. The operators, i.e., AH , A−1, A+, Tr(A), |A| and ‖A‖ represent
conjugate transpose, inverse, pseudo-inverse, trace, determinant and Frobenius norm of the matrix A,
respectively. A � 0 means that A is positive semidefinite. CN×M is defined as the space of N×M matrices
with complex entries. IN denotes the N × N identity matrix and 0 denotes zero matrix.

2.2. System Model

The MIMO half-duplex wireless sensor network is considered in Figure 1, which contains
two transceivers, i.e., the source and the EH sensor node, equipped with N1 and N2 antennas,
respectively. The source node has a persistent energy supplement, whereas the the EH sensor node
is an energy-constrained node. To maintain the EH sensor node’s survival, the PS scheme is adopted at the
sensor node to harvest energy from the source’s RF signals, which are divided into two power flows by
the power splitting scheme. α(0 ≤ α ≤ 1) is defined as the power splitting factor, by which the α portion
of the received signals is used for the ID receiver and the (1− α) portion of the received signals is used for
the RF energy conversion circuit. Following the same channel models given in [12,17], the frequency flat
slow block fading channel model that obeys Rayleigh distribution is adopted in this paper. The channel
state information (CSI) of all the links are also known beforehand according to the historical statistics.

Figure 1. The system model for simultaneous wireless information and power transfer (SWIPT) in a
multiple-input multiple-output (MIMO) half-duplex wireless sensor network.
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2.2.1. Source—EH Sensor Node Communication

The two-way data transmission between the source and the sensor node occurs on two consecutive
equal time slots, just as shown in Figure 1. During the time slot 1, the source transmits its signals to the
sensor node and the received signals at the sensor node are given as

y2 = HFs1 + n2, (1)

where s1 ∈ CN1×1 (s1 ∼ CN (0, 1)) is the symbol vector generated at the source, F ∈ CN1×N1 denotes
the precoding matrix of the source, H ∈ CN2×N1 denotes the channel coefficient matrix from the source
to the sensor node. The channel can be assumed to be quasi-static [29], so that the channel coefficient
matrix keeps unvaried in the two time slots. n2 ∈ CN2×1 is the zero-mean additive white Gaussian noises
(AWGN) at the sensor node with the covariance matrix σ2

2 IN2 .
By the power splitting factor α, the received signals at the sensor node can be split into two flows. In

the paper, each antenna of the sensor node is assigned with the same power splitting factor for problem
simplification. Therefore, the signals for ID at the sensor node can be given as

yID
2 =

√
α (HFs1 + n2) + nID

2 , (2)

where nID
2 ∼ CN (0, σ2

ID IN2) is the AWGN generated by the baseband signal processing of the ID receiver,
which converts the RF signals into baseband signals. Thus the achievable rate in bits/s/Hz at the sensor
node can be given by

R2 = log2

∣∣∣∣∣IN2 +
αHFFH HH

(ασ2
2 + σ2

ID)IN2

∣∣∣∣∣ . (3)

The data rate R2 in Equation (3) can be achieved due to a perfect CSI being known, which can be
obtained by training at either the uplink or the downlink using pilot signals or by using the 1-bit feedback
information [17].

On the one hand, the signals for EH are shown as in Equation (4)

yEH
2 =

√
1− α (HFs1 + n2) . (4)

Based on Equation (4), the harvested energy at the sensor node can be deduced as in Equation (5) [17]

EEH = η(1− α)Tr
(

HFFH HH + σ2
2 IN2

)
, (5)

where η ∈ [0, 1] is the EH efficiency that reflects the proportion of the harvested energy from the received
RF signals. The considered MIMO sensor network always operates at low input power at the sensor node,
the linear EH model can be still applicable to the MIMO sensor network.

During time slot 2, the sensor node is powered by the harvested energy and transmits signals to the
source. The received signal at the source can be expressed as

y1 = HH Ds2 + n1, (6)

where s2 ∈ CN2×1 denotes the unit-norm information symbol vector generated by the sensor node,
D ∈ CN2×N2 denotes the precoding matrix at the source and n1 ∼ CN (0, σ2

1 IN1) represents the AWGN
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with n1 ∈ CN1×1. Similar to the achievable rate shown as Equation (3), the achievable rate in bits/s/Hz at
the source can be expressed as Equation (7).

R1 = log2

∣∣∣∣∣IN1 +
1
σ2

1
HH DDH H

∣∣∣∣∣ . (7)

The rate R1 can be obtained just following the data rate given in Equation (3). Assume that the the
time slot for transmission at the source or the sensor node occupies a 1/2 time frame; thus, the total
amount of the transmitted data equals T

2 (R2 + R1) in bits/Hz.

2.2.2. Energy Efficiency

The energy efficiency (bits/Hz/J) in the paper is defined as the ratio of total number of bits conveyed
in networks to the networks’ energy consumption. According to Equations (1) and (6), the transmission
power of the source and the sensor node denoted as P1 and P2 can be obtained as follows

P1 = ‖F‖2 = Tr(Q1), (8)

P2 = ‖D‖2 = Tr(Q2), (9)

where Q1=FFH , Q2=DDH . Therefore, the networks’ energy consumption within the considered time
slots can be given by Equation (10) [16].

E(α, Q1, Q2) =
T
2
(
(P1 + P2)

/
ς+Pc

)
, (10)

where ς ∈ (0, 1] is the drain efficiency for the power amplifiers of transceivers. Assume that the source
and the sensor node have the same drain efficiency, and are set as 100%, i.e., ς = 1. The factor T

2 is due
to the power consumption, i.e., P1 and P2 separately occurred in two time slots. The period of each time
slot is 1/2 unit time frame. Pc denotes the sum of circuit power consumption at the source and the sensor
node and Pc = Pc1 + Pc2, where Pc1 and Pc2 represent the circuit power consumption of the source and
the sensor node, respectively, The circuit power is used to enable transceivers to transmit and receive
the signals.

The harvested energy during the time slot should maintain the sensor node’s survival and hence is
required to meet the minimum requirement for the power needs, therefore the constraint in Equation (11)
can be established as

EEH ≥ P2+Pc2. (11)

According to the definitions given above, the EE in the paper can be formulated as follows

EE =
T
2 (R2 + R1)

E(α, Q1, Q2)
. (12)

3. Problem Formulation and Solution

3.1. Optimization Problem Formulation

This paper aims at maximizing the network energy efficiency. It considers the joint optimization of
the power splitting factor α and the precoding matrices Q1 and Q2. The constraints such as the upper limit
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on the transmission power, the required minimum data rate for the QoS guarantee and the semi-definite
attribute of the precoding matrices are taken into account in the problem formulation. To enable the
passive sensor node to receive sustaining energy for its operation, the harvested energy during the two
time slots should cover the sensor node’s lowest power needs. Therefore, the problem for maximizing
energy efficiency in the considered network can be formulated as P1,

P1 : max
α,Q1,Q2

T
2 (R2+R1)

E(α, Q1, Q2)
(13a)

s.t. EEH ≥ P2+Pc2 (13b)

Tr (Q1) ≤ P̄1
max (13c)

Tr (Q2) ≤ P̄2
max (13d)

R2 ≥ r̄2
min (13e)

R1 ≥ r̄1
min (13f)

0 ≤ α ≤ 1, Q1 � 0, Q2 � 0, (13g)

where P̄1
max and P̄2

max stand for the upper limits on the transmission power of the source and the sensor node,
respectively, r̄1

min and r̄2
min represent data rate threshold for the source and the sensor node, respectively,

Q1 � 0 and Q2 � 0 imply that the precoding matrices Q1 and Q2 are positive semi-definite. The constraint
of Equation (13b) guarantees that the energy harvested at the sensor node can cover its lowest power needs.

3.2. Proposed Optimal Solution

The formulated problem P1 is non-convex due to the parameters α and precoding matrix Q1 being
highly coupled in both the objective function and the constraints of Equations (13b) and (13e). Therefore,
it is generally quite difficult to solve the non-convex optimization problem. As far as we know, there
exist no practical methods that can guarantee to converge to the global optimal solution. In this section,
a diagonalization method with low complexity is used to solve the problem P1.

The precoding matrix Q1 can be decomposed as Q1 = UQ1 ΛQ1UH
Q1

through eigenvalue
decomposition (EVD). Similarly, the precoding matrix Q2 can also be decomposed as Q2 = UQ2 ΛQ2UH

Q2
by EVD. If singular value decomposition (SVD) is applied to the channel coefficient matrix H, then H can

be decomposed as H = UH Λ
1
2
HV H

H . Based on these decomposition expressions, the problem P1 can be
transformed to problem P2 shown as at the top of this page,

P2 : max
α,ΛQ1

,ΛQ2

log2

∣∣∣∣∣IN2 +
α

ασ2
2+σ2

ID
UH Λ

1
2
HV H

H UQ1
ΛQ1

UH
Q1

VH Λ
1
2 H
H UH

H

∣∣∣∣∣
Tr(UQ1

ΛQ1
UH

Q1
) + Tr(UQ2

ΛQ2
UH

Q2
) + Pc

+

log2

∣∣∣∣∣IN1 +
1

σ2
1

VH Λ
1
2 H
H UH

H UQ2
ΛQ2

UH
Q2

UH Λ
1
2
HV H

H

∣∣∣∣∣
Tr(UQ1

ΛQ1
UH

Q1
) + Tr(UQ2

ΛQ2
UH

Q2
) + Pc

(14a)

s.t. η(1− α)Tr

(
UH Λ

1
2
HVH

HUQ1
ΛQ1

UH
Q1

VH Λ
1
2 H
H UH

H + σ2
2 IN2

)
≥ Tr(UQ2

ΛQ2
UH

Q2
) + Pc2 (14b)
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Tr
(

UQ1
ΛQ1

UH
Q1

)
≤ P̄1

max (14c)

Tr
(

UQ2
ΛQ2

UH
Q2

)
≤ P̄2

max (14d)

log2

∣∣∣∣∣IN2 +
α

ασ2
2 + σ2

ID
UH Λ

1
2
HV H

H UQ1
ΛQ1

UH
Q1

VH Λ
1
2 H
H UH

H

∣∣∣∣∣ ≥ r̄2
min (14e)

log2

∣∣∣∣∣IN1 +
1
σ2

1
VH Λ

1
2 H
H UH

H UQ2
ΛQ2

UH
Q2

UH Λ
1
2
HV H

H

∣∣∣∣∣ ≥ r̄1
min (14f)

0 ≤ α ≤ 1, (14g)

where ΛQi
= diag

(
λ1,Qi

, λ2,Qi
, λ3,Qi

, ...λNi ,Qi

)
with λ1,Qi

≥ λ2,Qi
≥ λ3,Qi

≥ ...λNi ,Qi
≥ 0 (i = 1, 2) and

Λ
1
2
H = diag

(√
λ1,H ,

√
λ2,H ,

√
λ3,H , ...

√
λmin{N1,N2},H

)
with λ1,H ≥ λ2,H ≥ λ3,H ≥ ...λmin{N1,N2},H ≥ 0.

UH ∈ CN2×min{N1,N2} and VH ∈ CN1×min{N1,N2} are all the unitary matrices, which are constituted by the
orthogonal unit norm column vectors.

As to the maximization of network energy efficiency, the best precoding matrices Q∗
1 and Q∗2 make

the denominator of the objective function Equation (14a) a minimum and if they simultaneously maximize
the numerator, then the matrices Q∗

1 and Q∗2 can also achieve the maximum of Equation (14a). Inspired by
the form of this fraction, if precoding matrices Q1 and Q2 are individually quantified with a definite value,
the denominator of EE can correspondingly obtain a definite value. The numerator is the sum rates of two
transceivers and no coupling relations among Q1 and Q2 appear in both expressions of R1 and R2. When
Q1 and Q2 are definite, the maximum of the objective function of P2 can be obtained only if the function
value of the numerator is maximized. The sum rates, i.e., R1 plus R2 given in the numerator, can be
maximized by separating the sum rates into two individual items, i.e., R1 and R2, and then by maximizing
each of them. As the fundamentals for solving P2, two basic operation laws should be introduced at first.

Operation law 1: For any two matrices A ∈ Cm×n and B ∈ Cn×m, and det (I + AB) = det (I + BA) is
always satisfied.
Operation law 2: For any two matrices A ∈ Cm×n and B ∈ Cn×m, and Tr(AB) = Tr(BA) is always true.

According to the operation laws 1 and 2, the objective function of P2 can be restructured as in
Equation (15),

EE =

log2

∣∣∣∣IN2 +
α

ασ2
2+σ2

ID
VH ΛHV H

H UQ1
ΛQ1

UH
Q1

∣∣∣∣+ log2

∣∣∣∣IN1 +
1

σ2
1

UH ΛHUH
H UQ2

ΛQ2
UH

Q2

∣∣∣∣
Tr(ΛQ1

) + Tr(ΛQ2
) + Pc

. (15)

Denote Π1 = Θ1ΛQ1
ΘH

1 with Θ1 = V H
H UQ1

and Π2 = Θ2ΛQ2
ΘH

2 with Θ2 = UH
H UQ2

. According
to the operation law 1, the energy efficiency shown as in Equation (15) can be further transformed
to Equation (16), which can be regarded as the objective function of a newly generated optimization
problem P3.

EE =

log2

∣∣∣∣IN2+
α

ασ2
2+σ2

ID
ΛH Π1

∣∣∣∣+log2

∣∣∣∣IN1+
1

σ2
1

ΛH Π2

∣∣∣∣
Tr(Π1) + Tr(Π2) + Pc

. (16)
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P3 : max
Π1,Π2,α

log2

∣∣∣∣IN2 +
α

ασ2
2+σ2

ID
ΛH Π1

∣∣∣∣+ log2

∣∣∣∣IN1 +
1

σ2
1

ΛH Π2

∣∣∣∣
Tr(Π1) + Tr(Π2) + Pc

(17a)

s.t. η(1− α)Tr
(

ΛH Π1 + σ2
2 IN2

)
≥ Tr(Π2) + Pc2 (17b)

Tr (Π1) ≤ P̄1
max (17c)

Tr (Π2) ≤ P̄2
max (17d)

log2

∣∣∣∣∣IN2 +
α

ασ2
2 + σ2

ID
ΛH Π1

∣∣∣∣∣ ≥ r̄2
min (17e)

log2

∣∣∣∣∣IN1 +
1
σ2

1
ΛH Π2

∣∣∣∣∣ ≥ r̄1
min (17f)

0 ≤ α ≤ 1. (17g)

According to the result of the Hadamard inequality [30], given that Π1 = Θ1ΛQ1
ΘH

1 and Π2 =

Θ2ΛQ2
ΘH

2 , the optimization variables Π1 and Π2 must be diagonal matrices. For better conveniences,
their optimums in P3 can be given as Π∗1 and Π∗2 . Furthermore, Π1 and Π2 are similar to the diagonal
matrices ΛQ1

and ΛQ2
, respectively. Therefore, Π∗1 and Q∗1 should obtain the same eigenvalues and such a

conclusion applies equally well to Π∗2 and Q∗2 .

Theorem 1. For any two commutative matrices A and B, if A is positive definite Hermitian matrices and B is
n× n positive semidefinite Hermitian matrices that have eigenvalues denoted as {ωi}n

i=1 and {τi}n
i=1, then the

function value of |A + B| can be bounded by sorting their eigenvalues in multiplication calculations. For better
clarity, Theorem 1 can be illustrated by a set of inequalities as in Equation (18),

n

∏
i=1

(1 +
τ̄i
ω̄i

) ≤
∣∣∣In + A−1B

∣∣∣ ≤ n

∏
i=1

(1 +
τ̄i
ω
¯ i

), (18)

where the overline and underline represent the ascending and descending order of the eigenvalues, respectively.

Proof. Please refer to [15] for the proof of Property 2.

Corollary 1. For any two n× n matrices A and B, if A is positive semidefinite diagonal Hermitian matrices and B
is positive semidefinite Hermitian matrices, the following inequality is always true

n

∏
i=1

(1 + ωi
+τi) ≤

∣∣In + A+B
∣∣ ≤ n

∏
i=1

(1 + ωi
+τi), (19)

where, {ωi
+}n

i=1 represents the eigenvalues of A+.
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Based on the result of Theorem 1 and the corollary, the EE in P3 can be maximized such that Π1 = ΛQ1
,

Π2 = ΛQ2
. In order to achieve above equation relations, UQ1

= VH and UQ2
= UH must be required.

Meanwhile, regarding ΛH as A+; therefore, the problem P3 can be simplified to the problem P4 as follows

P4 : max
α,λQ1

,λQ2

∑N1
i=1 log2

(
1 +

αλi,Hλi,Q1
ασ2

2+σ2
ID

)
+ ∑N2

i=1 log2

(
1 +

λi,Hλi,Q2
σ2

1

)
∑N1

i=1 λi,Q1
+ ∑N2

i=1 λi,Q2
+ Pc

(20a)

s.t. η(1− α)(∑N1
i=1 λi,Hλi,Q1

+ σ2
2 ) ≥∑N2

i=1 λi,Q2
+ Pc2 (20b)

∑N1
i=1 λi,Q1

≤ P̄1
max (20c)

∑N2
i=1 λi,Q2

≤ P̄2
max (20d)

∑N1
i=1 log2

(
1 +

αλi,Hλi,Q1

ασ2
2 + σ2

ID

)
≥ r̄2

min (20e)

∑N2
i=1 log2

(
1 +

λi,Hλi,Q2

σ2
1

)
≥ r̄1

min (20f)

0 ≤ α ≤ 1, λQ1
≥ 0, λQ2

≥ 0, (20g)

where λQ1 and λQ2 are the set of eigenvalues for Q1 and Q2, respectively, i.e., λQ1 =
{

λi,Q1

∣∣ i = 1, 2, ...N1
}

,
λQ2 =

{
λi,Q2

∣∣ i = 1, 2, ...N2
}

.
Due to the power splitting factor α and the eigenvalues λi,Q1 are coupled with each other in both

the objective function and the constraint conditions of Equations (20b) and (20e), problem P4 is still a
non-convex optimization problem. However, problem P4 can be further divided into two correlated
sub-problems and their optimal solutions can still converge to the global optimum in the sequel.

Giving a function f (x) = g1(x)
g2(x) , if g1(x) is a concave function and g2(x) is an affine function, then

f (x) is defined as a pseudo-concave function. As to the objective function of problem P4, as shown in
Equation (20a), its numerator can be regarded as a concave function with respect to λQ1 and λQ2 , while
its denominator is an affine function of λQ1 and λQ2 , the objective function is hence a pseudo-concave
function with respect to variables λQ1 and λQ2 . To verify the concavity, the Hessian matrix in terms of
the variable α is given as in Equation (21), where the parameters in Equation (21) are all non-negative.
The second derivative of α is negative and thus this validates that the objective function Equation (20a) is
also a concave function with respect to α.

∇2
α = −

σ2
ID

ln 2 ∑N1
i=1

2ασ4
2 + 2σ2

2 σ2
ID + 2ασ2

2 λi,Hλi,Q1
+ σ2

IDλi,Hλi,Q1

(α2σ4
2 + σ4

ID + 2ασ2
2 σ2

ID + α2σ2
2 λi,Hλi,Q1

+ ασ2
IDλi,Hλi,Q1

)
2 < 0. (21)

The concavity of the objective function about α indicates that there must be a closed-form solution
for α. For each fixed α, there is always a set of feasible solutions for

{
λQ1

, λQ2

}
. The optimal eigenvalues

of the two precoding matrices will be obtained by calculating the closed-form solution through circular
iteration. The analysis and resolving solutions are summarized as follows:
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(1) Optimal
{

λ∗Q1
, λ∗Q2

}
for Given α

For a given α, problem P4 with respect to
{

λQ1
, λQ2

}
can be reduced to P5:

P5: max
λQ1

,λQ2

Ξ(λQ1
, λQ2

)
/

Ψ(λQ1
, λQ2

) (22a)

s.t. η(1− α)(∑N1
i=1 λi,Hλi,Q1

+ σ2
2 ) ≥∑N2

i=1 λi,Q2
+ Pc2 (22b)

∑N1
i=1 log2

(
1 +

αλi,Hλi,Q1

ασ2
2 + σ2

ID

)
≥ r̄2

min (22c)

λQ1
≥ 0, λQ2

≥ 0 (22d)

(20c)(20d)(20 f ), (22e)

where Ξ(λQ1
, λQ2

)=∑N1
i=1 log2

(
1 +

αλi,Hλi,Q1
ασ2

2+σ2
ID

)
+∑N2

i=1 log2

(
1 +

λi,Hλi,Q2
σ2

1

)
and Ψ(λQ1

, λQ2
) = ∑N1

i=1 λi,Q1
+

∑N2
i=1 λi,Q2

+ Pc. The constraint of Equation (22b) is affine with respect to
{

λQ1
, λQ2

}
, while the constraint

of Equation (22e) can be seen as a concave set of
{

λQ1
, λQ2

}
. Meanwhile, the objective function of P5 is a

non-convex fractional form. Therefore, the Dinkelbach method [31] and CVX can be applied to solve this
fractional programming problem P5.

The Dinkelbach method is considered to be an effective iterative algorithm to solve the fractional
programming problem with multi-parameters. The Dinkelbach algorithm can convert the objective
function from its fractional form to the subtractive form and can guarantee the convergence to the global
optimal solution. Herein, the optimal energy efficiency can be redefined as q∗:

q∗ = Ξ(λ∗Q1
, λ∗Q2

)
/

Ψ(λ∗Q1
, λ∗Q2

) = max
{λQ1

,λQ2}∈F
Ξ(λQ1

, λQ2
)
/

Ψ(λQ1
, λQ2

). (23)

In Equation (23), F is a compact feasible set, with F =
{(

λQ1
, λQ2

)∣∣ (22b)(22c)(22d)(22e)
}

and{
λ∗Q1

, λ∗Q2

}
represents the optimal value of

{
λQ1

, λQ2

}
to P5. Following the equivalent transformation

shown in Equation (23), Theorem 2 can be given as follows.

Theorem 2. The maximum energy efficiency q∗ can be achieved if and only if

max
{λQ1

,λQ2}∈F
Ξ(λQ1

, λQ2
)− q∗Ψ(λQ1

, λQ2
) =Ξ(λ∗

Q1
, λ∗

Q2
)− q∗Ψ(λ∗

Q1
, λ∗

Q2
)=0 (24)

with Ξ(λQ1
, λQ2

) ≥ 0, Ψ(λQ1
, λQ2

) > 0.

Proof. Assume that
{

λ∗Q1
, λ∗Q2

}
∈ F is the optimal precoding strategy for problem P5 and q∗ is the

optimal energy efficiency. For any feasible solutions, they satisfy the following inequality, Equation (25),

Ξ(λQ1
, λQ2

)

Ψ(λQ1
, λQ2

)
≤ q∗=

Ξ(λ∗Q1
, λ∗Q2

)

Ψ(λ∗Q1
, λ∗Q2

)
. (25)

Equation (25) can be transformed to the following two inequalities, Equations (26) and (27),

Ξ(λQ1
, λQ2

)− q∗Ψ(λQ1
, λQ2

) ≤ 0, (26)

Ξ(λ∗Q1
, λ∗Q2

)− q∗Ψ(λ∗Q1
, λ∗Q2

) = 0. (27)
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Equations (26) and (27) imply that maximizing the energy efficiency q∗ is equivalent to finding the
optimization variables

{
λ∗Q1

, λ∗Q2

}
that satisfy max

{λQ1
,λQ2}∈F

Ξ(λQ1
, λQ2

)− q∗Ψ(λQ1
, λQ2

) = 0.

Theorem 2 validates the theoretical operability for the Dinkelbach method. It enables the fractional
programming problem to be transformed to the subtractive-form via introducing q. The optimal solution
of the fractional programming problem can be indirectly obtained by solving the subtractive-form
optimization problem. The problem P6, which is converted from problem P5, is hence obtained and
shown as follows

P6 : max
{λQ1

,λQ2}∈F
Ξ(λQ1

, λQ2
)− qΨ(λQ1

, λQ2
). (28)

Based on the Dinkelbach method, q can be iterated from an initial point and the convergence condition
proposed in Theorem 2 should be verified in each iteration. In other words, substituting q of each iteration
into P6 verifies whether the objective function of P6 can be converged to the maximum tolerance. If the
algorithm converges, the optimal solution is returned; otherwise, q is updated in the following iteration
until the maximum tolerance is satisfied.

(2) Optimal α∗ for Given
{

λQ1
, λQ2

}
Given a feasible

{
λQ1

, λQ2

}
, problem P4 with respect to α can be reduced to P7

P7 : max
α

∑N1
i=1 log2

(
1 +

αλi,Hλi,Q1
ασ2

2+σ2
ID

)
+ ∑N2

i=1 log2

(
1 +

λi,Hλi,Q2
σ2

1

)
∑N1

i=1 λi,Q1
+ ∑N2

i=1 λi,Q2
+ Pc

(29a)

s.t. η(1− α)(∑N1
i=1 λi,Hλi,Q1

+ σ2
2 ) ≥∑N2

i=1 λi,Q2
+ Pc2 (29b)

∑N1
i=1 log2

(
1 +

αλi,Hλi,Q1

ασ2
2 + σ2

ID

)
≥ r̄2

min (29c)

0 ≤ α ≤ 1. (29d)

Due to the objective function of P7 being concave with respect to α, the optimization problem P7
has a closed-form solution for it. When taking the EE function’s first derivative about α, the inequality
∂EE
∂α > 0 is obtained. This means that EE is a monotonically increasing function with respect to α. Then,

the constraint of Equation (29b) can be processed by equivalent transformation and Equation (30) can be
obtained as follows

α ≤ 1− ∑N2
i=1 λi,Q2

+ Pc2

η(∑N1
i=1 λi,Hλi,Q1

+ σ2
2 )

. (30)

The optimal variable alpha in P7 must achieve the upper bound

(
1− ∑

N2
i=1 λi,Q2

+Pc2

η(∑
N1
i=1 λi,Hλi,Q1

+σ2
2 )

)
constrained

by Equation (30). Otherwise, the objective function of P7 can obtain a larger value via increasing α instead
of violating any constraints. Thus, if the optimization variables

{
λQ1

, λQ2

}
are maintained as constants,

the optimal α can be obtained as

α∗=1− ∑N2
i=1 λi,Q2

+ Pc2

η(∑N1
i=1 λi,Hλi,Q1

+ σ2
2 )

. (31)



Sensors 2019, 19, 4923 13 of 24

Remark 1. In Equation (31), all parameters in the second term on the right side of the equal sign are positive. This
means that the optimal value of α is in [0, 1). The optimization variable α cannot be negative or the problem P7 will
be infeasible.

(3) Joint optimization for
{

λQ1
, λQ2

}
and α

With the Dinkelbach method,
{

λQ1
, λQ2

}
can converge to their optimums by fixing α. Consequently,

an alternating algorithm based on the Dinkelbach method can also be proposed to guarantee that both{
λ∗

Q1
, λ∗

Q2

}
and α∗ converge to their optimums synchronously. The procedures of the proposed alternating

algorithm based on the Dinkelbach method are explained using the pseudo-code. Here, m and n denote
the iteration numbers of α and

{
λQ1

, λQ2

}
, respectively.

In the pseudo-code of the proposed algorithm (Algorithm 1), with an initialized α(m=0), the Dinkelbach
method is adopted in order to find

{
λ
(n)
Q1

, λ
(n)
Q2

}
. Then, with the known

{
λ
(n)
Q1

, λ
(n)
Q2

}
, α(m+1) is updated

according to Equation (31). The iterations will terminate until the convergence tolerance is met and then
the optimal variables can be obtained.

Algorithm 1: Alternating algorithm based on Dinkelbach
1. Initialization

Set maximum tolerance ε1, ε2 and iterations n = 0, m = 0;
Set initial points α(0), q = 0 and qpre = 0;

2. Repeat
3. Repeat
4. Substitute α(m) into Equation (28) and use CVX to calculate

{
λ
(n)
Q1

, λ
(n)
Q2

}
;

5. If Ξ(α(m), λ
(n)
Q1

, λ
(n)
Q2

)− qΨ(λ
(n)
Q1

, λ
(n)
Q2

) < ε1
6. Convergence = true;
7. Return (α∗, λ∗Q1

, λ∗Q2
) = (α(m), λ

(n)
Q1

, λ
(n)
Q2

) and q∗ = Ξ(α∗, λ∗Q1
, λ∗Q2

)
/

Ψ(λ∗Q1
, λ∗Q2

);

8. Else q = Ξ(α(m), λ
(n)
Q1

, λ
(n)
Q2

)
/

Ψ(λ
(n)
Q1

, λ
(n)
Q2

) and n = n + 1;
9. Convergence = false;
10. End
11. Until Convergence = true
12. If

∣∣q∗ − qpre
∣∣ ≤ ε2

13. Convergence = true;
14. Else Calculated α(m+1) according to Equation (31), m = m + 1 and α(m) = α(m+1);
15. qpre = q∗;
16. Convergence = false;
17. End
18. Until Convergence = true

Convergence and Optimality Analysis: The objective function of P4 is joint pseudo-concave
with

{
λQ1

, λQ2

}
for each fixed α. By observing the compact feasible set F ={(

λQ1
, λQ2

)∣∣ (22b)(22c)(22d)(22e)
}

, it can conclude that there is no coupling between the optimized
variables. Therefore, the set F is a strictly convex feasible set and can ensure the convergence to a
Karush–Kuhn–Tucker (KKT) point [32]. Meanwhile, according to the Dinkelbach method, we transform
the objective function of P5 to the subtractive form in P6 and combine P6 with the convex feasible set F to
obtain a convex optimization problem. So we can get the optimal value of

{
λ∗Q1

, λ∗Q2

}
by the internal loop

of the proposed algorithm.
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In the outer loop, the proposed algorithm generates an increasing objective function at each iteration,
which means the optimization problem is upper-bounded and hence the convergence of P7 is guaranteed.
According to the derivative that ∂EE

∂α > 0, it can be concluded that, when fixing the other variables except
α, the objective function of P7 is a monotonically increasing function with respect to α. In the proposed
algorithm, for a given

{
λ∗Q1

, λ∗Q2

}
, α is optimized to increase EE, which means that the value of α will

increase with iterations. Therefore, if α is initialized to be extremely small, the proposed algorithm
will converge.

Complexity Analysis: Now we will analyze the computational complexity of the proposed alternating
algorithm based on Dinkelbach. The computational complexity is inferred based on the optimization
problem P4. It must be known that the Dinkelbach algorithm has the characteristic of super-linear
convergence with K1 iterations. In addition, the computational complexity can be represented by a
polynomial composed of the number of variables and constraints contained in the algorithm’s internal loop
due to the optimization problem P4 being convex, i.e., O(K1(N1 + N2)). The computational complexity
for searching α is O(1). Thus, the total complexity of the proposed algorithm is O(K2(K1(N1 + N2) + 1)),
where K2 is the number of iterations within the outer loop.

4. The Multiple EH Sensor Nodes Scenario

The energy efficiency maximization problem in the extended scenario with one source and K EH
sensor nodes being used is considered. Similar to the settings in the single node scenario, the source is
equipped with N1 antennas and each sensor node is equipped with N2 antennas.

The received signals at the k-th EH sensor node can be given as in Equation (32),

y2,k = ∑K
k=1 HkFkϑ1,k + n2,k

= HkFkϑ1,k︸ ︷︷ ︸
Desired signal

+ ∑K
l 6=k HkFlϑ1,l︸ ︷︷ ︸

Inter f erence signal

+ n2,k︸︷︷︸
AWGN

, (32)

where ϑ1,k ∈ CN1×1 is the symbol vector for the k-th EH sensor node. In particular, it can be assumed that
EH sensor nodes can remove all interference signals before decoding the information of a desired signal [33].
Thus, the achievable sum-rate in bits/s/Hz of K EH sensor nodes can be given as in Equation (33),

R2,sensors=∑K
k=1 log2

∣∣∣∣∣IN2 +
αHkQ1,k HH

k
(ασ2

2,k + σ2
ID,k)IN2

∣∣∣∣∣, (33)

where Q1,k = FkFH
k . Meanwhile, the amount of totally harvested energy of K EH sensor nodes is shown

as follows

EEH,tol = η(1− α)Tr
(
∑K

k=1 (HkQ1,k HH
k + σ2

2,k IN2)
)

. (34)

When the sensor nodes transmit information to the source by utilizing the harvested energy,
the received signals at the source can be deduced as in Equation (35),

y1,source = ∑K
k=1 HH

k Dkϑ2,k + n1. (35)
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According to Equation (35), the achievable data rate of the source is given by Equation (36),

R1,source = log2

∣∣∣∣∣IN1 +
∑K

k=1 HH
k Q2,k Hk

σ2
1 IN1

∣∣∣∣∣ , (36)

where Q2,k = DkDH
k .

Thus, the energy efficiency of the MIMO half-duplex wireless sensor networks with multiple EH
sensor nodes can be denoted as

EEmul =
R2,sensors + R1,source

Ptol
, (37)

where Ptol = P̃1 + P̃2 + P̃c, P̃1 = ∑K
k=1 Tr(Q1,k), P̃2 = ∑K

k=1 Tr(Q2,k) and P̃c = Pc1 + KPc2. The circuit power
consumption of an EH sensor node is assumed to be the same for each other and hence KPc2 denotes the
total circuit power consumption of all sensor nodes.

For the formulation of the energy efficiency maximization problem, this paper adopts the same
constraints as initially considered in the single node scenario. Therefore, the optimization problem can be
formulated as P8,

P8 : max
α,Q1,k ,Q2,k

R2,sensors + R1,source

Ptol
(38a)

s.t.EEH,tol ≥ P̃2 + KPc2 (38b)

∑K
k=1 Tr(Q1,k) ≤ P̃1

max (38c)

∑K
k=1 Tr(Q2,k) ≤ P̃2

max (38d)

R2,sensors ≥ r̃2
min (38e)

R1,source ≥ r̃1
min (38f)

0 ≤ α ≤ 1, Q1,k � 0, Q2,k � 0, (38g)

where Equation (38b) is the harvested energy constraint, P̃1
max is the upper limit of the source’s transmitting

power and P̃2
max is the total available power of all sensor nodes. r̃2

min and r̃1
min are the required rate

threshold of K nodes and the source, respectively.
By applying the proposed optimal solution in Section 3.2 to problem P8, the optimization problem

can be simplified as P9.

P9 : max
α,λQ1,k

,λQ2,k

∑K
k=1 ∑N1

i=1 log2

(
1 +

αλi,Hk
λi,Q1,k

ασ2
2,k+σ2

ID,k

)
+ ∑N2

i=1 log2

(
1 +

∑K
k=1 λi,Hk

λi,Q2,k
σ2

1

)
∑K

k=1 ∑N1
i=1 λi,Q1,k + ∑K

k=1 ∑N2
i=1 λi,Q2,k + P̃c

(39a)

s.t.η(1− α)∑K
k=1

(
∑N1

i=1 λi,Hk λi,Q1,k + σ2
2,k

)
≥∑K

k=1 ∑N2
i=1 λi,Q2,k + KPc2 (39b)
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∑K
k=1 ∑N1

i=1 λi,Q1,k ≤ P̃1
max (39c)

∑K
k=1 ∑N2

i=1 λi,Q2,k ≤ P̃2
max (39d)

∑K
k=1 ∑N1

i=1 log2

(
1 +

αλi,Hk λi,Q1,k

ασ2
2,k + σ2

ID,k

)
≥ r̃2

min (39e)

∑N2
i=1 log2

(
1 +

∑K
k=1 λi,Hk λi,Q2,k

σ2
1

)
≥ r̃1

min (39f)

0 ≤ α ≤ 1, λQ1,k ≥ 0, λQ2,k ≥ 0, (39g)

where λQ1,k and λQ2,k are the set of eigenvalues of Q1,k and Q2,k, respectively, i.e., λQ1,k ={
λi,Q1,k |i = 1, 2, ...N1, ∀k

}
and λQ2,k =

{
λi,Q2,k |i = 1, 2, ...N2, ∀k

}
.

The problem P9 can be solved by the alternating algorithm based on Dinkelbach, and the simulation
results are described in Section 5.2.

5. Simulation Results

5.1. Single EH Sensor Node Scenario

In this subsection, numerical results are exhibited to show the performances of the proposed
alternating algorithm based on the Dinkelbach method. In the simulations, an EE maximization precoding
design in a SWIPT-based MIMO half-duplex wireless sensor network is presented by setting N1 = N2, i.e.,
the number of the equipped antennas at the source is equal to that of the sensor node. The block fading
channels modeled as complex Gaussian random variables are adopted in this paper. The elements of
the channel coefficient matrix H are generated complying with the distribution CN (0, 1). The maximal
transmitting power and the noise power at the source and the sensor node are assumed to be the same,
i.e., P̄1

max=P̄2
max = Pmax and σ2

1=σ2
2=σ2

ID=σ2=0.2 [15]. The total circuit power consumption can be set
as Pc = 3W. The source and the sensor node have the same requirement on the data rate threshold,
i.e., r̄1

min=r̄2
min = rmin. The energy conversion efficiency is simplified as η = 1 [10]. In other simulating

scenarios, as different η is used, the alternating algorithm maintains the same procedures just as that
of η = 1. All the numerical simulation results are averaged over 500 independent randomly generated
channel realizations unless otherwise specified.

H ′ =


−0.2772 + 1.1585i −0.2124− 0.2818i −0.4562− 0.0982i −0.1645 + 0.4383i
0.4567− 0.4329i 0.3644− 0.4480i 0.0737 + 1.1462i −1.3267 + 0.4853i
1.4030− 0.0115i 0.7624− 0.7654i −0.5862 + 0.4177i 0.0699− 0.2621i
−0.2058− 0.1429i 0.3878 + 0.6187i 0.1906 + 0.1061i 0.4486− 1.6408i


Figure 2 presents the energy efficiency achieved by the proposed algorithm versus the number of

iterations. The results are obtained using five different initial points by setting the maximal transmitting
power Pmax= 8 W and the data rate threshold rmin=1 bps/Hz. The channel coefficient matrix H ′ is
generated complying with the distribution CN (0, 1). The source and the sensor node are equipped with
the same amount of antennas by setting N1 = N2 = 4. Simulation results in Figure 2 validate that the
proposed algorithm enables the energy efficiency to converge to its optimum value 2.7504 bits/Hz/J with
no more than three iteration times when iterating from five different points.
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Figure 2. Energy efficiency of the proposed algorithm with five different initial points versus the number
of iterations.

In Figure 3, the performance comparisons among the alternating algorithm and the other two baseline
schemes, i.e., the non-EH restriction scheme and the non-precoding design for the source scheme, are
conducted by setting the other parameters as N1 = N2 = 4 and rmin=1 bps/Hz. The non-EH restriction
scheme means that both the source and the sensor node are served with the precoding design and are
supplied with sufficient energy. It is unnecessary for the sensor node to harvest the RF energy from the
source. The received signals at the sensor node are decoded as the data information. In addition, the
non-precoding design for the source scheme means that each diagonal element of the source’s eigenvalue
matrix is equal to Pmax/N1. The simulation results show that the energy efficiency of the non-EH restriction
scheme is the highest among all the baseline algorithms. This is because all of the received signals at the
sensor node are used to transmit information, then the sensor node can achieve a higher transmission
rate at the same energy consumption in the non-EH restriction scheme. However, in the scheme of a
non-precoding design for the source, the transmission power is distributed evenly across each antenna
of the source. The energy efficiency of this scheme is always the lowest among all baseline algorithms.
The energy efficiency without precoding even decreases if Pmax continues to improve. This is because the
transmitting power of the source cannot be properly configured according to the channel states between
antenna pairs, so the information rate of the sensor node is lower at the same energy consumption.
By contrast, the energy efficiency in the proposed alternating algorithm based on Dinkelbach can rapidly
converge to an optimal value. Unlike the non-precoding design scheme, the energy efficiency will
not descend with the increase of Pmax. To sum up, the precoding design scheme we designed can not
only achieve a higher energy efficiency than the non-precoding scheme, but also rapidly converges as
Pmax increases.

Figure 4 presents the performance comparison between our proposed alternating algorithm and the
non-EH restriction scheme by varying the number of antennas at both the source and the sensor node.
In the simulation, the required rate is set as rmin=1 bps/Hz and the influences on energy efficiency as
varying the quantity of antennas are compared by gradually increasing Pmax in the two schemes. It can be
intuitively observed from Figure 4 that the more antennas are equipped, the higher the energy efficiency
obtained in each scheme. This is because the increase in the number of antennas can enhance the spatial
freedom degree and the antennas’ diversity gain. Meanwhile, it can be concluded from Figure 4 that the
energy efficiency in the proposed “alternating algorithm based on Dinkelbach” scheme approximates to
that of the non-EH restriction scheme at two scenarios with a different number of antennas.
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Figure 3. Energy efficiency of the proposed algorithm versus the maximal transmitting power.
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Figure 4. Energy efficiency versus maximum transmitting power when varying the number of antennas.

In Figure 5, the energy efficiency performance is studied by changing the required minimum data rate.
The antenna numbers in subgraphs (a) and (b) are configured as N1 = N2 = 4 and N1 = N2 = 8,
respectively. The transmission power constraints of subgraphs (a) and (b) are all set as Pmax=8W.
It can be observed from Figure 5 that the highest energy efficiencies shown in the two subgraphs
are obtained at two distinct required minimum data rates, i.e., 3 bps/Hz and 6 bps/Hz, respectively.
As the required data rate is improved, the energy efficiency improves and then it drops with the rate
increment. This is because, by lifting the data rate threshold, the actual transmission power of antennas
needs to be increased synchronously. According to the objective function of P4 shown as the fraction in
Equation (20a), the energy efficiency is simultaneously affected by the joint contribution of its numerator
and denominator. The variation of transmission power influences the fraction value. When the energy
efficiency achieves its maximum, continuing to increase the data rate threshold will cause the energy
efficiency to decrease inversely.
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(a) The energy efficiency versus the required minimum data rate (data
rate threshold) when N1 = N2 = 4
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Figure 5. The performance comparison of energy efficiency by varying the required minimum data rate
and the quantity of equipped antennas.

In Figure 6, the probability of feasibility under different Pmax settings is investigated by increasing the
required minimum data rate. If the achievable data rate fails the rate threshold, the maximization problem
P4 will be infeasible, i.e., no optimal solutions to P4 exist. In order to verify the probability feasibility
under different data rate thresholds, the number of antennas at transceivers is set as N1 = N2 = 4. When
the amount of feasible solutions to problem P4 is less than half of the total simulation results, the problem
is called ergodically infeasible [34]. The result of Figure 6 shows that the probability of feasibility decreases
with the increase of the minimum required data rate. The higher the transmission power Pmax that can be
obtained, the larger probability of feasibility achieved.
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5.2. Multiple EH Sensor Nodes Scenario

In this subsection, the energy efficiency performance of the proposed algorithm is evaluated in the
networks with multiple EH sensor nodes. In the scenario, three EH sensor nodes, i.e., K = 3 are simulated
in the scenario and the quantity of the equipped antennas at the source equals that of each sensor node,
such that N1 = N2 = 4. The maximal transmitting power and the data rate threshold for both the source
and each EH sensor node are given as P̃1

max = P̃2
max = Pmax and r̃1

min = r̃2
min = 3 bps/Hz, respectively. The

other parameters are kept the same as those used in the single EH sensor node scenario.
In Figure 7, the energy efficiency performance is obtained by varying the maximal transmitting

power Pmax. The two baseline algorithms for comparison are designed by assuming each sensor node
with indefinite power supply (i.e., non-EH restriction) and by omitting the source precoding design
(i.e., non-source precoding), respectively. Distinct from the single EH sensor node scenario, the source
eigenvalue matrix in the baseline algorithm of non-source precoding can be obtained as Pmax

KN1
IN1 . This is

because the source has to allocate power for each sensor node. By observing Figure 7, it can be seen that
the energy efficiency of the proposed alternating algorithm based on Dinkelbach outperforms that of the
non-precoding design algorithm. As the maximal transmitting power Pmax ranges from 1 W to 1.8 W, the
energy efficiency of the non-source precoding algorithm falls to zero and the value range of Pmax can be
deemed as the outage range, which is due to fact that the evenly distributed source power Pmax on each
antenna cannot support the required sum rate, i.e., the sum rate cannot meet the rate threshold. In contrast,
the maximal transmitting power Pmax at the source can be optimally assigned to each antenna and hence
be capable of ensuring the optimal performance. The energy efficiency of the non-EH restriction algorithm
is always the highest among all the candidates, since a much higher achievable data rate at sensor nodes
can be obtained when all sensor nodes are free from the constraint of power use.
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Figure 7. Energy efficiency versus maximal transmitting power in multiple EH sensor nodes scenario.

Figure 8 presents the performance comparison between the alternating algorithm and the fixed
power-splitting scheme. In the fixed power-splitting scheme, the power splitting factor α is fixed. In the
numerical experiment, the power splitting factor was taken as 0.2, 0.4, 0.6 and 0.8, separately. Figure 8
shows that with the increase of maximal transmitting power, the energy efficiency of all schemes exhibits
the monotonous non-decreasing tendency. Meanwhile, it is observed from Figure 8 that the alternating
algorithm proposed in the paper can always achieve higher energy efficiency. This is because the fixed
power-splitting scheme is unable to guarantee the optimized trade-off of power use between information
decoding and energy harvesting, thus resulting in lowering the achievable data rate and consuming more
energy. When the maximal transmitting power ranges from 1 W to 2 W, the energy efficiency of the fixed
power-splitting scheme falls to 0 as α = 0.8. This is because a greater proportion of source power is spent
on information decoding and correspondingly the sensor node cannot harvest enough RF energy to satisfy
the data rate constraint. The optimization problem P9 is essentially infeasible. In the numerical experiment,
the proposed alternating algorithm can always achieve better performance than its counterpart, i.e., a fixed
power-splitting scheme.
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Figure 8. The comparison of energy efficiency between the proposed algorithm and the fixed
power-splitting scheme.
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6. Conclusions

In this paper, energy efficiency optimization is investigated in a single-hop MIMO half-duplex wireless
sensor network considering a SWIPT scheme. The perfect channel state information is introduced in the
energy efficiency maximization problem, where the precoding matrix of the source and the EH sensor
node as well as the power splitting factor are jointly designed. The formulated non-convex problem can
be equivalently converted by the eigenvalue and singular value decomposition strategy. The alternating
algorithm based on Dinkelbach is proposed to solve the converted non-convex optimization problem.
The proposed algorithm is validated to achieve the optimality. Simulation results are analyzed to verify
the performance of different scenarios for the baseline algorithms. The simulation results evaluate the
factors influencing energy efficiency such as the antenna number and data rate threshold. It is shown
that the precoding design scheme proposed in the paper can significantly improve energy efficiency.
Compared with the non-source precoding scheme, the precoding scheme proposed in the paper shows
rapid convergence behavior. These results may provide some insights for better understanding energy
efficiency in the multi-antenna SWIPT system. In our future work, the energy efficiency maximization
problem will be investigated in the half-duplex SWIPT system with more transceivers.
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