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Abstract: This paper presents an efficient revisiting algorithm for landmark-based simultaneous
localization and mapping (SLAM). To reduce SLAM uncertainty in terms of a robot’s pose and
landmark positions, the method autonomously evaluates valuable landmarks for the data associations
in the SLAM algorithm and selects positions to revisit by considering both landmark visibility and
sensor measurement uncertainty. The optimal path among the selected positions is obtained by
applying the traveling salesman problem (TSP) algorithm. To plan a path that reduces overall
uncertainty, the cost matrix associated with the change in covariance between all selected positions
of all pairs is applied for the TSP algorithm. From simulations, it is verified that the proposed
method efficiently reduces and maintains SLAM uncertainty at the low level compared to the
backtracking method.

Keywords: mobile robot; simultaneous localization and mapping; traveling salesman problem; path
planning; loop-closing; exploration

1. Introduction

Environmental mapping is essential when mobile robots are used to perform higher-level tasks.
Many researchers have explored how to present the environment and localize a robot using sensor
data. Simultaneous localization and mapping (SLAM) is used to simultaneously estimate the positions
of a robot and landmarks from noisy sensor data acquired as the robot moves [1,2]. Many SLAM
algorithms focus on the accuracy of estimated states; various filters and frameworks have been applied
to bound the associated uncertainties.

Feature- and landmark-based SLAM approaches usually employ extended Kalman filters (EKFs)
to estimate the status of the robot and landmarks and employ a single Gaussian for each state. In such
approaches, line or point landmarks are extracted from data derived by laser range finders, sonar
sensors, and visual landmarks in images [3,4]. The performance of SLAM algorithms depends on
process and measurement noise covariance matrices. To obtain accurate measurement noise covariance
matrices without the trial and error methods of EKF-SLAM algorithms, an adaptive neuro-fuzzy
inference system was proposed [5]. To reduce the computational complexity of EKF-SLAM, which is
affected by the number of landmarks, local submaps are constructed and they are integrated into a
global map [6]. Microphone observations can be applied to landmark-based EKF-SLAM algorithms [7].
The time delay estimation between sound sources and microphones by generalized cross-correlation
was used to establish the observation model.

Rao–Blackwellized particle filters (RBPFs) are appropriate for landmark-based maps [8], and also
efficiently optimize gridmaps and estimate robot poses [9,10]. Radio frequency identification (RFID)
phase measurements were employed to estimate the robot pose and passive tag coordinates by using
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the landmark-based RBPF SLAM approach [11]. Whereas most previous gridmap-based RBPF SLAM
algorithms have modeled each cell as one Bernoulli distribution [12,13], the occupancy probability of
each cell is modeled by using a beta-distribution in β-SLAM to distinguish between different causes
of uncertainty [14]. It also presents an uncertainty measure to quantify the resulting gridmap by the
Shannon entropy for path planning.

Recently, graph-SLAM algorithms have found many applications in large-scale environments.
Graph-SLAM [15] optimizes the robot pose graph using constraints that connect the pose nodes via
sensor observations. The sensor observations of the graph-SLAM algorithms can be the scan-matching
results between laser point clouds [16,17] and the feature-matching/tracking results between keyframe
images [18,19]. Keyframe-based graph-SLAM was applied not only to a single robot, but also to
multi-agent systems [20]. The graph-SLAM algorithm performed by multiple robots can overcome the
inefficiency caused by the growing graph size in large environments. To increase the performance of
the graph-SLAM algorithm for low-cost Light Detection And Ranging (LiDAR) sensors and vision
sensors, laser scan-matching results and visual bag of words (BoW) were combined [21].

When using SLAM algorithms, loop-closing (i.e., revisiting a previously mapped/detected area)
is essential to bound global errors and to improve global consistency. Revisiting minimizes SLAM
uncertainty in terms of both the robot pose and landmark positions [22,23]. In general, when a
robot returns to the initial position (the startpoint of the SLAM algorithm), a loop trajectory is
naturally completed and the SLAM state is optimized by applying the loop-closing constraint [24,25].
This is because, when the SLAM algorithm commenced, the robot pose uncertainty was very low
and landmarks were accurately registered. Robot and landmark uncertainties become large when
the robot has traveled a long distance, necessitating return of the robot to a better-known area
to re-observe accurately estimated landmarks; this increases the likelihood that data associations
will be correct. Most loop-closing strategies have focused on detection of loop-closing landmarks
and loop optimization [21,26,27]. Several approaches simplify loop-detection issues using special
landmarks [11,28]. Appropriate loop-closing positions and planning of loop-closing paths have
received less attention.

When a SLAM algorithm must reduce state uncertainties via loop-closing, the robot can easily
return to the initial position if it is not remote from that position. However, if the robot is distant from
the initial, accurately mapped area, the robot has to backtrack along the previous trajectory or plan
a revisiting path that takes the robot in a direction in which uncertainty decreases. It is difficult to
determine the extent to which uncertainty is reduced during backtracking, because the same situation
inducing growing uncertainty is repeated along the backtracking path.

In this paper, the revisiting method using a solution of the traveling salesman problem (TSP)
to devise a landmark-based EKF SLAM is proposed. Given the uncertainties in the positions
of SLAM-registered landmarks when revisiting is to commence, we construct a visible landmark
uncertainty map and select several revisiting positions to ensure that the obtained measurements
adequately reduce uncertainty. The traveling order among the selected positions is chosen via TSP
optimization using the predicted covariance changes. We show that robot and landmark uncertainties
are reduced more efficiently when the robot travels along such a path (compared to backtracking).

This paper is organized as follows. In Section 2, we propose the visible landmark uncertainty grid
map that is used to identify landmarks that must be re-observed to reduce overall uncertainty and
to select appropriate revisiting positions. In Section 3, we present the covariance TSP algorithm to
derive the revisiting path that includes all selected positions. Section 4 shows simulation results of
both backtracking and our method. Section 5 is the conclusion.

2. Visible Landmark Uncertainty Portrayed on a Gridmap

To choose positions at which a robot can make loop-closing observations of landmarks registered
by the SLAM algorithm, we construct a visible landmark uncertainty (VLU) map that shows the
uncertainties of visible or observable landmarks at each grid position.
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2.1. The VLU Map

The VLU map is a gridmap; the value of each grid is the extent of uncertainty associated with
landmark detection at each grid location. We use the covariance matrix of the EKF-SLAM to represent
the uncertainty of the SLAM state. This includes correlations between interrelated landmarks. Every
observation of a landmark affects the estimation of every other landmark [1]. Therefore, it is optimal
to proceed to a position at which the maximum number of possibly known or registered landmarks is
visible to the SLAM algorithm, and where new landmarks are also detectable as exploration proceeds.
To build the VLU map, we assume that the robot is equipped with a range sensor with a 360◦ sweep
but a defined maximum range. We first calculate the number of visible landmarks in each grid cell, Gi,j:

Gi,j =
N

∑
n=1

vn (1)

vn =

1, if
√{

gi,j (x)−mn (x)
}2

+
{

gi,j (y)−mn (y)
}2

< rmax

0, otherwise
(2)

where N is the total number of landmarks registered to the SLAM state, gi,j (x) and gi,j (y) are the
metric coordinates x and y of the grid index (i, j), mn (x) and mn (y) are the metric coordinates of the
n-th landmark mn, and rmax is the maximum range of the sensor. After calculating the number of
visible landmarks, the VLU of each grid cell is derived as follows:

VLUi,j =
(

N − Gi,j
)

trmax +

Gi,j

∑
k=1

trace (Pk) (3)

trmax = max {trace (Pk) : k = 1, · · · , N} (4)

where N is the total number of landmarks registered to the SLAM state, Gi,j is the number of visible
landmarks at grid index (i, j), Pk is the covariance matrix of the visible landmark mk, and trace (Pk)

is the trace of the Pk matrix. Pk is obtained from the SLAM covariance matrix; Pk is a sub-block of
the entire covariance matrix. trmax is the maximum trace (derived by reference to the most uncertain
landmark among all registered landmarks).

The Shannon entropy (the Shannon information measure) was used in [29] to obtain a scalar
reflecting the diversity of a probability distribution represented by a covariance matrix. The entropy H
of a Gaussian SLAM state is obtained by calculating the determinant of the covariance [30]. Building
on this concept, the authors of [31] proposed the use of an a-optimal measure of information gain to
increase map quality during exploration. The a-optimal measure is calculated using the trace of the
covariance matrix, thus the product of the eigenvalues. When moving in a direction that optimizes
the a-optimal measure, a more accurate map is obtained (the mean squared errors of the landmarks
are minimized).

In Equation (3), we apply this trace of the state covariance matrix to the visible landmarks.
The first term (N − Gi,j) reflects the number of invisible landmarks, and the second term reflects the
uncertainties of the visible landmarks. The maximum trace for each invisible landmark is added,
and each visible landmark assumes its corresponding trace.

The higher the grid cell VLU value, the greater the SLAM uncertainty; fewer landmarks with
large covariances are visible. The lower the grid cell VLU, the better the robot position; covariance is
reduced via correct association of data with visible landmarks.

Figure 1 shows a sample EKF-SLAM state (of both the robot and the landmarks) when uncertainty
has increased after traveling a long distance. The initial robot location was (0, 0 m). The estimated
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positions of landmarks that were observed early exhibit low uncertainties (represented by the volumes
of the ellipses). We can find that landmark uncertainty increases as the robot travels. Revisiting is
necessary to enhance the positional accuracies of both registered landmarks and the robot; the VLU
grid map is obtained using the landmark state.
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Figure 1. An example of extended Kalman filter (EKF)-simultaneous localization and mapping (SLAM)
robot/landmark state when revisiting commences. The red ellipses reflect the covariances of registered
landmarks; the red stars show the estimated positions of such landmarks; and the blue stars indicate
the true positions of unregistered (unmapped) landmarks.

Visibility Convolution

We now present an efficient method to calculate Equation (2) using an image convolution process.
In Equation (2), the visibility of the n-th landmark from each grid cell is the estimated mean value of
the n-th landmark [mn (x) , mn (y)]. We improve the calculation of Equation (2) using the Gaussian
distribution of each landmark and an efficient image convolution method that reflects uncertainties in
the estimated landmark states. After initializing the gridmap using the size of the currently mapped
area, a Gaussian distribution is inserted at each registered landmark position using both the mean
value and the covariance matrix. Figure 2a shows the Gaussian distribution of each landmark depicted
in Figure 1. Next, each distribution is multiplied by the trace value of its covariance matrix. Figure 2b
shows the trace-multiplied Gaussian distribution map.

The two distribution gridmaps are subjected to simple image convolution. The shape of the
kernel depends on the working distance, the field of view, and the sensor accuracy (the kernel is the
“measurement model” of an EKF-SLAM). Figure 3 shows two kernels used to calculate convolutions.
We assume that the robot features a 360◦ field of view sensor; the kernel can thus be circular. If the
robot features a 120◦ sensor, the kernel can be fan-shaped. Within the maximum range, the sensor
uncertainty kernel value is 1 because the sensor can detect the landmarks that are within the maximum
range. At the maximum range, near the end of the sensor ray, the kernel value follows a Gaussian
distribution that considers errors in sensor measurements. Figure 3a shows a convolution kernel with
a small sensor error. Figure 3b shows a kernel reflecting a large sensor error; the deviation is large at
the maximum range.
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Figure 2. The distribution of each landmark on the gridmap: (a) The Gaussian distribution of each
landmark. (b) The Gaussian distribution multiplied by the trace value of each landmark.
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Figure 3. The sensor uncertainty kernels used for visibility convolution: (a) A convolution kernel with
small sensor errors at the maximum range grid cells. (b) A convolution kernel with large sensor errors
at the maximum range grid cells.

Using the Gaussian distribution map of the landmarks, convolution is performed with the sensor
uncertainty kernel. This yields the probabilistic number of visible landmarks with consideration of the
measurement uncertainty. The visibility convolution of the EKF-SLAM state of Figure 1 is shown in
Figure 4. Figure 4a is the convolution between the Gaussian distribution of each landmark in Figure 2a
and the sensor uncertainty kernel. Lighter grids indicate that more landmarks are observed at that
position. Figure 4b shows the probabilistic numbers of invisible landmarks, obtained by subtracting
the probabilistic numbers of visible landmarks from the total number of registered landmarks when
revisiting commences. This value is used to calculate the first term of Equation (3) via multiplication
by the maximum trace value of all landmarks (thus that of the most uncertain landmark). This assigns
higher values to VLU map grid positions at which the robot observes fewer landmarks. Figure 4c
shows the convolution between the trace-multiplied Gaussian distribution map of Figure 2b and the
sensor uncertainty kernel; this corresponds to the second term of Equation (3). The fewer the number
of landmarks detected, and the more uncertain their positions, the lighter the color and the higher
the uncertainty. The final VLU map is shown in Figure 5. Overall, the areas in which less uncertain
landmarks are visible have lower values and can be considered as revisiting positions to increase the
accuracy of landmark positioning and robot pose by correct data association.
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(a) (b) (c)

Figure 4. Visibility convolutions derived using sensor uncertainty kernels: (a) The probabilistic number
of visible landmarks. (b) The probabilistic number of invisible landmarks. (c) The results of the
convolution between the trace-multiplied Gaussian distribution map and the sensor uncertainty kernel.
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Figure 5. The visible landmark uncertainty (VLU) gridmap.

2.2. Selection of Revisiting Positions Using the VLU Map

The VLU grid map is used to select several revisiting positions. Each position must feature
landmarks of low uncertainty to enhance the probability of correct data association. Optimally,
the robot will detect not only accurate but also somewhat uncertain landmarks. This may appear to
be contradictory. However, this reduces the overall uncertainties of state estimation and increases
exploration efficiency; map information must be extended. To select positions at which the robot can
achieve these aims, we select the less uncertain registered landmarks. Any selected landmark will be
visible from several positions, and these positions have relatively lower VLU values than the positions
where the selected landmarks are not visible; the position with the highest VLU value among these
several positions is chosen for revisiting.

Algorithm 1 shows how to select revisiting positions using the VLU gridmap. The less uncertain
landmarks are identified by Equation (5). A landmark for which the covariance matrix exhibits a trace
value greater than the mean of the overall landmark covariance matrix is selected as a re-observation
target. Next, for each selected landmark lk, we define grid cells from which lk is visible (lines 2–9).
When there are several grid cells where one selected landmark is visible, the grid cell with the highest
VLU is selected as a revisiting position for both data association and exploratory utility. If that cell has
been already selected for viewing of another landmark, the cell with the next-highest VLU is selected
(11–19). Thus, Algorithm 1 runs until a grid cell with a high VLU that is not assigned to another
landmark is chosen for each landmark.
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Algorithm 1 Selecting revisiting locations

Require: all grid cell indices {g (i, j)}, VLU gridmap {gVLU (i, j)}, the covariance matrices of all N

registered landmarks P = {P1, . . . , PN}
Ensure: Revisiting positions Loc

1: Select the less uncertain landmarks according to the trace of its covariance matrix

Landmark k, lk, with trace (Pk) <
1
N

N

∑
i=1

trace (Pi) (5)

N : total number of registered landmarks

Pi : covariance matrix of landmark i

2: for all selected landmarks, lk do
3: for all grid cells, g (i, j) do
4: if lk is visible at

{
gi,j (x, y)

}
then

5: Push g (i, j)→ Gk
6: end if
7: end for
8: Push Gk → G
9: end for

10: Loc← ∅
11: for all elements, Gk of G do
12: Select g (i, j) which has the highest gVLU (i, j) among all elements of Gk
13: if there is not g (i, j) in Loc then
14: Push g (i, j)→ Loc
15: else
16: Remove g (i, j) from Gk
17: goto Step 11
18: end if
19: end for

3. The Covariance Traveling Salesman Problem

In the previous section, we calculated the VLU of each map position, and used this to select
revisiting positions. We employ a solution of the TSP algorithm to define the revisiting order. The TSP
is an extensively explored optimization problem that deals with a salesman who requires the shortest
path between N cities or nodes [32]. In terms of acquiring the shortest path, the algorithm can be
used to optimize revisiting or to explore robotic frontiers [33]. As the odometry error increases as
the robot moves, the shorter the distance traveled to re-detect each landmark, the better the SLAM
state estimation.

3.1. Traveling Salesman Problem: A Brief Review

When a salesman must visit several cities, starting from and returning home, he needs to minimize
his total travel distance. It is assumed that the salesman knows where all the cities are and the traveling
costs between them. The constraints are: (i) each city may be visited only once; and, (ii) the salesman
must return home (closing a loop). We view the mobile robot revisiting problem as a two-dimensional
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(2D) TSP where the traveling distance is Euclidean or reflects the navigation cost between revisiting
positions. The classical formulation of the TSP follows. Let:

xij =

{
1 if the tour uses a leg between i and j

0 if not
. (6)

This minimizes:

Z = ∑
i

∑
j>i

cijxij (7)

when:

∑
j<i

xji+∑
j>i

xij = 2, for all i (8)

∑
i∈S

∑
j/∈S

xij+ ∑
i/∈S

∑
j∈S

xij ≥2, (9)

for all proper subset S, |S| ≥ 3

xij = binary, for all i; j > i.

Equation (8) deals with constraint (i) and Equation (9) deals with the loop-closing constraint (ii). The
TSP is probably the best-known optimization problem but it is unlikely that it can be efficiently solved
using a polynomial time algorithm. As all O (n!) potential permutations of the cities must be examined,
computation is difficult when the number of cities is large. Although the TSP cannot be fully solved
in polynomial time, a near-optimal solution can be acquired with the aid of heuristics [32,34]. A
heuristic algorithm commences by selection of a single city, followed by addition of all remaining cities
one-by-one; this is a ‘greedy algorithm’. An improved heuristic algorithm is based on the local-search
concept, analyzing transitions from one solution to the next in a search for better solutions. We tested
various local heuristic algorithms when seeking TSP solutions to mobile robot revisiting. Figure 6
shows the total traveling distances of eight algorithms. The average computational time of seven
algorithms (excluding the backward algorithm) was 0.1 s for 100 cities, 4 s for 500 cities, and 7 s for
1000 cities. These values are acceptable when analyzing mobile robot revisiting.

3.2. Traveling Costs between Revisiting Positions

After choosing positions to be revisited, the traveling costs are computed. The positions form the
nodes of the TSP and the traveling costs between each pair of positions form the cost matrix of the TSP,
thus cij of Equation (7). Traveling costs of robotic navigation can be defined in various ways, including
the geometric Euclidean distance or the obstacle-free shortest path. If the robot features perfectly
accurate sensors (including a perfect wheel odometer), the Euclidean distance can serve as the shortest
total revisit distance. However, sensors are never perfect, and SLAM deals with sensor errors. Also, it
is important to not only minimize the total travel distance but also to reduce the uncertainty of the
overall SLAM state. Such uncertainty depends on both the path and new sensor measurements. We
propose the covariance TSP that defines each between-position travel cost as the expected covariance
change of the robot after it moves from one revisiting position to another.
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Figure 6. Comparison of the traveling salesman problem (TSP) solutions using various
heuristic algorithms.

SLAM algorithms, especially EKF-SLAM, engage in both prediction and update processes [22].
During the prediction process, the robot state is computed by the motion model and the control inputs.
The update process can be performed when sensor observations are available. After an observation
is made, the innovation (the difference between the actual and predicted observations as revealed
by the observational model) and the robot state evaluated during prediction must be calculated.
However, because we are now considering a kind of path planning problem before actual movement,
it is impossible to obtain real observations prior to arrival. Therefore, we simulate the observations
expected as the robot travels between two revisiting positions. In these simulations, the landmark
state is that at the time a revisit is scheduled. The initial covariance of the robot state serves as the
zero matrix.

The resulting covariance cost matrix is non-symmetric because the measurements obtained during
travel from nodes “A” to “B” and “B” to “A” differ. Although the observed landmarks are the same,
the covariance is computed differently because the order of measurements varies. Figure 7 shows
examples of cost matrices; Figure 7a is the cost matrix derived using the Euclidean distance between
nodes and Figure 7b is the matrix yielded by the expected covariance change. When that expected
covariance change serves as the travel cost, we can find a revisiting route that minimizes the covariance
change. Therefore, the robot state uncertainty is maintained below a certain, predefined low value
during revisiting.
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Figure 7. Cost matrices of TSP algorithms: (a) A Euclidean cost matrix. (b) A covariance cost matrix.

With the covariance cost matrix, a genetic algorithm (GA) was used to solve the TSP in this
paper. GA is intuitively very simple and is known to perform very well for small-sized (n < 100)
TSP instances [35,36]. The proposed covariance cost matrix can be used in combination with any TSP
algorithm and GA can be replaced with other heuristics and metaheuristics. The details and benchmark
results of leading TSP heuristics such as the Lin–Kernighan (LK) method and the stem-and-cycle (S&C)
method can be found in [37]. Metaheuristics have been also widely used to solve TSP and the vehicle
routing problem (VRP) [38,39].

4. Simulation Results

We simulated our revisiting method to verify performance in terms of SLAM covariance reduction.
We evaluated the robot pose and the positions of registered landmarks. We did not consider the
problem of obstacles in the environment. This is the problem of local planners and there are various
algorithms to deal with this. The robot’s laser range finder had a scanning range of 360◦ and a
maximum range of 7 m. Robot locomotion featured a differential drive constraining movement
within each time step. Using range data and wheel odometry, the EKF-SLAM algorithm estimates
the state of the robot and landmarks. The environment is completely unknown before the SLAM
algorithm commences.

The initial robot position was (0, 0 m) and the robot moved to (20, 10 m), (−20, 15 m), and (−20,
−20 m). On arrival at the third position, the SLAM covariance became large. To reduce uncertainty,
the robot revisited the initial position using backtracking or planned the revisiting path by the proposed
method. During backtracking, the revisited positions were placed every 2 m along the past trajectory.
Using our method, the positions to be revisited were chosen by reference to the VLU map and
the covariances of registered landmarks; the revisiting sequence was calculated with the aid of the
proposed covariance TSP algorithm with GA.

Figure 8 shows the landmarks selected by, and the revisiting path proposed by, our method.
The red and yellow squares are registered landmarks of the EKF-SLAM state at the time revisiting was
planned. The yellow squares are non-selected landmarks. The red squares are landmarks selected by
Equation (5). These are “less uncertain” landmarks that must be re-observed to reduce the overall
SLAM uncertainty. The green squares are the revisiting positions at which the robot can detect the
selected landmarks. These positions have low VLU values; non-mapped areas can be scanned to
expand map information.
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Figure 8. A revisiting path constructed using the proposed covariance TSP algorithm. The yellow
squares are non-selected landmarks; the red squares are landmarks selected for revisiting; the green
squares are the revisiting positions dictated by the VLU grid map; the red dotted line is the optimal
revisiting path defined by the covariance TSP algorithm.

Figure 9 shows the final EKF-SLAM state after revisiting either via a backtracking algorithm
(Figure 9a) or with the aid of the proposed covariance TSP algorithm. For revisiting by the covariance
TSP, two approaches were applied. In the first covariance TSP algorithm, which is denoted by
Covariance TSPfixed, adding new landmarks to the SLAM state was not permitted during the revisiting
process (Figure 9b). The number of registered landmarks was kept the same from the beginning of
revisiting to the end. Therefore, the number of landmarks during Covariance TSPfixed revisiting was
almost the same as the number of landmarks during backtracking. In the second covariance TSP
algorithm, Covariance TSP, new landmarks were registered to the SLAM state when the robot obtained
new observations (Figure 9c) during revisiting. The volume of the ellipse at each landmark reflects
the uncertainty. As the robot obtained almost the same measurements for each registered landmark
during backtracking, the uncertainties of landmarks near the position at which revisiting commenced
are larger than those of early-registered landmarks. Using the proposed method, the robot moved
along a closed TSP path and obtained different measurements for the re-observed landmarks and the
newly detected landmarks that were able to make the correct data associations for the SLAM algorithm.
Consequently, the overall uncertainty of the landmark was effectively reduced.

Figures 10 and 11 compare the results of backtracking and use of the proposed covariance
TSP algorithms. Revisiting commenced at step 3972. Figure 10a shows the maximum trace value
among all landmarks at each time step, and we can compare the uncertainty of the most uncertain
landmark identified by backtracking and the covariance TSP algorithms from SLAM commencement
to completion of revisiting. As the landmark state was identical for three algorithms until revisiting
commenced, the maximum trace values are also the same. After revisiting began, we explored how
effectively the three methods reduced landmark uncertainty. As the overall distance traveled during
backtracking was shorter than that of covariance TSP revisiting, the robot stopped the algorithm at
step 7975 of backtracking and step 11,402 of Covariance TSP and Covariance TSPfixed. The ultimate,
maximum trace values of Covariance TSP and Covariance TSPfixed are much smaller than that of
backtracking; our algorithm thus more effectively reduced uncertainty. Moreover, even at the end
of backtracking (step 7975), the maximum trace values of our algorithms were smaller because
they fell dramatically over time. At about step 10,000, the trace of Covariance TSP rose but then
immediately decreased. This was because the robot obtained not only measurements of the landmarks
registered when planning the revisiting path but also measurements of new landmarks that were
relatively uncertain in terms of SLAM registration. These new landmarks became less uncertain via
the EKF-SLAM updating process. As loop-closing by re-observing the already registered landmarks
occurred and any new landmarks were not added in Covariance TSPfixed revisiting, the maximum
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trace consistently decreased until completion of revisiting. However, because the number of landmarks
increased and it affected the overall uncertainty in Covariance TSP, the maximum trace was smaller
than that of Covariance TSPfixed.

In Figure 10b, we also compared the sum of the trace values of the landmarks registered to the
SLAM state at the time when revisiting was planned, step 3972. The proposed algorithms outperformed
backtracking in terms of reducing and maintaining landmark uncertainty. Although the proposed
revisiting path was longer than that of backtracking, our methods reduced the overall landmark
uncertainty earlier than backtracking. Therefore, it is possible to cease revisiting in the middle of the
planned path if the overall uncertainty falls to the desired value.

-30 -20 -10 0 10 20 30

x (m)

-25

-20

-15

-10

-5

0

5

10

15

20

25

y
 (

m
)

(a)

-30 -20 -10 0 10 20 30

x (m)

-25

-20

-15

-10

-5

0

5

10

15

20

25

y
 (

m
)

(b)

-30 -20 -10 0 10 20 30

x (m)

-25

-20

-15

-10

-5

0

5

10

15

20

25

y
 (

m
)

(c)

Figure 9. The simulation results of three revisiting methods: (a) Backtracking. (b) The covariance
TSPfixed algorithm that restricts adding new landmarks during revisiting. (c) The covariance TSP
algorithm.
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Figure 10. Comparisons of the proposed methods and backtracking: (a) The maximum trace value of
landmark covariance matrix. (b) The sum of the trace values of the landmarks registered until the time
when revisiting was planned. (c) The trace of the robot covariance matrix.



Sensors 2019, 19, 4910 14 of 19

Figure 10c shows the covariance trace of the robot during revisiting. In the result of backtracking,
when the robot was at the initial position (0, 0 m), the robot covariance became almost the zero matrix,
that is the initial covariance matrix. With our methods, the robot pose uncertainty decreased more
rapidly than during backtracking at early revisiting steps. Although the robot pose uncertainty of
the proposed revisiting algorithms was larger than that of backtracking, the value was maintained at
relatively low values compared to that when revisiting commenced. This was because the revisiting
path of the covariance TSP solution does not contain the initial position (0, 0 m) as a node; the nodes
are the positions from which less uncertain landmarks are highly observable.

Figure 11 shows the overall numbers of landmarks in the SLAM state. The proposed method,
Covariance TSP, selects revisiting positions that ensure both data association (by re-observing registered
landmarks) and exploratory utility (by adding new landmarks). The number of landmarks does not
change during backtracking. The number of landmarks rises as new positions are visited and new
measurements obtained along the TSP path of the proposed method.
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Figure 11. The number of registered landmarks.

For further validation of the proposed method, multiple simulations using different SLAM
states in the same environment were performed. Figure 12 shows six SLAM states when revisiting
commenced. After traveling through three positions, the uncertainty of the robot pose and the
landmark positions have increased. It is worth noting that revisiting paths can be different even with
the same SLAM state since GA incorporates randomness. Ten simulations for each SLAM state were
performed by using Covariance TSPfixed and Covariance TSP, respectively; total 120 simulations were
performed by using the proposed algorithms. The average, minimum, and maximum values for each
ten simulations were calculated. Because the backtracking path was determined along the previous
trajectory, one simulation by backtracking was performed for each SLAM state.
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Figure 12. Examples of EKF-SLAM robot/landmark state when revisiting commenced: (a–f) The
EKF-SLAM state used for simulations. After traveling through three positions, uncertainty has
increased. Ten simulations for each SLAM state were performed using Covariance TSPfixed and
Covariance TSP, respectively.
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Figure 13, and Tables 1 and 2 show the reduction of the trace sum of the landmarks registered in
the SLAM state at the time when revisiting was planned and started. The sum of trace values of the
landmarks for a single simulation is shown in Figure 10b, and the reduction was calculated as follows:

N

∑
n=1

trace
(

PStart
n

)
−

N

∑
n=1

trace
(

PEnd
n

)
(10)

where N is the number of the landmarks in the SLAM state at the time when revisiting was planned,
PStart

n is the covariance matrix of the n-th landmark at the time of starting revisiting, and PEnd
n is the

covariance matrix of the n-th landmark at the end of revisiting. The reduction of the trace sum means
reduced uncertainty by each revisiting algorithm. Tables 3 and 4 show the ratio of the trace sum at the
start of revisiting to the end of revisiting, and it was calculated as follows:

N
∑

n=1
trace

(
PEnd

n

)
N
∑

n=1
trace

(
PStart

n
) . (11)

The ratio of the trace sum means how efficiently each revisiting algorithm reduces overall uncertainty
in the registered landmarks. As more uncertainty has been reduced during the revisiting process,
the ratio is smaller. The results of Tables 1 and 3 are obtained by the simulations from the beginning of
revisiting to the end of revisiting by the proposed algorithms. The numbers in parentheses are the
results from the beginning of revisiting to the time step when backtracking finished.

The average reduction of the trace sum by Covariancefixed TSP and Covariance TSP in Table 1 for
all 120 simulations is larger than that by backtracking in Table 2. The average ratio of the final trace
sum to the starting trace sum by the proposed methods in Table 3 is smaller than that by backtracking
in Table 4. A few results in parentheses are larger than the backtracking results. However, these values
have been reduced when revisiting is completed.
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Figure 13. The reduction of the trace sum of the landmarks by backtracking and the average reduction
of the trace sum of the landmarks by Covariance TSPfixed and Covariance TSP.
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Table 1. The reduction of the trace sum of the landmarks registered in the SLAM state at the time when
revisiting was planned and started.

1 2 3 4 5 6

Covariance TSP
(fixed)

Min. 6.40 (5.49) 2.96 (2.47) 5.04 (2.00) 6.14 (4.34) 7.82 (3.61) 3.40 (3.11)
Avg. 6.43 (6.21) 3.05 (2.72) 5.13 (4.43) 6.20 (5.64) 7.95 (6.81) 3.43 (3.19)
Max. 6.48 (6.41) 3.12 (2.80) 5.24 (4.98) 6.27 (6.08) 8.00 (7.23) 3.46 (3.25)

Covariance TSP
Min. 6.46 (5.75) 3.15 (2.61) 5.17 (2.33) 6.22 (4.19) 7.96 (4.89) 3.47 (1.33)
Avg. 6.48 (6.30) 3.17 (2.78) 5.25 (4.54) 6.24 (5.68) 8.07 (7.17) 3.49 (3.12)
Max. 6.50 (6.40) 3.19 (2.87) 5.35 (5.27) 6.28 (6.02) 8.18 (7.94) 3.57 (3.36)

Table 2. The reduction of the trace sum of the landmarks registered in the SLAM state at the time when
revisiting was planned and started.

1 2 3 4 5 6

Backtracking 3.37 1.71 2.74 3.27 4.27 1.89

Table 3. The ratio of the trace sum at the start of revisiting to the end.

1 2 3 4 5 6

Covariance TSP
(fixed)

Min. 0.09 (0.10) 0.19 (0.28) 0.11 (0.15) 0.10 (0.13) 0.09 (0.18) 0.14 (0.20)
Avg. 0.09 (0.12) 0.21 (0.30) 0.13 (0.25) 0.11 (0.19) 0.10 (0.23) 0.15 (0.21)
Max. 0.10 (0.23) 0.24 (0.36) 0.14 (0.66) 0.12 (0.38) 0.11 (0.59) 0.16 (0.23)

Covariance TSP
Min. 0.08 (0.10) 0.18 (0.26) 0.09 (0.10) 0.10 (0.13) 0.07 (0.10) 0.12 (0.17)
Avg. 0.09 (0.11) 0.18 (0.28) 0.11 (0.23) 0.10 (0.18) 0.09 (0.19) 0.14 (0.23)
Max. 0.09 (0.19) 0.19 (0.33) 0.12 (0.60) 0.11 (0.40) 0.10 (0.45) 0.14 (0.67)

Table 4. The ratio of the trace sum at the start of revisiting to the end.

1 2 3 4 5 6

Backtracking 0.52 0.56 0.53 0.53 0.52 0.53

5. Conclusions

We developed a revisiting method reducing the overall uncertainty of the SLAM state. Existing
revisiting approaches simply select revisiting positions from previous trajectories or return to the
initial positions, whereas the proposed method selects revisiting positions with consideration of both
landmark and sensor uncertainty. To do this, we proposed VLU grid maps showing the landmark
visibility from each grid cell position. Less-uncertain landmarks were then defined, and revisiting
positions from which the robot could not only re-observe selected landmarks but also detect new
landmarks (to expand map information) were selected. Travel among revisiting positions was
optimized using the TSP algorithm. As our covariance TSP algorithm employs covariance changes
between pairs of nodes, the revisiting path efficiently reduces the overall covariance, not the total
distance traveled.

We simulated the proposed method and simple backtracking. The proposed method reliably
reduced the overall uncertainty of the EKF-SLAM state (the robot pose and the landmark positions).
Although the closed path of the proposed method is longer than that of backtracking, our method
reduces overall uncertainty earlier, and more extensively, than does backtracking. This is because the
proposed revisiting path directs the robot to a place that allows valuable data association. Therefore,
the proposed covariance TSP revisiting method can efficiently reduce and control the overall state
uncertainty of landmark-based SLAM problems.
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