
sensors

Article

E-HIP: An Energy-Efficient OpenHIP-Based Security
in Internet of Things Networks †

Peter Kaňuch and Dominik Macko *

Faculty of Informatics and Information Technologies, Slovak University of Technology in Bratislava,
Ilkovičova 2, 842 16 Bratislava, Slovakia; xkanuch@stuba.sk
* Correspondence: dominik.macko@stuba.sk
† This paper is an extended version of our paper published in 2019 42nd International Conference on

Telecommunications and Signal Processing (TSP).

Received: 20 September 2019; Accepted: 6 November 2019; Published: 12 November 2019 ����������
�������

Abstract: The rapidly growing segment of the Internet of Things (IoT) makes the security threats
more prominent than ever. The research around communication security and cybersecurity in such
networks is still a challenge, mainly due to the typically limited energy and computation resources of
IoT devices. The strong security mechanisms require significant power and thus the energy wastage
must be minimized. Optimized application-specific security protocols are commonly used to make
the data transfer more efficient, while still offering a high level of security. The supported security
features, such as confidentiality, integrity or authenticity, should not be affected by the optimization.
Our work is focused on optimizing one of the existing security protocols for the use in the IoT
area, namely the Host Identity Protocol (HIP). Based on the analysis of related works, we have
identified multiple possibilities for optimization and combined some of them into the proposed
E-HIP optimized protocol. For verification purpose, it has been implemented as a modification of
the open-source OpenHIP library and applied on a communication between real hardware devices.
The secured communication worked correctly. The resulting effect of the proposed optimization
has been evaluated experimentally and it represents an increase in energy efficiency by about 20%.
Compared to other HIP optimizations, the achieved results are similar; however, the proposed
optimizations are unique and can be further combined with some of the existing ones to achieve even
higher efficiency.

Keywords: energy efficiency; internet of things; low power; communication security; wireless
sensor networks

1. Introduction

An ever increasing number of interconnected devices, creating the Internet of Things (IoT) [1],
raises big concerns, especially from the security point of view. These devices are used in all
possible areas of human life, such as industry, smart cities or agriculture [2], and many of them
are critical—meaning that the damage of devices, failure of communication or uncovering sensitive
data can cost financial losses, production delays, a decrease of life standard or even a human life.
Network attackers started to focus on this mass-production market in a rather high volume, as
indicated by a number of security incidences in past years [3,4]. Therefore, the security must be a
priority when dealing with the IoT and a mass production and security features, such as authenticity,
integrity, confidentiality or policy, must be supported [5–7].

However, another crucial property of IoT domain is that the end devices are often limited on the
energy side, since they are powered by batteries or or some alternative power sources (e.g., energy
harvesting). To prolong the lifetime of such devices and keep their maintenance (e.g., battery exchange)

Sensors 2019, 19, 4921; doi:10.3390/s19224921 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8235-2004
http://www.mdpi.com/1424-8220/19/22/4921?type=check_update&version=1
http://dx.doi.org/10.3390/s19224921
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 4921 2 of 17

at minimum, IoT sensors are low-power devices with limited resources and it is therefore challenging
to offer strong security features in them. The protocols managing and ensuring the security must be
optimized for usage in the energy and resource constrained sphere of IoT. There are many research
works on optimization and adjustment of security protocols [8], such as References [9–11]. However,
no solution is perfect and generally applicable and thus the standard protocol must be optimized for
the specific purpose of the intended application to avoid wasting of the energy.

UDP (User Datagram Protocol) is less energy demanding transport protocol than TCP
(Transmission Control Protocol), because it is much simpler and has a smaller protocol header.
Therefore, some approaches are focused on creating clones of protocols standardly operating above TCP
to operate above UDP. The DTLS (Datagram Transport Layer Security) [12] protocol belongs to such
clones. There also exist further optimizations of DTLS itself. The eeDTLS (Energy-Efficient DTLS) [9]
protocol represents a DTLS optimization by reducing its message headers and modifying the handshake
process. The Lithe [10] protocol represents a lightweight secure Constrained Application Protocol
(CoAP) for IoT as a combination of DTLS and CoAP features to provide a secure data transmission and
headers compression to improve energy efficiency. CoAP is probably the most widely used choice as an
application protocol for IoT. However, it does not itself support security features to protect transferred
data, such as authentication or encryption. Instead of integrating these features into the CoAP itself,
such as the mentioned Lithe protocol, other protocols can be used to secure the communication
(including the CoAP-based application layer), such as IPSec (Internet Protocol Security) [13]. It is
quite resource intensive in its standard version; however, there exist some optimizations. For example,
the LKA (Lightweight Key Agreement) [11] protocol represents a constrained version of the IKEv2
(Internet Key Exchange) protocol, offering minimal configurability (e.g., a single cryptographic
algorithm to be used). As an alternative to IPSec/IKE, another key-exchange mechanism can be
used, such as HIP (Host Identity Protocol) [14]. It was designed in such a way that enables to separate
the device identification, represented by a cryptographic identifier, from its location, represented
by the used IP address. It is a rare security feature that enables anonymous locations and supports
mobility of devices. It is utilizable, even desired, in many IoT applications. Several research works
were focused on HIP to optimize its energy requirements for easier use in IoT. The HIP-TEX (HIP
Tiny EXchange) [15] protocol introduced a distributed computation of HIP to alleviate the limitations
of IoT devices. The HIP-DEX (HIP Diet EXchange) [16] is another HIP modification that deals with
computational limitations by using the less resource intensive Elliptic-curve cryptography. However,
the HIP-TEX and HIP-DEX based solutions lack the perfect forward secrecy and anonymous locations
security features of the original HIP. Even more security features are missing in the LHIP (Lightweight
HIP) [17], although enabling its usage in the highly resource-conatrained mobile devices. An interesting
analysis of the use of Elliptic-curve cryptography in HIP is provided in Reference [18]. The Slimfit [19]
protocol further optimized HIP-DEX by compression of the HIP header, which effectively reduced
the fragmentation rate. The compression approach was combined with the distribution approach in
the CD-HIP (Compressed and Distributed HIP) protocol [20], which targeted 6LoWPAN (IPv6 over
Low-Power Wireless Personal Area Networks) communication. Another distributed mechanism to
alleviate the constrained devices is offered by CHIP (Collaborative HIP) [21], which uses a proxy-based
key establishment.

This article, representing an extended version of our conference paper [22], is also targeted to
HIP [14] optimization, since is offers interesting features for IoT applications (anonymous locations,
mobility). We have analyzed the protocol and identified multiple possible optimizations to reduce
its energy requirements. From the identified optimization possibilities, we have selected for
implementation those not affecting the security level of the original protocol negatively. We have
implemented the selected optimizations into an open-source OpenHIP library [23] and evaluated the
results experimentally. This library was used because it is freely available; however, other protocol
versions (even optimized) could be used for implementation (since the proposed modifications are
unique), if their source code would be available. The key contributions of our work are as follows:



Sensors 2019, 19, 4921 3 of 17

• identification of unique optimization possibilities (not used in existing works),
• increased energy efficiency of communication as well as computation (compared to the

unmodified OpenHIP implementation),
• reduced bandwidth overhead and network load and
• minimized unnecessary waiting periods.

The article is organized according to the following structure. Section 2 outlines the background
regarding the HIP processing and messaging. Section 3 contains the proposal regarding HIP
optimization, in order to increase its energy efficiency. In Section 4, experimental evaluation of
multiple proposed optimizations, implemented into the OpenHIP library, is described and discussed.
The work is concluded in Section 5.

2. Background

This section contains basic information about the Host Identity Protocol (version 2) [14], which
is designed to be used as a key-exchange mechanism to be used in cooperation with other protocols,
such as ESP(Encapsulating Security Payload)/IPSec. In order to reduce transmitted data size, the HIP
headers are used only while establishing the connection for parameters agreement. As previously
mentioned, HIP is design to separate the device identification from the information about its location.
Each HIP device has at least one host cryptographic identifier (it can have multiple identifiers), which
enables to offer strong security features, such as authenticity, confidentiality, integrity and protection
against various security threats (e.g., denial-of-service or man-in-the-middle attacks) [24]. These
identifiers are not sent in the HIP messages but rather a 128-bit hash value is used, called Host Identity
Tag (HIT). The protocol supports two kinds of devices: an initiator (e.g., an IoT end device) and a
responder (e.g., an IoT gateway, a cloud server). The basic exchange of messages (called HIP-BEX) to
establish a HIP association (an agreement on security parameters) consists of four key messages: I1
and I2 (the initiator is a sender), R1 and R2 (the responder is a sender). An overview of the HIP-BEX
process (analyzed in [25]) is illustrated in Figure 1.

Initiator Responder

I1: HIT-I, HIT-R

R1: HIT-I, HIT-R, Puzzle, SIG(DH-R, HI-R, HIP
Transforms, ESP Transforms, Echo_Request)

R2: HIT-I, HIT-R, SIG(SPI-R, HMAC)

I2: HIT-I, HIT-R, SIG(Solution, SPI-I, DH-I, HIP
Transforms, ESP Transforms, {HI-I}, Echo_Response)

Figure 1. The Host Identity Protocol base exchange process.

HIT-I and HIT-R represent host identity tags of the initiator and the responder, respectively. Puzzle
represents a task to solve by the initiator (as a delay), which protects the responder against some
denial-of-service attacks. Solution is the corresponding result of the puzzle, sent by the initiator. DH-I
and DH-R represent the Diffie Hellman key exchange to create symmetric keys for data encryption.
HI-I and HI-R represent host identifiers of the initiator and the responder, which correspond to the
asymmetric public keys. HIP and ESP Transforms represent communication control parameters for the
rest of the messages exchange. Echo_Request and Echo_Response represent test data to be exchanged.



Sensors 2019, 19, 4921 4 of 17

SPI (Security Parameter Index) identifies the HIP association (an instance). HMAC holds a control
sum of the message. And finally, SIG is a digital signature.

The format of HIP messages is illustrated in Figure 2. Besides the typical fields of common
protocols, such as next protocol header information, a length of the protocol header, a version of the
protocol, a type of the packet/message and control checksum, it contains also two 128-bit fields – for
sender’s and receiver’s HITs.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

10

6 7 8 9 0

2

1 2 3 4 5 6 7 8 9 0 1

3

HIP Parameters

Next Header Header Length Packet Type Version RES.0 1

Checksum Controls

Sender HIT

Receiver HIT

Figure 2. The HIP control messages header.

These two greatest header fields are followed by individual parameters in the wide-spread TLV
(Type-Length-Value) form, illustrated in Figure 3. The numbered parameter types must be ordered
in ascending manner. If such a condition is not followed, the message is assumed to be modified
(i.e., tampered with) and the integrity is violated. A padding is used to adjust the message length to
the standard 4-byte word size.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

10

6 7 8 9 0

2

1 2 3 4 5 6 7 8 9 0 1

3

Contents

Type LengthC

Padding

Figure 3. The HIP parameters header.

The HIP behavior is outlined by the illustrated state machine in Figure 4. It depicts the states
and transitions between individual states at both ends of the connection. UAL (Unused Association
Lifetime) represents a timeout of an active HIP association if no messages are sent or received. MSL
(Maximum Segment Lifetime) is an expected maximum time, for which a HIP message is transmitted
in the network. EC (Exchange Complete) is a timeout in the R2-sent, after which the device transits
to the Established state even if no data are received yet. For example, based on the state machine,
the common connection establishment is processed as follows. The initiator starts in the Unassociated



Sensors 2019, 19, 4921 5 of 17

state, from which it transits to I1-sent, then to I2-sent when R1 is received and to Established when R2
is received. The responder is in Unassociated until it successfully receives I2 and transits to R2-sent
and to Established when data (an ESP packet) are received.

Unassociated

I1-sent

I2-sent

R2-sent

Established

Closing

Closed

recv I1,

send R1

recv I2,

send R2

datagram to 

send, send I1

alg. not supported, 

send I1

timeout 

(UAL+2MSL)

recv CLOSE_ACK

or timeout (UAL+MSL)

datagram to 

send, send I1

recv R1,

send I2

recv R2

recv R1,

send I2

recv I2,

send R2

data or EC 

timeout

no packet sent/received

for UAL min, send CLOSE

recv CLOSE,

send CLOSE_ACK

timeout (UAL+MSL),

retransmit CLOSE

Start

Figure 4. The state machine of the HIP protocol.



Sensors 2019, 19, 4921 6 of 17

3. The Proposed Optimizations of HIP Energy Efficiency

An optimization of the standard protocols for the specific area of Internet of Things is
quite common, as evidenced by the analysis of related works. The energy-constrained and
performance-limited IoT devices just do not need full complexity and flexibility (i.e., configurability)
of some standard protocols. For example, if the protocol requires an agreement on the algorithm to
be used for data encryption but one of the communicating devices supports only a single algorithm,
it will be always selected and thus the configuration-parameters negotiation is pointless. From the
point of constrained IoT devices, unnecessary negotiations waste the precious energy.

In our work, we have targeted the HIP protocol, mainly because of its tempting features enabling
anonymous location and mobility, useful for some IoT application, such as in healthcare or military
sphere. We have stated the following requirements for our solution:

1. reduction of energy requirements of IoT end devices,
2. no negative impact on security,
3. comparison to other works,
4. correct function of the modified protocol,
5. easy application into IoT devices and
6. support of IPv4 or IPv6 communication.

We have identified several possible optimizations, targeting control plane of the communication
(no data-plane impact):

• removal of the CLOSE_ACK message and the Closing state,
• parameters format reduction and
• the HI-R parameter removal.

The identified HIP modifications, combined into the proposed E-HIP solution, are more-closely
described in the following subsections.

3.1. Removal of the CLOSE_ACK Message and the Closing State

Two HIP messages are used for termination of an HIP association, as can be deduced from the
HIP state machine in Figure 4, namely the CLOSE message (initiating the termination procedure) and
the CLOSE_ACK message (confirming the termination). A sending of the CLOSE message transits the
device from the Established state to the Closing state, in which it waits for UAL+MSL time to receive
the CLOSE_ACK message. If the confirmation message is lost (i.e., not received in time), the device
wastes energy by waiting for a timer expiration (i.e., during this waiting period, it cannot be switched
to an energy-saving state).

Therefore, we have proposed not to use the confirmation message. It has enabled us to eliminate
the Closing state from the state machine and reduce the waiting period. It also saves the computing
resources of the devices and some bandwidth of the communication channel, since the CLOSE_ACK
message is not processed and transmitted. The device sends the CLOSE message and immediately
terminates the connection (i.e., the association is not valid anymore). Upon receiving of the CLOSE
message, the receiving devices also immediately terminates the connection (see Figure 5). If the
CLOSE message is lost in the transmission, the backup timer is used to terminate the connection
(no retransmission is used—that is, further energy is saved). Since it is not feasible for IoT end device
to wait for a timer expiration, this solution is suitable for applications in which only an IoT device
(i.e., initiator) can terminate the connection. The server (i.e., responder) is expected to be powered by
the grid; thus, it is not problem for it to wait for a while if the CLOSE message is lost. This limits the
general-purpose usage of the modified protocol; however, we prefer the increased energy efficiency.
The IoT end device ignores the CLOSE message; thus, an attacker can not terminate the connection
by repeating the sniffed server’s message. Also, since the CLOSE message includes a signature,
the attacker is not able to close the connection on the server.



Sensors 2019, 19, 4921 7 of 17

CLOSE

IoT device IoT server

CLOSE_ACK

initialization()

dataTransfer()

wait()

close()close()

CLOSE

IoT device IoT server

initialization()

dataTransfer()

close()
close()

Figure 5. The termination process of the HIP association before (left) and after (right) the modification.

To implement this optimization into the OpenHIP library, it is necessary to modify the code in the
hip_handle_close() function in the src/protocol/hip_input.c file:

1. sending and checking of the CLOSE_ACK message is deleted,
2. the Closed state setting is removed,
3. the function call of delete_associations is moved below setting of the Unassociated state.

3.2. Parameters Format Reduction

As mentioned in Section 2, four messages (I1, R1, I2 and R2) are exchanged during the HIP
initiation phase (establishing association). In the R1 and I2 messages, several parameters are transferred
(see Figure 1), each containing type and length information, as illustrated in Figure 3. The IoT
communication is often predictable, especially when used for a periodic collection of sensor-measured
data. The type and length of parameters can be preset. However, to transfer multiple parameters in a
single message, a fixed order of parameters must be defined. In such a case, the type and length fields
of parameters headers are no longer required in the messages and can be removed. This way, 16 bits
are saved in each transmitted parameter. In the tested prototype, we have successfully reduced the
I2 message size by 16 B.

Differences in the parameters messages contents before and after the proposed modification are
illustrated in Figure 6.

ESP_INFO (type=65. length=12)
Reserved: 0x0000
Keymaterial Index: 0x0048
Old SPI: 0x00000000
New SPI: 0xf8da4d68
R1_COUNTER (type=321. length=20)
Reserved: 0x00000000
R1 Counter: 0000000000001045
...

ESP_INFO
Reserved: 0x0000
Keymaterial Index: 0x0048
Old SPI: 0x00000000
New SPI: 0xf8da4d68
R1_COUNTER
Reserved: 0x00000000
R1 Counter: 0000000000001045
...

Figure 6. Packet contents before (left) and after (right) the modification.

An implementation of this optimization requires a removal of the redundant fields from the
OpenHIP data structures, located in the src/include/hip/hip_types.h file. The creation and sending of
the message must also be modified. The messages to be send are located in src/protocol/hip_output.c.
Specifically for modification of the I2 message, the hip_send_I2() function has been changed: the
original structures have been replaced by the modified structures (also in the called functions), the code



Sensors 2019, 19, 4921 8 of 17

parts using the removed parts of the structures have also been removed and positions of individual
structures in the created messages have been ordered. Also, the receiving of the I2 message in the
hip_parse_I2() function of the src/protocol/hip_input.c file.

3.3. The HI-R Parameter Removal

As described in Section 2, HI-R refers to the host identity of a responder (i.e., an IoT server),
which represents its public key for asymmetric cryptographic algorithms, at least RSA (Rivest Shamir
Adleman) and ECDSA (Elliptic Curve Digital Signature Algorithm) must be supported in HIPv2 [14].
Removal of this parameter also reduces the message size but also the computation resources for its
processing. HI-R encodes the RSA key by a concatenation of information about the exponent length,
the exponent and the modulus itself. The security level corresponds to the modulus length, which can
be deduced from the previously mentioned explicit fields. The NIST organization [26] recommends to
use the keys with the modulus length of at least 2048 b. Smaller keys must be changed more often to
ensure they are not compromised. If an ECDSA key is used, it is encoded in HI-R by a concatenation
of information about the curve label and the public key. The key size is in case of the ECDSA much
shorter—that is, 160 b (the security level of the 1024 b RSA key) or 224 b (the security level of the
2048b̃ RSA key). If the public key is not transmitted as the HI-R parameter, it must be known to the
initiator (i.e., an IoT end device) in some other way. Various IoT applications have various specific
properties and requirements. In general, we have proposed two ways of public key distribution using
the modified protocol, manual and automated.

3.3.1. Manual Key Distribution

This solution involves a distribution of the server’s public key to the end device by uploading it
to its memory manually, since it is not transmitted in the message exchange. This way, the length of the
R1 message can be reduced by 128 B, that is, by 20% of the total message size (in case of the RSA keys).
Because the key-pair must be changed after some period to ensure the security, a periodic regeneration
of the server’s key imply it must be periodically distributed to all end devices. Also, the proposed
manual distribution is beneficial from the security point of view, because it is more difficult for an
attacker to find out the public key and to establish the connection. Since a manual distribution of the
key is used, the system administrator must have an easy access to the end devices. Depending on the
number of devices and their location, it might be quite challenging. Therefore, it is suitable for IoT
applications in which all end devices are gathered in one place once a time, for example, for recharging
purposes. An example of such applications can be the monitoring devices of patients’ health during
clinical examinations at hospitals, which are recharged during a night or a weekend.

3.3.2. Automated Key Distribution

Although the manual distribution is energy efficient (regarding the key transmission), it just
cannot be used in some applications, where the end devices are distributed around a city. It would be
too costly for an administrator to drive around and upload the keys (even if done only once a month).
Therefore, an automated distribution is also proposed (illustrated in Figure 7), which does not require
any administrator action.

The point is that the key is transmitted in the HIP message during initial communication; however,
it is stored into the end device memory and is considered valid even after the HIP session is over
(the association is terminated). For example, the restart of the end device or reinitialization of the
protocol do not invoke a new key transmission. After the security timer expires (depending on the key
modulus length), the key is regenerated and redistributed automatically. This solution is suitable for
IoT applications with many end devices spread around huge area. An example of such application can
be the monitoring devices of the available container capacity, distributed around the city.



Sensors 2019, 19, 4921 9 of 17

Initiator Responder

Original Base Exchange (with valid HI-R)

Data

Store HI-R 
into memory

Close

Proposed Base Exchange (without HI-R)

Data

Close

Read HI-R 
from memory

Loop
Alt

HI-R is valid

HI-R is invalid

Figure 7. The proposed automated key distribution process.

An implementation of the manual key distribution involves a removal of the build_tlv_hostid()
function call, which integrates it into a final message. It is also necessary to modify the processing of
the received R1 message in the hip_parse_R1() function of the src/protocol/hip_input.c file. In this function,
the parsing of a host identity form the message is replaced by loading from the known_hi_filename file.
This file is generated by the server device using the modified functionality in the src/util/hitgen.c file to
simplify its sharing.

3.4. Other Considered Optimizations

We have also considered other optimization possibilities described in Reference [22], which have
been however found unsuitable for implementation. For example, since the sender and receiver
HIT parameters take a significant portion of the HIP headers (as already shown in Figure 2), we
have considered not using it and thus reduce the length of the exchanged messages even more. It
could reduce 37% of the I1 message, 5% of the R1 message, 4.5% of the I2 message and 12.2% of
the R2 message. However, the HIT parameter is not used just for identification purpose, it is also
used in various security functions, such as validation of the puzzle solution or signature verification,
and its removal could cause multi-homing problems and difficult interaction with middle-boxes
(e.g., a firewall, a rendezvous server) [27]. Since one of our stated requirements was no negative impact
on security, we have not implemented this idea. Further analysis of a suitable replacement for security
functions must be done. For example, in data messages, the HIT parameter is replaced by the SPI
parameter. However, a detailed impact on interaction with middle-boxes must be also analyzed and a
suitable solution found to use such a modification.

3.5. Security Analysis

We have proposed three main modifications. In the first one, the original CLOSE message is not
modified. Thus, from the security point of view, the authenticity of the HIP message is, like in the
original HIP [14], verified using HMAC and SIGNATURE and the CLOSE message is ignored when no
corresponding HIP association is found. Since only an initiator (i.e., an IoT end device) can terminate
the connection, there is no way to close the connection by an attacker.



Sensors 2019, 19, 4921 10 of 17

As we have mentioned in Section 3.2, we defined a fixed order of the parameters and removed
information about the type and length. In our opinion, it has no impact on the security of the protocol,
because of all security fields have been preserved in the message.

In the third proposed modification, we removed HI-R from the original message, which was a
part of the four-way handshake. Due to making changes in the main part of the source code, it is
necessary to verify security features. For formal verification, we decided to use the AVISPA software
(http://www.avispa-project.org/), which is a software for the analysis of security-sensitive protocols.
The high-level protocol specification language (HLPSL) is used for the formal description of the security
protocol [28]. HIP has already been written in HLPSL language previously (http://www.avispa-project.
org/library/hip.html). We have analyzed the existing HIP code in HLPSL in detail and modified it
according to our proposal. The required changes are illustrated in Figure 8.

role initiator (
...
1. State = 1 /\ RCV((PUZZLE’.HI_R.EGY’.HIP_Trans’.ESP_Trans’).
| 1. State = 1 /\ RCV((PUZZLE’.EGY’.HIP_Trans’.ESP_Trans’).
{Hash(PUZZLE’.HI_R.EGY’.HIP_Trans’.ESP_Trans’)
}_inv(HI_R)) =|>
...
)

role responder (
...
2. State = 2 /\ RCV (Hash(HI_R).Hj_I’) =|>
State’:=4 /\ Y’:=new() /\ Puzzle’:=new() /\
SND ((Puzzle’.HI_R.exp(G,Y’).hIP_Trans.eSP_Trans).
| SND ((Puzzle’.exp(G,Y’).hIP_Trans.eSP_Trans).
{Hash((Puzzle’.HI_R.exp(G,Y’).hIP_Trans.eSP_Trans))
}_inv(HI_R))
...
)

Figure 8. Modifications in the HLPSL code of the HIP protocol.

We have run the modified HIP protocol in the AVISPA software and we have obtained the same
results as in the original protocol. (BACKEND OFMC -> SUMMARY safe, BACKEND OFMC -> GOAL
As specified, BACKEND Cl-AtSe -> SUMMARY safe, BACKEND Cl-AtSe -> GOAL As specified).

4. Experimental Results

For verification whether the proposed E-HIP is functioning correctly, we have implemented a
prototype in a form of a communication library. It is a modification of an open-source implementation
of the HIP protocol, named OpenHIP (Source code: https://github.com/rektide/openhip, version:
openhip-0.9) [23]. In the modified library, three proposed modifications were implemented, specifically
the removal of the CLOSE_ACK message and the Closing state, the reduction of the parameters format
and the removal of the HI-R parameter (the version of manual key distribution).

The experimental setup consisted of the Raspberry Pi 3 (RP) microcomputer with the Raspbian
operating system, representing the IoT end device and the laptop computer, representing the cloud
server. The topology is illustrated in Figure 9. Since the RP has the integrated Bluetooth 4.1 module,
we have used Bluetooth as a communication technology, above which an IPv4 connection was
established and the HIP protocol ensured a secure session for the data transfer.

http://www.avispa-project.org/
http://www.avispa-project.org/library/hip.html
http://www.avispa-project.org/library/hip.html
https://github.com/rektide/openhip


Sensors 2019, 19, 4921 11 of 17

Figure 9. The experimental setup.

To verify and evaluate the implemented optimizations, we have executed several experiments
focused on various aspects.

In the first phase, we have verified the overall function of the optimized protocol E-HIP. This
verification was done on the above-mentioned real topology, using real devices with the modified
library for communication. The Wireshark sniffer was used to observe the transmission of HIP
messages, whether they are correct and received in the correct order. The captured communication is
illustrated in Figure 10. The captured messages are briefly explained in Table 1.

Figure 10. The optimized HIP communication, captured by Wireshark.

Table 1. Description of captured HIP messages.

No. Description

174 Data transfer over the HIP protocol.
175–178 Initialization and connection establishment.

179 Transmission of encrypted data over Bluetooth.
193 Data retransmission over the HIP protocol.
194 Encrypted data retransmission over Bluetooth.
234 Connection termination.

The observed communication confirmed that the connection was successfully established, some
data were transmitted and the connection was afterwards closed. Thus, we can conclude that the
E-HIP functions correctly.

As a next experiment, the proposed E-HIP was compared to the original OpenHIP protocol. In the
comparison, the key of 1024-bit was used. We have observed the number of transmitted (TX) and
received (RX) messages and bytes, during the connection establishment and connection closing. Only
two measurements were performed, since the same number of messages is always used; thus, a higher
number of measurements would not provide different results. The results are provided in Table 2.



Sensors 2019, 19, 4921 12 of 17

Table 2. Comparison of E-HIP and OpenHIP.

OpenHIP E-HIP Difference

RX bytes 1184 760 −35.81%
RX messages 3 2 −33.33%
TX bytes 1048 1032 −1.53%
TX messages 3 3 0%
All bytes 2232 1792 −19.71%
All messages 6 5 −16.67%

Based on the achieved results, we can see that communication efficiency of E-HIP is by
approximately 20% higher than in case of OpenHIP. It indicates that the overall energy, required
for transfer of some number of bytes, is reduced by the proposed optimizations.

In order to see how the E-HIP performs in case of 2048-bit key usage, we have compared the
number of bytes transferred by individual HIP messages, especially by the R1 message during the
connection-establishment phase. The contents of the original messages (OpenHIP) are illustrated in
Figure 1 and described in Reference [14], while the modifications (E-HIP) are presented in Section 3.
The results of such a comparison are provided in Table 3.

Table 3. The number of transferred bytes in HIP messages of E-HIP and OpenHIP for different key size.

Message OpenHIP
(1024-bit)

OpenHIP
(2048-bit)

E-HIP
(1024-bit)

E-HIP
(2048-bit)

I1 88 88 88 88
R1 664 920 496 624
I2 704 960 688 944
R2 264 392 264 392
CLOSE 256 384 256 384
CLOSE_ACK 256 384 0 0

Total 2232 3128 1792 2432

As we can see, the difference between E-HIP and OpenHIP in the number of transferred bytes
is even higher in case of 2048-bit key (−22.25%). When we focus on the R1 message, we can observe
the difference of −25.3% in case of 1024-bit key and −32.17% in case of 2048-bit key. Based on a
computation (i.e., we have not measured that in communication between real devices), we expect that
the difference in case of 4096-bit key would be approximately −38%. The reason is quite obvious, since
the key is not directly transmitted in HIP messages in case of E-HIP.

The usage of 2048-bit RSA key increases the communication security; however, it obviously
increases also the energy requirements. If we focus on the number of transferred bytes, it is increased
by 40.14% when using OpenHIP (2048-bit) instead of OpenHIP (1024-bit). However, the usage of E-HIP
(2048-bit) instead of OpenHIP (1024-bit) increases the number of transferred bytes only by 8.96%. Thus,
the E-HIP can increase the communication security with a smaller increase of the energy requirements.

The next experiment was focused on evaluation of benefits of removing the CLOSE_ACK message
and the Closing state from the protocol. Specifically, the time was measured that could be saved
by not waiting for the acknowledgement message. The measurement was performed using the
original OpenHIP protocol, in which the time between sending the CLOSE message and receiving the
CLOSE_ACK message was targeted. We have executed the measurement 10 times and the average
result was 84.35 ms. This time thus corresponds to the period, how sooner the devices can be switched
to a power-saving sleep mode. It might seem a quite small amount of time; however, the testing
was performed on the devices, the distance between which was approximately one meter. When
considering the communication between a local IoT end device and a remote cloud-based server,
the time would be much longer (due to a communication delay). The CLOSE_ACK message may also



Sensors 2019, 19, 4921 13 of 17

be lost and the IoT end device must wait even longer time for the timer expiration. This cannot happen
in the proposed solution; thus, the energy of the energy-constrained IoT device is not wasted.

To evaluate the proposed optimisations in terms of power efficiency, we have measured the
current consumption during HIP communication (using a multimeter, which was connected directly
between the power supply and the RP device). The measurements were repeated 20 times and the
average results are reported in Table 4. The test scenario was simple connection establishment and
connection termination using E-HIP and OpenHIP protocols and observation of difference in the
measured values. The power consumption is calculated using the formula of P = I × V, where P is the
power, I is the current and V is the supply voltage. The idle operation represents the measured values,
when the device was not communicating. The HIP power is thus deduced as a difference between the
computed power consumption in some HIP operation and the idle power consumption.

Table 4. Power measurements (measured voltage of 5.2 V).

Operation Measured
Current

Computed
Power

Deduced
HIP Power

Idle 310 mA 1.612 W -
OpenHIP Establishment 335 mA 1.742 W 130 mW
E-HIP Establishment 330 mA 1.716 W 104 mW
OpenHIP Termination 320 mA 1.664 W 52 mW
E-HIP Termination 310 mA 1.612 W 0 mW

Due to a very short period of time and the multimeter accuracy, we were not able to observe a
difference for the connection termination when E-HIP was used. However, based on the results for
connection establishment, we can see the increase in power efficiency by 20% when E-HIP is used
instead of OpenHIP.

It is not easy to determine individual contributions of the proposed modifications to the total
energy savings. However, we can estimate these contributions by using the numbers of spared bytes
in the transmitted messages. The parameters format reduction contributed by approximately 1%,
not sending CLOSE_ACK contributed approximately by 11.5% and the remaining approximately
7.5% is contribution of the HI-R parameter removal. In addition, more energy would be spared if the
CLOSE_ACK message would be lost during transmission, since in our proposal the device does not
need to wait for CLOSE_ACK to be received.

The implemented modifications have been carefully selected to not influence HIP messages
parameters/fields that are used in computations of security algorithms. However, to be sure, the next
experiment was focused on verification whether the modifications have not impacted the security
characteristics (i.e., confidentiality, integrity, authenticity) of the HIP protocol. To provide these
features, the HIP Base Exchange protocol supports various mechanism, such as puzzle computation,
Diffie-Hellman key exchange or digital signature. The verification was performed for control messages
during the connection-establishment phase. It was done by comparison of security notifications
for individual operations of the E-HIP proposal and the original OpenHIP version. The important
notifications that were monitored include:

• R1: the computed SHA1 values comparison,
• R1: RSA HIP signature is good,
• I2: the puzzle solution comparison,
• I2: HMAC verified OK,
• I2: RSA HIP signature is good,
• R2: HMAC_2 verified OK,
• R2: RSA HIP signature is good,
• HIP exchange complete,
• the created SPI comparison.



Sensors 2019, 19, 4921 14 of 17

Checking these notifications during the protocol testing indicates that the proposed optimizations
do not affect the security features of the original protocol. Therefore, the further security analysis
is not required.

Discussion

The experiments have proved the correct functioning of the proposed E-HIP protocol. It was
tested above the widely spread IPv4 protocol; thus, it is usable in many applications requiring secure
communication. It was also shown that E-HIP supports various key sizes, which makes it flexible and
the benefits of the proposed modifications are even higher for longer (and thus more secure) keys.
When we compare the improvements achieved by measurements of the number of transferred bytes
and the measurements of the current consumption, we can see that both indicate the same increase in
energy efficiency by 20%.

In the experiments, we have shown that the proposed modification of the OpenHIP protocol is
more power efficient to its original version. However, there exist other versions or modifications of
HIP protocol. The comparison of various HIP versions is illustrated in Figure 11 (the power values are
deduced from the similar existing works [15,20]).

0

50

100

150

200

250

C
o

n
n

e
ct

io
n

-e
st

ab
lis

h
m

e
n

t 
p

o
w

e
r 

co
n

su
m

p
ti

o
n

 [
m

W
] 

Figure 11. The comparison of various HIP versions power requirements.

As we can see, the achieved E-HIP power efficiency is comparable to some other modifications
of the HIP protocol. The modifications based on distributed computation significantly outperforms
other modifications (including ours); however, it is not quite suitable for our needs. We expect that the
energy-constrained nodes would not waste their energy on computing tasks for other nodes. They
are switched to power-saving mode when their computational power is not required. The proposed
modifications are unique compared to others and thus they can be combined to increase the energy
efficiency even more. The first two proposed modifications would not be affected by the used
protocol version, since all of them use Closing state in the state machine and the acknowledgement.
The third modification would bring smaller benefits when more efficient cryptographic algorithm,
such as ECDSA, would be used, since it provides smaller keys offering the same security level.
However, there still would be an increase in energy efficiency using the proposed optimizations.
When used in combination with the compression-based optimizations, the proposed modifications
could reduce compression/decompression processing, since they effectively reduce the message
size. An investigation and evaluation of combined optimizations represents possible further work
in this area.

It should be also noted that the proposed E-HIP protocol is not compatible with the standard
one (i.e., it would not be compatible with other HIP devices, not using E-HIP version), due to
the implemented modifications. However, an application-specific IoT communication requires



Sensors 2019, 19, 4921 15 of 17

application-specific protocols. If there would be need to preserve the compatibility, two versions
could be implemented on the device (E-HIP and standard) and the standard (more energy intensive)
version would be used only when required. It however depends on whether there is enough memory
(to store both versions) in the constrained IoT device.

5. Conclusions

Although the optimization of security protocols for usage in the resource-constrained area of
the Internet of Things is no new research direction, the pressure on energy efficiency is ever growing.
There is still a need to extend lifetime of battery-operated devices or to integrate more functions into an
energy-constrained device. In our work, we have targeted the OpenHIP open-source implementation
of the HIP protocol. We have identified several optimization possibilities, from which we have
selected those that do not influence HIP security characteristics. By the implementation of the selected
optimizations into OpenHIP library, we have created E-HIP version of the HIP protocol, which is
optimized for efficient use in the IoT sphere.

The experimental results confirmed increase in energy efficiency by approximately 20% compared
to the original OpenHIP implementation. Specifically, it brings benefits regarding reduction of network
load and protocol control overhead, reduced computation requirements or less energy-intensive
securing of the communication. The unique E-HIP optimizations make it suitable for a combination
with other optimizations of the related works, such as C-HIP, which opens a door for further
energy improvements.

Author Contributions: Conceptualization, P.K. and D.M.; methodology, D.M.; software, P.K.; validation, D.M.;
formal analysis, D.M.; investigation, P.K.; resources, P.K.; data curation, P.K.; writing—original draft preparation,
P.K. and D.M.; writing—review and editing, P.K. and D.M.; visualization, D.M.; supervision, D.M.; funding
acquisition, D.M.

Funding: This publication has been written thanks to support of the Operational Program Research and Innovation
for the project: Research of advanced methods of intelligent information processing (ITMS code: NFP313010T570),
co-financed by the European Regional Development Fund. This research was also supported by the Ministry of
Education, Science, Research and Sport of the Slovak Republic, Incentives for Research and Development, Grant
No.: 2018/14427:1-26C0.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

6LoWPAN IPv6 over Low-PowerWireless Personal Area Networks
CD-HIP Compressed and Distributed HIP
CHIP Collaborative HIP
CoAP Constrained Application Protocol
DTLS Datagram Transport Layer Security
EC exchange complete
ECDSA Elliptic Curve Digital Signature Algorithm
eeDTLS energy-efficient DTLS
ESP Encapsulating Security Payload
HIP Host Identity Protocol
HIP-DEX HIP Diet EXchange
HIP-TEX HIP Tiny EXchange
HIT Host Identity Tag
IKEv2 Internet Key Exchange version 2
IoT Internet of Things
IPSec Internet Protocol Security
LHIP Lightweight HIP



Sensors 2019, 19, 4921 16 of 17

lLKA Lightweight Key Agreement
MSL maximum segment lifetime
RP Raspberry Pi 3
RSA Rivest Shamir Adleman
SPI Security Parameter Index
TCP Transmission Control Protocol
TLV type-length-value
UAL unused association lifetime
UDP User Datagram Protocol

References

1. Sundmaeker, H.; Guillemin, P.; Friess, P.; Woelfflé, S. Vision and challenges for realising the Internet of
Things. Clust. Eur. Res. Proj. Internet Things Eur. Comm. 2010, 3, 34–36.

2. Bartje, J. The top 10 IoT Application Areas—Based on Real IoT Projects. Available online: https://iot-
analytics.com/top-10-iot-project-application-areas-q3-2016/ (accessed on 18 June 2019).

3. Davis, D.B. ISTR 2019: Internet of Things Cyber Attacks Grow More Diverse. Available
online: https://www.symantec.com/blogs/expert-perspectives/istr-2019-internet-things-cyber-attacks-
grow-more-diverse (accessed on 18 June 2019).

4. Gatlan, S. IoT Attacks Escalating with a 217.5% Increase in Volume. Available online: https://www.
bleepingcomputer.com/news/security/iot-attacks-escalating-with-a-2175-percent-increase-in-volume
(accessed on 18 June 2019).

5. Dorsemaine, B.; Gaulier, J.P.; Wary, J.P.; Kheir, N.; Urien, P. Internet of Things: A definition & taxonomy.
In Proceedings of the IEEE 2015 9th International Conference on Next Generation Mobile Applications,
Services and Technologies, Cambridge, UK, 9–11 September 2015; pp. 72–77. [CrossRef]

6. El Mouaatamid, O.; Lahmer, M.; Belkasmi, M. Internet of Things Security: Layered Classification of Attacks
and Possible Countermeasures. Electron. J. Inf. Technol. 2016, pp. 24–37.

7. Morgan, J. A simple explanation of ’The Internet of Things’. Available online: https://www.forbes.
com/sites/jacobmorgan/2014/05/13/simple-explanation-internet-things-that-anyone-can-understand/
#1c6e34f61d09 (accessed on 18 June 2019).

8. Hellaoui, H.; Koudil, M.; Bouabdallah, A. Energy-efficient mechanisms in security of the internet of things:
A survey. Comput. Netw. 2017, 127, 173–189. [CrossRef]

9. Banerjee, U.; Juvekar, C.; Fuller, S.H.; Chandrakasan, A.P. eeDTLS: Energy-Efficient Datagram Transport
Layer Security for the Internet of Things. In Proceedings of the GLOBECOM 2017—IEEE Global
Communications Conference, Singapore, 4–8 December 2017; pp. 2014–2019. [CrossRef]

10. Raza, S.; Shafagh, H.; Hewage, K.; Hummen, R.; Voigt, T. Lithe: Lightweight secure CoAP for the Internet of
Things. IEEE Sens. J. 2013, 13, 3711–3720. [CrossRef]

11. Lavanya, M.; Natarajan, V. Lightweight key agreement protocol for IoT based on IKEv2. Comput. Electr. Eng.
2017, 64, 580–594. [CrossRef]

12. Urien, P. Innovative TLS/DTLS Security Modules for IoT Applications: Concepts and Experiments. In
International Internet of Things Summit; Springer: Berlin, Germany, 2015; pp. 3–15. [CrossRef]

13. Bonetto, R.; Bui, N.; Lakkundi, V.; Olivereau, A.; Serbanati, A.; Rossi, M. Secure communication for smart
IoT objects: Protocol stacks, use cases and practical examples. In Proceedings of the 2012 IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), San Francisco, CA,
USA, 25–28 June 2012; pp. 686–692. [CrossRef]

14. Moskowitz, R.; Heer, T.; Jokela, P.; Henderson, T. Host Identity Protocol Version 2 (HIPv2). In IETF, RFC
7401; Technical Report; Internet Engineering Task Force (IETF): Fremont, CA, USA, 2015. [CrossRef]

15. Saied, Y.B.; Olivereau, A. HIP Tiny Exchange (TEX): A distributed key exchange scheme for HIP-based
Internet of Things. In Proceedings of the IEEE Third International Conference on Communications and
Networking, Hammamet, Tunisia, 29 March–1 April 2012; pp. 1–8. [CrossRef]

16. Moskowitz, R.; Hummen, R.; Komu, M. In HIP Diet EXchange (DEX); Technical Report. 2019. Available online:
https://tools.ietf.org/html/draft-ietf-hip-dex-08 (accessed on 7 August 2019).

https://iot-analytics.com/top-10-iot-project-application-areas-q3-2016/
https://iot-analytics.com/top-10-iot-project-application-areas-q3-2016/
https://www.symantec .com/blogs/expert-perspectives/istr-2019-internet-things-cyber-attacks-grow-more-diverse
https://www.symantec .com/blogs/expert-perspectives/istr-2019-internet-things-cyber-attacks-grow-more-diverse
https://www.bleepingcomputer .com/news/security/iot-attacks-escalating-with-a-2175-percent-increase-in-volume
https://www.bleepingcomputer .com/news/security/iot-attacks-escalating-with-a-2175-percent-increase-in-volume
http://dx.doi.org/10.1109/NGMAST.2015.71
https://www.forbes.com/sites/jacobmorgan/2014/05/13/simple-explanation-internet-things-that-anyone-can-understand/#1c6e34f61d09
https://www.forbes.com/sites/jacobmorgan/2014/05/13/simple-explanation-internet-things-that-anyone-can-understand/#1c6e34f61d09
https://www.forbes.com/sites/jacobmorgan/2014/05/13/simple-explanation-internet-things-that-anyone-can-understand/#1c6e34f61d09
http://dx.doi.org/10.1016/j.comnet.2017.08.006
http://dx.doi.org/10.1109/GLOCOM. 2017.8255053
http://dx.doi.org/10.1109/JSEN.2013.2277656
http://dx.doi.org/10.1016/j.compeleceng.2017.06.032
http://dx.doi.org/10.1007/978-3- 319-47063-4_1
http://dx.doi.org/10.1109/WoWMoM.2012.6263790
http://dx.doi.org/10.17487/RFC7401
http://dx.doi.org/10.1109/ComNet.2012.6217736
https://tools.ietf.org/html/draft-ietf-hip-dex-08


Sensors 2019, 19, 4921 17 of 17

17. Heer, T.M. LHIP–Lightweight Authentication for the Host Identity Protocol. Master’s Thesis, University of
Tübingen, Tübingen, Germany, 2006.

18. Ponomarev, O.; Khurri, A.; Gurtov, A. Elliptic curve cryptography (ECC) for Host Identity Protocol
(HIP). In Proceedings of the IEEE 2010 Ninth International Conference on Networks, Menuires, France,
11–16 April 2010; pp. 215–219.

19. Hummen, R.; Hiller, J.; Henze, M.; Wehrle, K. Slimfit-A HIP DEX compression layer for the IP-based Internet
of Things. In Proceedings of the 2013 IEEE 9th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), Lyon, France, 7–9 October 2013; pp. 259–266. [CrossRef]

20. Sahraoui, S.; Bilami, A. Efficient HIP-based approach to ensure lightweight end-to-end security in the
internet of things. Comput. Netw. 2015, 91, 26–45. [CrossRef]

21. Porambage, P.; Braeken, A.; Kumar, P.; Gurtov, A.; Ylianttila, M. CHIP: Collaborative host identity protocol
with efficient key establishment for constrained devices in Internet of Things. Wirel. Pers. Commun. 2017,
96, 421–440. [CrossRef]

22. Kaňuch, P.; Macko, D. Optimizing energy efficiency of secured IoT communication by OpenHip.
In Proceedings of the IEEE 2019 42nd International Conference on Telecommunications and Signal Processing
(TSP), Budapest, Hungary, 1–3 July 2019; pp. 174–177. [CrossRef]

23. OpenHIP: Host Identity Protocol implementation. Available online: https://bitbucket.org/openhip/
openhip (accessed on 20 September 2018).

24. Bokor, L.; Nováczki, S.; Zeke, L.T.; Jeney, G. Design and Evaluation of Host Identity Protocol (HIP) Simulation
Framework for INET/OMNeT++. In Proceedings of the 12th ACM International Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems; ACM: New York, NY, USA, 2009; pp. 124–133. [CrossRef]

25. Aura, T.; Nagarajan, A.; Gurtov, A. Analysis of the HIP base exchange protocol. In Information Security and
Privacy; Boyd, C., González Nieto, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 481–493.

26. Barker, E. Recommendation for Key Management Part 1: General (Revision 4). NIST Spec. Pub. 2016,
800, 1–160. [CrossRef]

27. Nikander, P.; Gurtov, A.; Henderson, T.R. Host Identity Protocol (HIP): Connectivity, mobility, multi-homing,
security, and privacy over IPv4 and IPv6 networks. IEEE Commun. Surv. Tutor. 2010, 12, 186–204. [CrossRef]

28. Abid, N.; Laurent, M. A New Authentication Method Based on Cryptographic Identifiers CGAs; Research
Report, hal-01360031. 2009. Available online: https://hal.archives-ouvertes.fr/hal-01360031 (accessed on
12 November 2019).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/WiMOB.2013.6673370
http://dx.doi.org/10.1016/j.comnet.2015.08.002
http://dx.doi.org/10.1007/s11277-017-4176-5
http://dx.doi.org/10.1109/TSP.2019.8769096
https://bitbucket.org/openhip/openhip
https://bitbucket.org/openhip/openhip
http://dx.doi.org/10.1145/1641804.1641827
http://dx.doi.org/10.6028/NIST.SP.800-57pt1r4
http://dx.doi.org/10.1109/SURV.2010.021110.00070
https://hal.archives-ouvertes.fr/hal-01360031
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	The Proposed Optimizations of HIP Energy Efficiency
	Removal of the CLOSE_ACK Message and the Closing State
	Parameters Format Reduction
	The HI-R Parameter Removal
	Manual Key Distribution
	Automated Key Distribution

	Other Considered Optimizations
	Security Analysis

	Experimental Results
	Conclusions
	References

