
sensors

Article

Microservice Security Agent Based On API Gateway
in Edge Computing

Rongxu Xu 1 , Wenquan Jin 2 and Dohyeun Kim 1,*
1 Department of Computer Engineering, Jeju National University, Jeju 63243, Korea; rongxu@jejunu.ac.kr
2 Bigdata Research Center, Jeju National University, Jeju 63243, Korea; wenquan.jin@jejunu.ac.kr
* Correspondence: kimdh@jejunu.ac.kr

Received: 16 September 2019; Accepted: 31 October 2019; Published: 10 November 2019 ����������
�������

Abstract: Internet of Things (IoT) devices are embedded with software, electronics, and sensors,
and feature connectivity with constrained resources. They require the edge computing paradigm,
with modular characteristics relying on microservices, to provide an extensible and lightweight
computing framework at the edge of the network. Edge computing can relieve the burden of
centralized cloud computing by performing certain operations, such as data storage and task
computation, at the edge of the network. Despite the benefits of edge computing, it can lead
to many challenges in terms of security and privacy issues. Thus, services that protect privacy and
secure data are essential functions in edge computing. For example, the end user’s ownership and
privacy information and control are separated, which can easily lead to data leakage, unauthorized
data manipulation, and other data security concerns. Thus, the confidentiality and integrity of the
data cannot be guaranteed and, so, more secure authentication and access mechanisms are required
to ensure that the microservices are exposed only to authorized users. In this paper, we propose
a microservice security agent to integrate the edge computing platform with the API gateway
technology for presenting a secure authentication mechanism. The aim of this platform is to afford
edge computing clients a practical application which provides user authentication and allows JSON
Web Token (JWT)-based secure access to the services of edge computing. To integrate the edge
computing platform with the API gateway, we implement a microservice security agent based on the
open-source Kong in the EdgeX Foundry framework. Also to provide an easy-to-use approach with
Kong, we implement REST APIs for generating new consumers, registering services, configuring
access controls. Finally, the usability of the proposed approach is demonstrated by evaluating the
round trip time (RTT). The results demonstrate the efficiency of the system and its suitability for
real-world applications.

Keywords: Internet of Things; edge computing; API Gateway; microservice; authentication

1. Introduction

As intelligent factories [1], smart cities [2], and augmented reality [3] have attracted attention from
both academic and industrial researchers, an explosive expansion of the Internet of Things (IoT) [2],
in which devices are connected to the world through the internet, has occurred. The data produced by
people, machines, and IoT devices is forecasted, by the Cisco Global Cloud Index (GCI) [4], to exceed
500 Zettabytes (ZB) by 2020. To assist IoT devices in offloading their computation tasks, the cloud
plays an important role in improving and expanding the capabilities of the IoT network by integrating
the resource-constrained IoT with cloud computing [5–7]. Cloud-based IoT provides the resources
of computational power, on-demand data storage, and offline analysis of massive amounts of data.
However, cloud-based IoT currently faces various challenges in meeting the growing need for high
performance. In particular, the dependence on cloud infrastructures can serve as a bottleneck for the

Sensors 2019, 19, 4905; doi:10.3390/s19224905 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-4902-0681
https://orcid.org/0000-0002-8404-9447
http://dx.doi.org/10.3390/s19224905
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/22/4905?type=check_update&version=2

Sensors 2019, 19, 4905 2 of 17

latency and bandwidth requirements of applications [8]. When centralized cloud computing faces a
large amount of user access, long-distance communication between users and cloud centers results
in high service delays and wasted computer resources. The edge computing paradigm has emerged
to achieve low latency, a bandwidth-efficient objective that not only enables processes but also the
processing of large amounts of data at the edge of the network. The data can be analyzed near the
edge of the network in the edge computing paradigm [9–11]. The edge of the network refers to units
which are equipped with advanced computer platforms consisting of networking, storage, computing,
and other core functions to produce/process data. There are several similar paradigms, such as fog
computing [12] and mobile edge computing [13,14], which can offer effective solutions for mass data
processing while improving the user experience.

The IoT has the ability to connect all of the things that surround us. To provide network
services more reliably and accurately with IoT applications, heterogeneous devices are interconnected
with each other, in order to gain and exchange sensed information between them through network
infrastructures linked by distributed nodes [15]. The inherent characteristics of IoT, such as the large
scale, the heterogeneity of the devices, and the large amount of data generated by the things, makes
the development of a variety of applications and services a daunting task [16]. With limited network
performance for data transfer, centralized cloud computing architectures have become increasingly
inefficient in processing and analyzing the large amounts of data collected by IoT devices [17]. As edge
computing makes computing resources available at the edge of the network (i.e., near to the devices
generating the data), the bandwidth demands on the network performance are reduced [18]. Edge
computing uses the resources of the connected devices to work together in achieving common goals in
a distributed software architecture [19]. In the pursuit of the most suitable architecture for edge
computing, modular characteristics relying on the microservice architecture have emerged [20].
The microservice approach of software architecture has become increasingly popular, due to its
flexibility, granular approach, and loosely coupled services [21]. Microservices separate a complex
application system into a small group of independent services. Each service is carried out as an
independent process, performing only a specific task [22,23]. A microservice architecture allows
developers to split an application into separate independent services, each with its own logic that can
be managed and maintained by different development teams [9]. The microservice architectural style
makes loose coupling, agility, and reuse possible, allows for horizontal scaling, and provides light
services (instead of monoliths). The devices at the edge of an IoT network, as compared to a cloud
server, have weaker processing power than a general-purpose computer and are limited by energy
constraints. As a result, many attacks that may not work on desktop computers can pose a serious
threat to edge devices [24]. In edge computing, the private data of the end-user must be outsourced
by third parties, which may lead to data leakage and illegal data operations (such as replication and
dissemination) and, so data confidentiality and integrity cannot be guaranteed [8,25]. Security experts
have already warned that the potential risks are high with the number of unsecured devices that have
been connecting to the internet since the concept of the IoT was initially proposed in the late 1990s.
A researcher at Proofpoint, an enterprise security firm, discovered the first IoT botnet in December
of 2013. More than 25% of botnets are composed of smart TVs, baby monitors, and other household
appliances, as investigated by Proofpoint [26]. To protect the IoT devices (e.g., sensors and actuators)
which are managed by a microservice architecture-based edge computing platform from illegal users,
authentication-based methods have been investigated [26,27]. Authentication requires proof that the
identity of the user is authorized to access the IoT devices.

In this paper, we aim to integrate edge computing platforms with an API gateway to provide edge
computing clients with a secure authentication mechanism. We implement a microservice security
agent based on the open-source Kong in the EdgeX Foundry framework in order to integrate an
API gateway into the edge computing platform. The microservice security agent is responsible for
authentication, authorization, and the redirect or route requests of the external clients to the endpoints
of the internal microservices. The major contributions of this paper are as follows:

Sensors 2019, 19, 4905 3 of 17

The API gateway acts as an intermediary between the external client and the microservices,
providing a private network environment which allows for private data exchange among
the microservices.

Authorization is implemented using JWT tokens, allowing access control enforcement in the API
gateway to remove these concerns from the microservices, such that the microservices can remain
lightweight to meet requirements of resource-constrained edge devices.

With a token-based authentication mechanism, the need for a client credential is replaced with a
token that provides efficient client privacy preservation.

The rest of the paper is organized as follows. The related existing solutions are given in Section 2.
In Section 3, the design of our proposed system configuration is presented. Section 4 describes the
implementation environment. Section 5 describes with the performance of the proposed system.
Section 6 concludes our work.

2. Related Work

In this section, we will survey the related works available in the literature. In [28], the possibility
to report the power consumption data of customers to the control center in an authenticated and
privacy-preserving way has been discussed. The authors used blind signatures and short, randomizable
signatures to provide conditional anonymous authentication. To meet the aforementioned functions,
they used powerful third parties to register entities and generate a certificate for each customer,
control center, and fog nodes. However, the proposed solution consumed the computational power of
resource-limited edge devices to generate secret keys from public and private keys.

The authors of [29] provided a secure and privacy-preserving mutual authentication solution for
an Elliptic Curve Cryptography (ECC) fog-based publish-subscribe system. The proposed solution
could ensure mutual authentication between subscribers and brokers, as well as between publishers and
brokers. In addition, the proposed solution maintained user privacy, due to the difficulty of relating the
requested topic for subscription and or publication to their anonymous identities and could withstand
the curiosity of users and/or brokers. They showed that the proposed solution could ensure mutual
authentication, confidentiality, anonymity, privacy-preservation, and message integrity. They used ECC to
provide the same level of security with a lower key and message size than other public-key cryptography
methods, such as RSA. To ensure confidentiality, anonymity, privacy-preservation, and message integrity,
the publisher, broker, and subscriber used the private and public keys generated by the Trusted Authority
(TA) to encrypt, decrypt, and calculate the secret keys. However, the proposed solution still consumed the
computational power of the resource-limited edge devices.

The authors of [30] introduced three Lightweight Anonymous Authentication Protocols (LAAPs)
to support three different Device to Device (D2D)-aided fog computing models. In this respect, they use
lightweight cryptographic primitives, such as one-way functions and EXCLUSIVE-OR operations,
which led to a limited computational cost for the resource-limited edge devices. They also introduced
a novel privacy protection security architecture for the D2D-supported fog computing model, which
allows end-user devices to be authenticated without the intervention of a central server. However,
the proposed architecture and protocols are used to validate each edge device, network access device,
and centralized cloud server. They did not consider user authentication, which is responsible for
managing and maintaining the system.

Edge computing has been defined by the Edge Computing Consortium (ECC) [31] as an open
platform deployed at the edge of the network near the data source and offering intelligent services
for real-time processing, data optimization, security, and privacy within the mobile edge network
infrastructure [32]. Edge computing can form a bridge between smart devices and cloud computing
and storage services [33]. The edge of the network refers to units which are equipped with advanced
computer platforms consisting of networking, storage, computing, and other core functions which
produce data, as well as analyzing data to detect abnormal behaviors or failures in the connected
smart devices. To cope with the above issues, a Lightweight Edge Gateway for the Internet of Things

Sensors 2019, 19, 4905 4 of 17

(LEGIoT) architecture [9] has been introduced, which is based on the modularity of microservices and
the flexibility of simple virtualization technologies, in order to guarantee scalability and flexibility.
In [34], the author presented an intelligent IoT gateway which can communicate with different
networks, has a flexible protocol that converts different sensor data into a consistent format, and has a
uniform external interface.

There exist several IoT platforms which provide a connection with IoT devices. Amazon has
released the AWS (Amazon Web Services) IoT [35], which is a cloud platform. The goal of this
framework is to allow IoT devices to easily connect to and securely interact with AWS cloud and
other devices. There exist open-source client libraries and SDKs which make the AWS IoT framework
available for embedded operating systems and microcontroller platforms. The programming language
is C, Node.js, and the Arduino sketch. Ericsson [36] has released Calvin, an open-source IoT platform.
The Calvin framework is designed for managing and building distributed applications to enable
devices to interact with each other. It requires multiple programming languages, such as python,
CalvinScript, and others. The data processing can be implemented with other languages, however.
Kura [37] is an Eclipse IoT project whose goal is to provide an OSGI-based framework for IoT gateways.
It provides a platform for managing communication between local networks of physical IoT devices,
and is written in Java. The framework has requirements for the IoT devices, however: The operating
system must be Linux-based. All the aforementioned IoT platforms have dependencies on certain
operating systems or programming languages. The EdgeX Foundry project [38–41], however, has no
dependencies on any operating system or programming languages. The EdgeX Foundry framework
has been introduced by the Linux Foundation and Dell. It adopts a microservice architecture to deal
with the edge computing paradigm. In EdgeX Foundry, all microservices are generally implemented
as lightweight virtualization containers, which isolate microservices from each other and provide
maintainability and scalability in the EdgeX Foundry framework.

Edge computing can provide storage and perform computational tasks at the edge of the network
(instead of a data center in the cloud), which can create many security and privacy challenges. To deal
with these problems, the authors of [42] proposed a method to provide a secure authentication
mechanism for an IoT network which consists of several limited devices through a security manager
offering authentication services for multiple IoT networks, which reduces the costs of managing a
secure database in an IoT network. The authors of [43] recommended designing and implementing
a token-based Message Queue Telemetry Transport (MQTT)—a popular messaging protocol in the
IoT field—protocol authentication in an IoT network. The proposed design includes a publisher,
a subscriber, a MQTT broker, and a token authentication server to cope with the security and scalability
problems of using a MQTT protocol in the IoT network.

An API gateway [44] is an entry point for forwarding requests between many microservices,
which merges multiple microservice APIs into a single client and and routes the requests from one
access point to the correct microservices. The API gateway uses an existing identity management and
authentication service which manages accounts, such as JWT or OAuth2.0 [45], to allow a user or client
access to certain microservices. An API gateway [46] is a service that publishes multiple APIs, updates
the published API set at runtime, and is integrated with service detection, load balancing, service
monitoring, and security capabilities.

3. Microservice Security Design based on Token in Edge Computing

We propose a microservice security agent based on an API gateway using tokens in an edge
computing environment. As shown in Figure 1, the edge computing environment consists of a
three-layer structure:

The client layer include clients, which are web browsers and mobile or centralized cloud
computers that provide management functions for edge devices as consumers.

The edge computing framework layer consists of several fine-grained and self-contained
microservices with individual functionalities, based on EdgeX Foundry. A microservice can be

Sensors 2019, 19, 4905 5 of 17

independently developed with individual technologies and deployed inside containers, which are
portable, interchangeable, scalable, and lightweight execution environments. The edge computing
framework decomposes centralized cloud computing services into minimal functional software
modules, which are focused, self-contained services (e.g., basic service microservices, device connectors,
data repositories, and other application microservices) to provide storage, intelligent processing,
and internet capabilities; in contrast to cloud computing, in which the microservices provides services
and communicate each other through a well-defined message interface, such as a REST API. From
the point of view of the service consumer, the edge computing framework is a collection of APIs.
To make it easier to access and manageme, we propose a microservice security agent as a microservice.
The microservice security agent consists of three microservices: The client server is responsible
for providing the Graphical User Interface (GUI) to the consumer. The API gateway runs in front
of any microservices and is extended through plugins, which provide extra functionality, such as
JSON Web Token (JWT) authentication. The security agent provides REST APIs to manage the API
gateway microservice.

The Internet of Things infrastructure is constructed of various small single-board computers,
sensing devices, and actuators. The IoT devices deployed in IoT infrastructures collect data from
the physical world and operate the actuator to control electric devices. In general, the sensors and
actuators are not capable of network functionality. Therefore, they are directly connected with IoT
devices, such as a single-board computer, through a native interface. An IoT device is able to provide
(wireless or wired) connection ability, in order to communicate with an edge computing framework,
through IoT data protocols such as CoAP and HTTP.

Edge Computing Framework

Internet of Things Infrastructure

Sensors Actuators

IoT Devices

Clients

Users

Clouds

The
Client
Server

Microservice
Security Agent

Security
Agent

API
Gateway

Data
Repositories

Basic Service Microservices

Application Microservices

Device Connectors

Intelligent
Microservice

Processing
Microservice

RESTful API over HTTP

Private network environment

Figure 1. Edge Computing Environment Configuration.

The microservice security agent consists of three microservices, as illustrated in Figure 2. The client
server is responsible for providing the Graphical User Interface to the client, with which users can be
created and services provided by the edge computing framework can be consumed. It includes a web
user interface (the GUI), where controllers receive requests and then generate responses, and storage is
used to store the user information.

The API gateway, which is an open-source API gateway in Kong, runs in front of any REST
API can be extended by plugins, which provide extra functionality such as JSON Web Token (JWT)
authentication. The API gateway provides an HTTP listener to proxy incoming requests from clients
and provide admin APIs for administration purposes. There are several components such as the
service, which is the name the API gateway uses to refer to the microservice APIs it manages; the route,
which makes requests against the service; the consumer, which is the user using the aforementioned

Sensors 2019, 19, 4905 6 of 17

service; and plugins, which extend Kong. For security concerns, we may add a JWT plugin to verify
requests containing HS256- or RS256-signed JSON web tokens (as specified in RFC 7519).

The security agent provides essential functions to use the API gateway microservice. It provides
REST APIs which the user can connect with, and consists of a controller, volume, config loader, handler,
and requestor. The controller receives request from client and invokes a related function in response
to the request. The volume includes a toml config file, which is the manifest of the microservices the
API gateway manages, and a public key, which is used to generate the JWT certificate and verify JWTs
with RS256 and ES256. The config loader parses specific configurations from the toml file, then creates
related instances to provide information about microservices. The handler provides business logic
to generate consumer-related requests and service-related requests, such as add service, route, and
consumer, and enables JWT plugins to generate JWT certificates. The requestor is responsible for
sending requests to the API gateway through the Admin API.

HTTP Listener

Consumers

Services

ACLsPlugins(JWT)

Routes

API Gateway (Container)Security Agent(Container)

REST API

Requestor

A

D

M

I

N

A

P

I

Controller

Config
loader

volume
Consumer Service

Handler

REST API

The Client Server

Web User Interface

StorageUser Controller Service Controller

Microservice Security Agent

Figure 2. Configuration of the API gateway for microservice security.

To serve as microservices in the API gateway through Kong, we need to add microservice APIs
as services in Kong. When an HTTP Get request is sent with the <Kong address:8000>/init API to
the microservice security agent, first it invokes the config loader to parse the configuration file, then
information is sent to a related structure in the Go language. Secondly, it invokes the handler to
generate a request for adding the service and route, according to the information of the config file.
Third, it sends a request through the requestor to the Kong API gateway admin API, after which the
handler will enable generation of a JWT and an ACL list request, which are then sent to the Kong API
gateway admin API to initialize the default services, routes, ACL, and authentication information.
Figure 3 shows the sequence diagram for microservice security initialization.

Sensors 2019, 19, 4905 7 of 17

HandlerHandlerConfig loaderConfig loader
Microservice Security Agent

 Admin APIsAdmin APIs

Kong API Gateway

ControllerController RequestorRequestor

init request

invoke

response with

config data

invoke service init with

microservices data generate serivice and route

add request then invoke

send request by each send request

response succes or

error messagegenerate enable JWT

Plugin reqeust then

invoke send request send request

response succes or

error message

generate add ACL request

 then

invoke send request
send request

response succes or

error message
response error or not

response success

message

response error or not

if no error

UserUser

Figure 3. Sequence diagram for microservice security initialization.

When the ID, name, and password are submitted to the client server, it will save that information
to storage (using MongoDB), then send a request to the microservice security agent to generate an
associated consumer in the Kong API gateway, associate the consumer to a whitelist of a group, and
enable JWT to generate a token. Figure 4 shows the sequence diagram for user creation.

When the delete button is selected on admin management page, the client server will delete the
user information by ID, then send a request to the microservice security agent to delete the consumer
in the Kong API gateway. The microservice security agent generates a delete request with the ID and
the delete method sends it to the Kong API gateway. If the selected id of the consumer is successfully
deleted in the Kong API gateway, the client server will reinstall the user list. Figure 5 shows the
sequence diagram for user removal.

If the token button is selected on the admin page, the client server will send a request to the
microservice security agent. The microservice security agent will generate a JWT get request with the
ID of the selected user, then send it to Kong API gateway. It then parses the response of the Kong
API gateway to generate a token with the credentials. The token will be alerted by the client server.
Figure 6 shows the sequence diagram for new token generation.

Sensors 2019, 19, 4905 8 of 17

HandlerHandler

Microservice Security Agent

Admin APIsAdmin APIs

Kong API Gateway

ControllerController RequestorRequestorUser ControllerUser Controller

submit singup

with id, name,

 password

invoke create

user function

Client Server

StorageStorageUserUser

save id, password,

and name

request to /createUser/id API

invoke send

 fucntion
request

response results

 message

generate create

consumer request

response results

message

check success or not

if success generate associate

with group request

invoke send

fucntion
request

response results

 messageresponse results

message

check success or not

if success generate

create token request

invoke send

fucntion
request

response results message
response results

message

check success or not

if success return

 with token

return success

 message

with token
response success message

with tokenalert success

message

with token

Figure 4. Sequence diagram for user creation.

HandlerHandler

Microservice Security Agent

Admin APIsAdmin APIs

Kong API Gateway

ControllerController RequestorRequestorUser ControllerUser Controller

click delete button

invoke delete

user function

Client Server

StorageStorageUserUser

delete document by id

request to /deleteUser/id API

 invoke send fucntion
request

response results message

response error

 or not

response error or success message

if success

reinstall user list

generate delete

consumer request

response results

message

check success or not

if success return null

Figure 5. Sequence diagram for user removal.

Sensors 2019, 19, 4905 9 of 17

HandlerHandler

Microservice Security Agent

Admin APIsAdmin APIs

Kong API Gateway

ControllerController RequestorRequestorUser ControllerUser Controller

click token button

invoke get token

function

Client Server

UserUser

request to /getToken/id API

 invoke send fucntion

request

response credential

response token
response toekn message

alert results message

check success or not

if success generate token

by credential information

generate get JWT

credential request

response credential

Figure 6. Sequence diagram for new token generation.

If it is necessary to remove all the information registered in the Kong API gateway, there is a reset
button in the client server. When it is selected, the client server will send a request to the microservice
security agent. The microservice security agent will retrieve the IDs of the services, routes, consumers,
plugins, and certificates and generate a delete request for all of them. The requests will be sent to
the Kong API gateway to remove the related features in it. Figure 7 shows the sequence diagram for
removal of all configurations in the Kong API gateway.

HandlerHandler

Microservice Security Agent

Admin APIsAdmin APIs

Kong API Gateway

ControllerController RequestorRequestorUser ControllerUser Controller

click reset button

invoke reset

 function

Client Server

StorageStorageUserUser

delete users in DB

request to /reset API

invoke

send function
request

response results message

response results

message

parse id from

 message

generate delete

method with id

invoke send function

request

response results message

response results

message

generate

get list request

by loop parameter

check success or not,

it not return error

loop

[service, route, consumer, plugin, certificate]

loop

[service, route, consumer, plugin, certificate]

return true or false

response results message

alert results message

Figure 7. Reset sequence diagram for removing all the configurations.

Sensors 2019, 19, 4905 10 of 17

4. Implementation

To develop the proposed solution, different types of software and hardware components are
needed. The hardware we used was a desktop computer with the Ubuntu 18.04 operating system,
an AMD 64 quad core, 4 GB memory, and a 100 GB hard disk. For software, we used Docker and
Docker Compose to ease the operation of the applications, including the open-source microservice
Kong API gateway. The details of the hardware and software specifications are presented in Table 1.

Table 1. Hardware and software specifications for microservice security.

Category Item Specification Description

Hardware Desktop

OS Ubuntu 18.04 Desktop
CPU AMD 64 quad core
Memory 4 GB
Hard Disk 100 GB

Software Library Go language An open source programming language.

Application Docker, Docker Compose
A platform for developers and system admins
to develop, ship, and run applications.

To provide an easy-to-use approach with Kong, we implemented REST APIs for communication
with Kong (see Table 2). The Kong microservice API gateway provides admin REST APIs for
administration purposes. To proxy the microservice APIs securely, we needed to set up several
things, such as services, routes, consumers, plugins, and an ACL (access control list). The services are
the names that Kong uses to refer to the upstream APIs and microservice APIs, in order to provide
such services to the clients it manages. The routes are mapping rules that specify how requests are
sent to their service, to map requests from client to pre-added services. The consumers are associated
with individuals using the services, which can be used for access management. The plugins allow for
easily adding new features to services; for security concerns, we added a JWT plugin to verify requests
containing HS256- or RS256-signed JSON Web Tokens (as specified in RFC 7519). Each consumer has
individual JWT credentials (i.e., public and secret keys), which must be used to generate their JWTs. It is
annoying and tedious to set this up for all microservices APIs repeatedly. Therefore, we implemented
a microservice security agent for the admin REST APIs of Kong as a Docker image to reduce client
effort and simplify deployment and operations costs. Registration of a microservice API to Kong is
done through an HTTP get request to the <Kong address:8000>/init. Each piece of service-related
information, such as the name of the microservice, host, port, and protocol, is stored in toml files.
According to the configuration file, the agent will add services along with its routes, plugins, and ACL.
Consumer registration is done through an HTTP Post request to the <Kong address:8000>/createUser
with the “user” and “group” keys of the JSON body. User is the consumer name group, which is
the name in the ACL. It returns the token generated by the JWT credentials of the consumer with
public and secret keys. To obtain the token with an existing consumer, it also provides an API <Kong
address:8000>/getToken with a get method. There are also other APIs for deleting registered consumer
and services. Finally, it provides an API <Kong address:8000>/ for monitoring the status of Kong.

Sensors 2019, 19, 4905 11 of 17

Table 2. Specifications of the microservice security agent REST APIs.

API Method Path Variable Body Remarks

/ Get No No Get the status of the Kong
API gateway.

/init Get No No
Initialize the Kong API
gateway with services, routes,
ACL, and plugins.

/reset Get No No Delete all init items, including
those added (consumers).

/getToken/{user} Get {user} No Get the token by name.

/createUser Post No
JSON
{“user”:”<user>”,
“group”:”<group>”}

Create consumer and associated
group of ACL and return token.

/deleteUser/{user} Delete {user} No Delete consumer from Kong.

When sending a request to the microservice security agent with the API “/”, it will respond with
the status of the Kong API gateway. Figure 8 shows the response when the status of the Kong API
gateway service is “running”. As the Kong agent and the proposed system depend on the Kong API
gateway, the status of the Kong API gateway is important to monitor.

Figure 8. Result of monitoring the Kong API gateway using the root API.

The result of running the microservice security agent API “/init” is shown in Figure 9. If the
microservice API-related services, routes, and plugins are successfully initialized, a success message is
returned. Before the microservices are started in the proposed system, the Kong API gateway must be
initialized; when it is successfully initialized, the microservices can serve as services securely.

Figure 9. Result of initializing the Kong API gateway using the init API.

The API “/reset” is used for reconfiguring the microservice security agent. It cancels all settings
of the microservice security agent in one call. Figure 10 shows the response of the API to the reset API.

Figure 10. Result of resetting the Kong API gateway using the reset API.

To make it easier to visit the API “/createUser”, we implemented a Graphical User Interface
with ID, password, and name fields. A user with administrator privilege can be created with ID

Sensors 2019, 19, 4905 12 of 17

and password, where the name is displayed. When the credentials are submitted with complete
information, a request will be sent to the API to create a consumer through the microservice security
agent. The received response message will then be parsed to obtain a token to store the information in
MongoDB with the related user information. If there is no error, the GUI will return with a success
alert. Figure 11 shows the GUI and the result of successfully creating a user.

Figure 11. Result of creating a user using the createUser API.

There is also an admin page to manage all users generated with the microservice security agent.
For demonstration purposes, we implemented a button to trigger the “/getToken/user” API to send a
request to the microservice security agent. Figure 12 shows the result of the API “/getToken/user”,
which shows a returned token with the key “Result”.

Figure 12. Result of obtaining a token using the getToken API.

5. Performance Analysis

To assess the practical applicability of the designed system, we analyzed the round trip time
(RTT) in practice. We compared the measured RTT time with the reaction time [47,48], the measure of
quickness with which an organism responds to some sort of stimulus. If the RTT time is less than the

Sensors 2019, 19, 4905 13 of 17

reaction time, the proposed system is applicable within the real world. The statistical average reaction
time, obtained from 81 million records, is 284 milliseconds (i.e., 0.284 s).

The times were calculated from the client to the microservice security agent and internal
microservice. Figures 13–16 show the results of our experiment for creating/deleting a user, generating
a token, and sending a request to the microservice with and without a token, respectively. The specific
results are summarized in Table 3 in the second column.

Table 3. Round trip time test results.

Test Item Maximal Minimal Average Time

Round trip time for creating a user
based on the create user API. 0.067 s 0.045 s 0.0517 s

Round trip time for deleting a user
based on the delete API for user removal. 0.058 s 0.023 s 0.0304 s

Round trip time for obtaining a token
based on the getToken API. 0.023 s 0.019 s 0.0203 s

Round trip time for
using the microservices API with a token. 1.057 s 0.003 s 0.0089 s

Round trip time for
using the microservices API without a token. 0.004 s 0.002 s 0.003 s

0.00000

0.01000

0.02000

0.03000

0.04000

0.05000

0.06000

0.07000

0.08000

1 2 3 4 5 6 7 8 9 10

R
T

T
(s

)

Number of Times

RTT of Create User from Microservice Security Agent(seconds)

Figure 13. Round trip time for creating a user based on the create user API.

0.00000

0.01000

0.02000

0.03000

0.04000

0.05000

0.06000

0.07000

1 2 3 4 5 6 7 8 9 10

R
TT

(s
)

Number of Times

RTT of Delete User From Microservice Security Agent

Figure 14. Round trip time for deleting a user based on the delete API for user removal.

Sensors 2019, 19, 4905 14 of 17

0.00000

0.00500

0.01000

0.01500

0.02000

0.02500

1 2 3 4 5 6 7 8 9 10

R
T

T
(s

)

Number of Times

RTT of GetToken From Microservice Security Agent

Figure 15. Round trip time for obtaining a token based on the getToken API.

0.00000

0.01000

0.02000

0.03000

0.04000

0.05000

0.06000

1 2 3 4 5 6 7 8 9 10

R
T

T
(s

)

Number of Times

ping to Security Microservice ping to Unsecured Microservice

Figure 16. Round trip time for using the microservices API, with and without a token.

The authors of [43] measured the performance of the proposed system based on the time it took
for the publisher/subscriber to obtain the token from the authentication server; the average time was
below 1 s. As can be seen in Figure 15, the average time to obtain a token from the microservice agent
was less than 0.1 s. This indicates that our solution is better than the existing solution.

6. Conclusions

Edge computing integrates modular characteristics reliant on microservices to provide an
extensible and lightweight computing framework at the edge of a network to achieve low latency,
a bandwidth-efficient objective which not only produces data, but can also analyze large amounts
of data at the edge of the network. However, compromised smart objects not only lead to data
leakage, but can also result in physical threats to users, as IoT aims to connect all of the things which
surround us. This means that security is still a fundamental problem in edge computing. In this paper,
we have presented a method to secure microservices based on tokens using a REST API gateway in
the edge computing environment as a microservice to provide a lightweight and secure computing
framework at the edge of the network. We have shown how, by means of an API gateway service,
it is possible to provide a secure IoT at the edge of a network. We have evaluated our approach by
comparing the measured RTT time with the reaction time (the measure of quickness of an organism to

Sensors 2019, 19, 4905 15 of 17

respond to some sort of stimulus). As a result, we conclude that the proposed system is suitable for
real-world applications.

Author Contributions: R.X. conceived the idea for this paper, implemented the microservice security agent in
EdgeX Foundry, designed the experiments, and wrote this paper; W.J. assisted in implementing the client server;
D.K. conceived the overall idea of the paper and proofread the manuscript.

Funding: This research was founded by the Korea government(MIST) grant number 2019-2014-1-00743.

Acknowledgments: This research was supported by the MSIT(Ministry of Science and ICT), Korea, under
the ITRC(Information Technology Research Center) support program(IITP-2019-2014-1-00743) supervised by
the IITP(Institute for Information & communications Technology Planning & Evaluation), and This work was
supported by Institute for Information & communications Technology Planning & Evaluation(IITP) grant funded
by the Korea government(MSIT) (No.2019-0-01456, AutoMaTa: Autonomous Management framework based on
artificial intelligent Technology for adaptive and disposable IoT). Any correspondence related to this paper should
be addressed to DoHyeun Kim.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hu, L.; Miao, Y.; Wu, G.; Hassan, M.M.; Humar, I. iRobot-Factory: An intelligent robot factory based on
cognitive manufacturing and edge computing. Future Gener. Comput. Syst. 2019, 90, 569–577. [CrossRef]

2. Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of things for smart cities. IEEE Internet
Things J. 2014, 1, 22–32. [CrossRef]

3. Mylonas, G.; Triantafyllis, C.; Amaxilatis, D. An Augmented Reality Prototype for supporting IoT-based
Educational Activities for Energy-efficient School Buildings. Electron. Notes Theor. Comput. Sci. 2019, 343,
89–101. [CrossRef]

4. Networking, C.V. Cisco Global Cloud Index: Forecast and Methodology, 2016–2021; White Paper; Cisco Public:
San Jose, CA, USA, 2016.

5. Qureshi, Z.; Agrawal, N.; Chouhan, D. Cloud based IOT: Architecture, Application, Challenges and Future.
Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 2018, 3, 359–368.

6. Zhou, J.; Leppanen, T.; Harjula, E.; Ylianttila, M.; Ojala, T.; Yu, C.; Jin, H.; Yang, L.T. Cloudthings: A common
architecture for integrating the internet of things with cloud computing. In Proceedings of the 2013 IEEE
17th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Whistler, BC,
Canada, 27–29 June 2013; pp. 651–657.

7. Stergiou, C.; Psannis, K.E.; Kim, B.G.; Gupta, B. Secure integration of IoT and cloud computing. Future Gener.
Comput. Syst. 2018, 78, 964–975. [CrossRef]

8. Zhang, J.; Chen, B.; Zhao, Y.; Cheng, X.; Hu, F. Data security and privacy-preserving in edge computing
paradigm: Survey and open issues. IEEE Access 2018, 6, 18209–18237. [CrossRef]

9. Morabito, R.; Petrolo, R.; Loscri, V.; Mitton, N. LEGIoT: A lightweight edge gateway for the Internet of
Things. Future Gener. Comput. Syst. 2018, 81, 1–15. [CrossRef]

10. Villari, M.; Fazio, M.; Dustdar, S.; Rana, O.; Ranjan, R. Osmotic computing: A new paradigm for edge/cloud
integration. IEEE Cloud Comput. 2016, 3, 76–83. [CrossRef]

11. Satyanarayanan, M. The emergence of edge computing. Computer 2017, 50, 30–39. [CrossRef]
12. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog computing and its role in the internet of things.

In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland,
17 August 2012; pp. 13–16.

13. Saad, M. Fog Computing and Its Role in the Internet of Things: Concept, Security and Privacy Issues. Int. J.
Comput. Appl. 2018, 975, 8887. [CrossRef]

14. Beck, M.T.; Werner, M.; Feld, S.; Schimper, S. Mobile edge computing: A taxonomy. In Proceedings of the
Sixth International Conference on Advances in Future Internet, Lisbon, Portugal, 16–20 November 2014;
pp. 48–55.

15. Alrowaily, M.; Lu, Z. Secure Edge Computing in IoT Systems: Review and Case Studies. In Proceedings
of the 2018 IEEE/ACM Symposium on Edge Computing (SEC), Seattle, WA, USA, 25–27 October 2018;
pp. 440–444.

http://dx.doi.org/10.1016/j.future.2018.08.006
http://dx.doi.org/10.1109/JIOT.2014.2306328
http://dx.doi.org/10.1016/j.entcs.2019.04.012
http://dx.doi.org/10.1016/j.future.2016.11.031
http://dx.doi.org/10.1109/ACCESS.2018.2820162
http://dx.doi.org/10.1016/j.future.2017.10.011
http://dx.doi.org/10.1109/MCC.2016.124
http://dx.doi.org/10.1109/MC.2017.9
http://dx.doi.org/10.5120/ijca2018916829

Sensors 2019, 19, 4905 16 of 17

16. Ai, Y.; Peng, M.; Zhang, K. Edge computing technologies for Internet of Things: A primer.
Digit. Commun. Netw. 2018, 4, 77–86. [CrossRef]

17. Li, H.; Ota, K.; Dong, M. Learning IoT in edge: Deep learning for the Internet of Things with edge computing.
IEEE Netw. 2018, 32, 96–101. [CrossRef]

18. Premsankar, G.; Di Francesco, M.; Taleb, T. Edge computing for the Internet of Things: A case study.
IEEE Internet Things J. 2018, 5, 1275–1284. [CrossRef]

19. Alam, M.; Rufino, J.; Ferreira, J.; Ahmed, S.H.; Shah, N.; Chen, Y. Orchestration of microservices for iot using
docker and edge computing. IEEE Commun. Mag. 2018, 56, 118–123. [CrossRef]

20. Mostafa, M.A.A.A.; Khater, A.M. Horizontal Offloading Mechanism for IoT Application in Fog Computing
Using Microservices Case Study: Traffic Management System. In Proceedings of the 2019 IEEE Jordan
International Joint Conference on Electrical Engineering and Information Technology (JEEIT), Amman,
Jordan, 9–11 April 2019; pp. 640–647.

21. Singh, V.; Peddoju, S.K. Container-based microservice architecture for cloud applications. In Proceedings of
the 2017 International Conference on Computing, Communication and Automation (ICCCA), Greater Noida,
India, 5–6 May 2017; pp. 847–852.

22. Xiao, Z.; Wijegunaratne, I.; Qiang, X. Reflections on SOA and Microservices. In Proceedings of the 2016 4th
International Conference on Enterprise Systems (ES), Melbourne, Australia, 2–3 November 2016; pp. 60–67.

23. Namiot, D.; Sneps-Sneppe, M. On micro-services architecture. Int. J. Open Inf. Technol. 2014, 2, 24–27.
24. Xiao, Y.; Jia, Y.; Liu, C.; Cheng, X.; Yu, J.; Lv, W. Edge Computing Security: State of the Art and Challenges.

Proc. IEEE 2019, 107, 1608–1631. [CrossRef]
25. Mollah, M.B.; Azad, M.A.K.; Vasilakos, A. Security and privacy challenges in mobile cloud computing:

Survey and way ahead. J. Netw. Comput. Appl. 2017, 84, 38–54. [CrossRef]
26. Kumar, P.; Kunwar, R.S.; Sachan, A. A survey report on: Security & challenges in internet of things.

In Proceedings of the National Conference on ICT & IoT; IJSRD: Ahmadabad, India, 2016; pp. 35–39.
27. Wazid, M.; Das, A.K.; Kumar, N.; Vasilakos, A.V. Design of secure key management and user authentication

scheme for fog computing services. Future Gener. Comput. Syst. 2019, 91, 475–492. [CrossRef]
28. Zhu, L.; Li, M.; Zhang, Z.; Xu, C.; Zhang, R.; Du, X.; Guizani, N. Privacy-preserving authentication and data

aggregation for fog-based smart grid. IEEE Commun. Mag. 2019, 57, 80–85. [CrossRef]
29. Botta, A.; De Donato, W.; Persico, V.; Pescapé, A. Integration of cloud computing and internet of things:

A survey. Future Gener. Comput. Syst. 2016, 56, 684–700. [CrossRef]
30. Gope, P. LAAP: Lightweight Anonymous Authentication Protocol for D2D-Aided Fog Computing Paradigm.

Comput. Secur. 2019, 86, 223–237. [CrossRef]
31. Edge Computing Consortium. White Paper of Edge Computing Consortium. 2019. Available online:

http://en.ecconsortium.org/Lists/show/id/32.html (accessed on 10 September 2019).
32. Wang, S.; Zhang, X.; Zhang, Y.; Wang, L.; Yang, J.; Wang, W. A survey on mobile edge networks: Convergence

of computing, caching and communications. IEEE Access 2017, 5, 6757–6779. [CrossRef]
33. Garcia Lopez, P.; Montresor, A.; Epema, D.; Datta, A.; Higashino, T.; Iamnitchi, A.; Barcellos, M.; Felber, P.;

Riviere, E. Edge-centric computing: Vision and challenges. ACM SIGCOMM Comput. Commun. Rev. 2015,
45, 37–42. [CrossRef]

34. Guoqiang, S.; Yanming, C.; Chao, Z.; Yanxu, Z. Design and implementation of a smart IoT gateway.
In Proceedings of the 2013 IEEE International Conference on Green Computing and Communications and
IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, Beijing, China, 20–23 August 2013;
pp. 720–723.

35. Services, A.W. AWS IoT. 2019. Available online: https://aws.amazon.com/ko/iot/ (accessed on 10
September 2019).

36. Persson, P.; Angelsmark, O. Calvin–merging cloud and iot. Procedia Comput. Sci. 2015, 52, 210–217.
[CrossRef]

37. Foundation, E. The Extensible Open Source Java/OSGi IoT Edge Framework. 2019. Available online:
https://www.eclipse.org/kura/ (accessed on 10 September 2019).

38. Foundation, T.L. About EdgeX Foundry. 2017. Available online: https://www.edgexfoundry.org/
about/(accessed on 10 September 2019).

http://dx.doi.org/10.1016/j.dcan.2017.07.001
http://dx.doi.org/10.1109/MNET.2018.1700202
http://dx.doi.org/10.1109/JIOT.2018.2805263
http://dx.doi.org/10.1109/MCOM.2018.1701233
http://dx.doi.org/10.1109/JPROC.2019.2918437
http://dx.doi.org/10.1016/j.jnca.2017.02.001
http://dx.doi.org/10.1016/j.future.2018.09.017
http://dx.doi.org/10.1109/MCOM.2019.1700859
http://dx.doi.org/10.1016/j.future.2015.09.021
http://dx.doi.org/10.1016/j.cose.2019.06.003
http://en.ecconsortium.org/Lists/show/id/32.html
http://dx.doi.org/10.1109/ACCESS.2017.2685434
http://dx.doi.org/10.1145/2831347.2831354
https://aws.amazon.com/ko/iot/
http://dx.doi.org/10.1016/j.procs.2015.05.059
https://www.eclipse.org/kura/
https://www.edgexfoundry.org/about/
https://www.edgexfoundry.org/about/

Sensors 2019, 19, 4905 17 of 17

39. Gezer, V.; Um, J.; Ruskowski, M. An extensible edge computing architecture: Definition, requirements
and enablers. In Proceedings of the UBICOMM 2017: The Eleventh International Conference on Mobile
Ubiquitous Computing, Systems, Services and Technologies, Barcelona, Spain, 12–16 November 2017.

40. Varga, E.; Blagojević, B.; Mijić, D. Composing Internet of Things Platforms in Smart Grid. In Proceedings of
the 2018 3rd International Conference on Measurement Instrumentation and Electronics (ICMIE 2018), Lille,
France, 4–6 July 2018; Volume 208, p. 02007.

41. Ha, J.; Kim, J.; Park, H.; Lee, J.; Jo, H.; Kim, H.; Jang, J. A web-based service deployment method to
edge devices in smart factory exploiting Docker. In Proceedings of the 2017 International Conference
on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 18–20 October 2017;
pp. 708–710.

42. Emerson, S.; Choi, Y.K.; Hwang, D.Y.; Kim, K.S.; Kim, K.H. An OAuth based authentication mechanism for
IoT networks. In Proceedings of the 2015 International Conference on Information and Communication
Technology Convergence (ICTC), Jeju, Korea, 28–30 October 2015; pp. 1072–1074.

43. Bhawiyuga, A.; Data, M.; Warda, A. Architectural design of token based authentication of MQTT protocol in
constrained IoT device. In Proceedings of the 2017 11th International Conference on Telecommunication
Systems Services and Applications (TSSA), Lombok, Indonesia, 26–27 October 2017; pp. 1–4.

44. Lu, D.; Huang, D.; Walenstein, A.; Medhi, D. A secure microservice framework for iot. In Proceedings of the
2017 IEEE Symposium on Service-Oriented System Engineering (SOSE), San Francisco, CA, USA, 6–9 April
2017; pp. 9–18.

45. Solapurkar, P. Building secure healthcare services using OAuth 2.0 and JSON web token in IOT cloud
scenario. In Proceedings of the 2016 2nd International Conference on Contemporary Computing and
Informatics (IC3I), Noida, India, 14–17 December 2016; pp. 99–104.

46. Montesi, F.; Weber, J. Circuit breakers, discovery, and API gateways in microservices. arXiv 2016,
arXiv:1609.05830.

47. Hyman, R. Stimulus information as a determinant of reaction time. J. Exp. Psychol. 1953, 45, 188. [CrossRef]
[PubMed]

48. Benchmark, H. Reaction Time Test—Human Benchmark. 2017–2019. Available online:
https://www.humanbenchmark.com/tests/reactiontime (accessed on 10 September 2019).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1037/h0056940
http://www.ncbi.nlm.nih.gov/pubmed/13052851
https://www.humanbenchmark.com/tests/reactiontime
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Microservice Security Design based on Token in Edge Computing
	Implementation
	Performance Analysis
	Conclusions
	References

