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Abstract: Recently, thanks to the miniaturization and high performance of commercial-off-the-shelf
(COTS) computer systems, small satellites get popular. However, due to the very expensive launching
cost, it is critical to reduce the physical size and weight of the satellite systems such as cube satellites
(CubeSats), making it infeasible to install high capacity batteries or solar panels. Thus, the low-power
design is one of the most critical issues in the design of such systems. In addition, as satellites
make a periodic revolution around the Earth in a vacuum, their operating temperature varies greatly.
For instance, in a low earth orbit (LEO) CubeSats, the temperatures vary from 30 to −30 degrees
Celsius, resulting in a big thermal cycle (TC) in the electronic parts that is known to be one of the
most critical reliability threats. Moreover, such LEO CubeSats are not fully protected by active
thermal control and thermal insulation due to the cost, volume, and weight problems. In this
paper, we propose to utilize temperature sensors to maximize the lifetime reliability of the LEO
satellite systems via multi-core mapping and dynamic voltage and frequency scaling (DVFS) under
power constraint. As conventional reliability enhancement techniques primarily focus on reducing
the temperature, it may cause enlarged TCs, making them even less reliable. On the contrary,
we try to maintain the TC optimal in terms of reliability with respect to the given power constraint.
Experimental evaluation shows that the proposed technique improves the expected lifetime of the
satellite embedded systems by up to 8.03 times in the simulation of Nvidia’s Jetson TK1.

Keywords: low earth orbit satellites; reliability; temperature sensors; real-time embedded systems;
multi-core processor; dynamic voltage and frequency scaling (DVFS)

1. Introduction

The last decade has witnessed dramatic growth of space industry; From 2010 to 2015,
the nano/microsatellite market has grown at an annual average of 39%, and it is expected that,
from 2016 to 2022, it will further grow at an annual growth of 13% [1]. Especially, the demand for
small satellites has increased significantly as the space industry has shifted from the government to
the private market. In keeping with such an increasing need for small satellites or space missions,
the CubeSat standard was initiated [2] for small satellites that weigh about a few kilograms (In the
standard, 1 unit is a 10 cm cube (10 × 10 × 10 cm3) with a mass of no more than 1.33 kg. A satellite
may consist of a single (1U) or multiple cubes (3U, 6U, 12U and 27U).). While the CubeSats were
originally developed for educational or demonstration purposes, their usages have been extended to
more general and advanced missions, including scientific applications, deep space exploration, and so
forth [3].

Sensors 2019, 19, 4902; doi:10.3390/s19224902 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8992-7691
https://orcid.org/0000-0002-7929-7470
http://dx.doi.org/10.3390/s19224902
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/22/4902?type=check_update&version=2


Sensors 2019, 19, 4902 2 of 17

While the satellite systems are exposed to extreme conditions in terms of radiation and temperature,
they are expected to operate for a long time without maintenance. Moreover, the missions imposed on
such small satellites are getting more serious over time. In other words, the performance or reliability
requirements of the onboard computer of satellite systems continue to increase. Thus, it is typical
to design the satellite system with radiation-hardened processors [4] which generally have poorer
performance than normal ones. In order to meet the reliability and performance requirements at the
same time, the reconfigurable computing approach with field-programmable gate arrays (FPGAs) has
been proposed, where various fault-tolerance techniques can be incorporated [5–7].

As CubeSats are subject to many physical constraints, including volume and weight, it is difficult
to deploy large batteries or solar panels. Typical CubeSats with body-mounted solar panels generate
less than 10 W, and state-of-the-art deployable solar panels produce 20–30 W. Batteries that are used
in CubeSats typically store only 14–30 W·h [8]. In SwissCube [9], for instance, the average power
generated from solar panels per orbit is only 1.5 W. Such a limited energy budget can restrict onboard
computing performance. How to satisfy the increasing demand for performance and reliability within
the given power budget is a challenge.

Reliability is one of the key design concerns in a satellite. Most space missions require a long
lifetime. In general, low earth orbit (LEO) satellites tend to have shorter expected lifetimes (5–10 years)
than that of geostationary orbit (GEO) satellites (15 years or more). Since the maintenance is physically
impossible in the satellite systems, it is essential to design them to operate for a long lifetime without
any failure in the first place. The thermal cycling (TC) effect that satellite experience in extreme
temperature changes is one of the major reliability threats. In a LEO CubeSat (SwissCube), for instance,
external temperature is reported to change from 30 ◦C to −30 ◦C as illustrated in Figure 1 [10]. In order
to keep the system intact in severe external temperature changes, many physical protections, including
thermal control, multi-layer insulation, sun shields, radiators, heat pipes and so forth, are applied in
high-end satellites. For the small satellites such as CubeSats, however, it is difficult to fully have such
physical protections due to the cost and physical constraints.
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Figure 1. Temperature measurements in SwissCube [10] (BAT: battery, EXT: external, PCB: printed
circuit board, and MB: motherboard).

In this paper, inspired by the fact that most small satellites are equipped with temperature sensors,
we try to enhance the lifetime of the small satellite systems that are designed with multi-core processors
without physical protections by adjusting the multi-core configuration in a temperature-aware manner.
Thus far, most reliability enhancement techniques have tried to keep the operating temperature as low
as possible [11–13] since it is well-known that high temperatures result in poor reliability. However,
in satellite systems, this may not be the case as the external temperature varies greatly as shown in
Figure 1. That is, in some cases, the artificial efforts to reduce the chip temperature may rather have an
adverse effect of increasing the amplitude of TC.
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To improve the lifetime reliability considering this TC effect, we propose to judiciously adjust the
mapping of the software workload over the multiple cores and the operating frequency of the cores in
a way that minimizes the amplitude of TC. In addition, we inject a virtual workload to the system if it
is necessary to dissipate more power to improve the reliability. In doing so, the real-time schedulability
of the satellites’ mission and power constraints should still be satisfied.

Our contributions can be summarized as follows:

• we identify the lifetime anomaly, where lower temperatures result in an even worse expected
lifetime in satellite systems;

• then in order to mitigate the TC effects, identified above, we propose a mapping/frequency
assignment technique for multi-core satellite systems.

In the proposed technique, we target the satellite systems implemented on top of homogeneous
multi-core system, where each core can have an independent frequency/voltage configuration
(While many commercially available multi-core platforms only support cluster-level frequency and
voltage modulation, there are such flexible systems [14] and other reliability enhancement techniques
including [15] also target the same architecture.). As workloads, we assume that the satellites software
is implemented as a set of periodically invoked real-time tasks. In order to enable fast yet accurate
temperature evaluations, we assume that task execution time is long enough to reach the steady-state
temperature. We believe this assumption is reasonable thanks to the satellite systems’ low-power
consumption. The inaccuracy that can be caused by this is analyzed in Section 4.4. To quantify the
reliability of the system, we adopt the model proposed by Xiang et al. [16], where the lifetime is
determined based on the temporal temperature profile. Considering the impact of spatial temperature
gradients in the reliability remain as a future work.

The rest of this paper is organized as follows: In the next section, we discuss the related works
and why the existing techniques are inefficient in the satellite systems. Section 3 quantitatively defines
the proposed problem with task, architecture, power/temperature, and reliability models. Section 4
describes our method to maximize the lifetime reliability of the LEO satellite multi-core embedded
systems in three steps. The evaluations are performed in simulation in Section 5 to show how the
proposed technique improves the lifetime reliability, followed by concluding remarks and future works
in Section 6.

2. Related Work

In addition to the TC effect that we mainly consider in this paper, there are three other known
causes of failures in CMOS integrated circuits (ICs): electromigration (EM), time-dependent dielectric
breakdown (TDDB), and stress migration (SM) [17]. Each of these failure mechanisms is quantified by
Mean Time To Failure (MTTF), which is the expected lifetime concerning the failure source [18]. Most
existing works focused on each of the above-mentioned causes individually, for example, EM [18–20],
TDDB [18,21], SM [18], and TC [18,22]. Since these causes physically coexist in the operation of
ICs, it is important to consider them altogether at the same time. Srinvasan et al. [23] proposed the
Reliability-Aware Microprocessor (RAMP) model with negative bias temperature instability (NBTI) in
addition to the four causes mentioned above. The five different failure causes are quantified in terms
of reliability using the sum-of-failure-rates (SOFR) model, in which each failure mechanism is assumed
to be associated with a constant failure rate. Xiang et al. [16] proposed a system-level reliability model
with EM, TDDB, SM, and TC based on the Monte Carlo simulations.

It is well-known that high temperatures result in degradations in the IC’s lifetime [18,24,25].
So, based on a simple assumption that cooler ICs would always result in better reliability, many
reliability enhancement techniques have been proposed to reduce the peak temperature without
actually quantifying the expected reliability [11–13]. In these works, the actual reliability has not been
quantitatively analyzed, but indirectly enhanced by reducing the temperature.

There are a handful of works that particularly focus on the TC effect. Ukhov et al. [26]
proposed a multi-processor scheduling technique that maximizes the reliability considering the
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TC effect. While they showed that the MTTF could be improved by considering the TC effect in
mapping/scheduling, the other causes, that is, EM, TDDB, and SM, were ignored in the reliability
quantification. Rosing et al. [27] proposed the modified SOFR model and showed that aggressive
power managements may harm the system’s reliability due to the TC effect. That is, dynamic power
management (DPM) or dynamic voltage scaling (DVS) often causes temperature variations, and in
some circumstances, these TC effects play crucial roles as the bottleneck in long-term reliability.
Ma et al. [15] proposed an online framework that adjusts core frequencies and voltages in order to
lower the peak temperature and balance the temperature differences between the cores in favor of the
reduced TC effects. Chantem et al. [28] proposed a reliability-aware online task mapping/scheduling
algorithm for homogeneous multi-core systems. They relied on a theoretical assumption that spatial
and temporal load balancing would always improve the MTTF. However, to the best of our knowledge,
none of the existing works takes the variable ambient temperatures into consideration except for
Park et al. [29]. They proposed the dynamic thermal management (DTM) for networked embedded
systems that consist of multiple vehicle electronic control units (ECUs) under high and variable
ambient temperature. The proposed technique is different from their work in that it is focused on the
TC effect caused by the repeating and highly varying ambient temperature of satellite systems. Further,
the proposed technique tries to maximize the MTTF value directly, while Park et al. [29] indirectly
enhance the reliability by reducing the peak temperature.

In this paper, we aim at maximizing the expected lifetime (MTTF) of satellite embedded systems
that operate in the space environment where the temperature dynamically changes by an excessive
amount as shown in Figure 1. We take this as a key technical challenge and propose a multi-core
task mapping and dynamic voltage and frequency scaling (DVFS) technique that matches with such
variable ambient temperature conditions using temperature sensors.

3. System Model

In this section, we describe the task, architecture, power/temperature, and reliability models,
followed by the problem definition.

3.1. Task-Architecture Model

We consider a homogeneous multi-core system that consists of M cores, that is, PE =

{pe1, pe2, . . . , peM}, as the target architecture. Each core can be operated at one of L different frequency
levels, that is, F = { f1, f2, . . . , fL} and this frequency level can be modulated at runtime. Note that we
assume that F is sorted in ascending order of frequency, that is, ∀i < j, fi < f j. The frequency selection
of a core is defined as a function of f a : PE→ F. For instance, when pem is decided to be operated at
fl , f a(pem) = fl . Also, it is assumed that a temperature sensor is placed on every core, thus, one can
keep track of the temperature profile of each core.

For workloads on the target multi-core system, we consider an independent multi-task set that
is defined as W = {τ1, τ2, . . . , τN}. Each task is periodically invoked with a deadline. That is, τn is
specified with a tuple (exn, pn), where exn and pn denote the number of worst-case execution cycles
and the invocation period, respectively. Tasks have implicit deadlines, that is, the relative deadline
of each invocation of τn is equal to pn. In addition to the given workload W, we propose to inject a
set of virtual tasks V if it is necessary to intentionally dissipate more heat in the system. Similarly,
a virtual task vi ∈ V is also characterized by a tuple of the number of worst-case execution cycles and
invocation period, that is, (v_exi, v_pi).

We adopt the partitioned scheduling policy where the task-to-core assignment is defined as a
function of map : (W ∪V) → (PE ∪ {0}), that is, map(τn) = pem implies that task τn is executed on
pem. If map(τn) = 0, task τn is not mapped on any core. In the proposed technique, the mapping
decision is made in two separate steps: task-to-logical-core mapping and logical-to-physical-core
mapping. In the task-to-logical-core mapping represented by a function mapl : (W ∪V)→ (LP∪ {0}),
the workloads are mapped on LP = {lp1, . . . , lpM}, a proxy of the physical cores PE. Then,
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the logical-to-physical-core mapping is determined by a function mapp : LP → (PE ∪ {0}).
For instance, if we have mapl(τi) = lpj and mapp(lpj) = pek, map(τi) = pek. The assigned frequency
of a logical core is preserved in the physical core, that is, f a(lpi) = f a(pej) if mapp(lpi) = pej. Note
that the execution time of a task is dependent upon the frequency assignment decision. If τn is assigned
to core pem, the worst-case execution time of one invocation of τn is exn/ f a(map(τn)). Then, the initial
utilization of core pem at the lowest frequency can be calculated as um = ∑

τi s.t. map(τi)=pem

exi
pi · f1

. With the

frequency modulation, f1 in the equation can be replaced with f a(pem). Once the mapping decision is
made, the multiple tasks on each core are scheduled according to the preemptive earliest-deadline-first
(EDF) policy.

3.2. Power-Temperature Model

The power consumption at time t can be characterized as follows:

P(t) = U ◦ Pact(f) + Poth(f) + Pleak(T(t)). (1)

Note that we keep track of the temperature of M cores, thus, P(t) is the M × 1 vector and
so are Pact(f), Poth(f), and Pleak(T(t)). f is the M × 1 frequency vector that indicates the current
frequency assignment of each core, that is, f = [ f a(pe1), f a(pe2), . . . , f a(peM)]′. Likewise, U is the
utilization vector of M cores, that is, U = [u1, u2, . . . , uM]′. Pact(f) is the active power consumption
vector when all cores are utilized by 100% at the frequency assignment of f, so, the element-wise
multiplication U ◦ Pact(f) accounts for the active power consumption of the system under the current
load. Poth(f) is the utilization-independent dynamic power consumption vectors, while Pleak(T(t)) is
the temperature-dependent leakage power consumption vectors.

While the CMOS power consumption is usually modeled as a simple summation of active and
static power consumption, we elaborate on the modeling of temperature-dependent static power, using
Pleak, as we target the satellite system where temperature-dependent leakage could be crucial. In fact,
leakage power becomes increasingly significant in CMOS IC due to the technology scaling and it has
been reported that it accounts for up to 40% of the power consumption of today’s microprocessors [30].
We use the piece-wise linear (PWL) leakage model which is known to be fast and highly-accurate [30,31]
as follows:

Pleak(T(t)) = α · T(t) + β. (2)

where α and β are M × M and M × 1 fitting coefficient diagonal matrix/vector, respectively.
For temperature evaluations, we rely on the thermal RC-circuit model for multi-core systems [32],

which is based on the duality between heat transfer and electrical phenomena. In that RC-circuit
model, electrical current and capacitance corresponds to heat flow through the (thermal) resistance
and the heat-absorbing capability of the component, respectively [33]. In that model, the temperature
of a certain position can be easily obtained by evaluating the voltage in the circuit. To be more specific,
we use the following equation for evaluating the M× 1 temperature vector T(t):

C ·
dT(t)

dt
= P(t) + K · Tamb − (G + K) · T(t). (3)

In the above equation, C denotes the thermal capacitance of the M cores, represented as M×M
diagonal matrix. Heat transfer between cores is taken into account by G, while heat dissipation from
cores to the outside is by K. Note that both G and K are M×M thermal conductance matrices, and K
is a diagonal matrix. Tamb is the M× 1 temperature vector that denotes the ambient (environment)
temperature and P(t) is the power consumption vector formulated in Equation (1).
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Equation (3) can be simplified as follows, using A = C−1 · (G + K− α), B = C−1 · (β′ + K ·Tamb),
and β′ = U ◦ Pact(f) + Poth(f) + β:

dT(t)
dt

= −A · T(t) + B. (4)

When the system keeps the same configuration, that is, mapping and frequency assignment, for a
long enough time, it will eventually reach a steady-state. The steady-state temperature can be easily
obtained by having dT(t)

dt = 0 in Equation (4). That is, the steady-state temperature vector Tss can be
formulated as follows

Tss = A−1 · B = (G + K− α)−1 · (β′ + K · Tamb). (5)

Solving the differential Equation (4), we have the temperature vector

T(t) = Tss + (T(t0)− Tss) · e−A(t−t0). (6)

where T(t0) is initial temperature vector.

3.3. Reliability model

Among the four failure mechanisms we consider in this work, EM, TDDB, and SM can be modeled
as follows in Equations (7)–(9) [16]:

MTTFEM =
AEM

Jn · e
Ea,EM

k·T , (7)

MTTFTDDB = ATDDB · (
1
V
)(a−bT) · e

X+Y/T+ZT
k·T , (8)

and
MTTFSM = ASM · |To − T|−n · e

Ea,SM
k·T . (9)

What those three models have in common is that they are strongly dependent on the absolute
degree of the temperature. That is, simply, the higher T they have, the smaller the MTTF values are.
On the other hand, TC exhibits a different behavior as the wear in TC is mainly due to the difference in
thermal expansion coefficients between adjacent material. This accumulated damage causes permanent
failure in the package, solder, interconnects, and dielectric materials. Thus, in TC, how much temporal
temperature gradient a system has is important. The MTTF due to TC can be modeled as follows [16]:

MTTFTC =
p

∑ 1
NCi

(10)

with p equal to the period of temperature history. NCi is the effect of cycle i and can be quantified by
the modified Coffin-Manson equation with the Arrhenius term [16] as follows:

NCi = ATC · (∆T − ∆T0)
−q · e

Ea,TC
k·Tmax (11)

where ATC is fitting constant, ∆T is cycle amplitude, ∆T0 is the portion of the temperature range
in the elastic region, Ea,TC is activation energy, k is Boltzmann’s constant, Tmax is the maximum
temperature during the cycle, and q is Coffin-Manson exponent constant that depends on the material
characteristic. Usually, q is set to 6–9 for brittle fracture (Si and dielectrics), to 3–5 for hard metal
alloys/intermetallics (Al-Au), and to 1–3 for ductile metal (solder) [18]. It is worthwhile to mention that
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in the TC mechanism, unlike all others, the negative impact of temperature gradient ∆T is explicitly
considered, which motivates our work.

3.4. Problem Definition

The problem we target to solve in this work can be summarized as follows:
Input: Given the LEO CubeSat PCB temperature history as exemplified in Figure 1, that is, ambient

temperature (Tamb), the periodic task set W as workloads, and the power-temperature models
presented in Section 3.2,

Constraints: while respecting the timing constraints of the given task sets (pi for each τi ∈ W)
and not violating the given power budget Pmax, that is, ∀t, ∑M

i=0 P(t)[i] ≤ Pmax,
Output: determine the mapping decision map and the frequency assignment f a, and impose

additional virtual workload V and determine its mapping if necessary,
Objective: in order to maximize the MTTF.

4. Proposed Mapping/DVFS Technique

In this section, we propose a mapping/DVFS technique for multi-core embedded systems,
presented in Section 3, tailored to the reliability optimization of LEO satellites. The most noticeable
property of the target system is that they are exposed to highly varying temperature environments
as shown in Figure 1. Note that most conventional approaches typically try either to minimize the
power consumption or to keep the temperature as low as possible. In the highly varying temperature
condition, however, such approaches may result in considerable temperature fluctuations over time,
which, in turn, can negatively affect the system as a reliability threat.

We argue that the temperature management decision should be judiciously made considering
the outside temperature obtained through a temperature sensor. For instance, when the environment
temperature is very low, it would be even better to have higher clock frequencies than necessary in
order to intentionally heat up the cores. This over-clocking decision is helpful to reduce the amplitude
of the TC. On the other hand, this is not always feasible or desirable. Firstly, the power budget may
now allow wasteful over-clocking in some cases. Or, if the outside temperature is relatively high,
this may cause even bigger thermal gradients. It is also important to consider the three other failure
mechanisms as well as TC. Therefore, it is not trivial to make an optimal mapping/DVFS decision for
the given condition.

Whilst the cycle of revolution of the LEO satellites is consistent, the maximum and minimum
temperatures within the cycle vary depending on the season. Therefore, it is computationally intractable
to precompute the mapping/DVFS solutions for all possible conditions. We propose a hybrid solution,
that consists of two offline steps followed by an online step, as outlined in Figure 2. First, at the highest
temperature of the revolution cycle, an initial mapping/DVFS decision is made in a way that minimizes
the peak temperature (Ttop). How to obtain this initial mapping is presented in Section 4.1. Then,
out of this initial condition, the minimum temperature of the TC that causes the largest MTTF value
is derived as a temperature threshold (Tth). This procedure is described in Section 4.2. At runtime,
whenever this threshold is violated, that is, the temperature goes below the derived minimum, a new
DVFS decision is made and a set of a virtual task is injected if necessary (Section 4.3).

4.1. Initial Mapping and Frequency Assignment

The main idea of the initial mapping and frequency assignment is to minimize the peak
temperature as it is at the highest environment (PCB) temperature. In doing so, we rely on the
worst-fit (WF) heuristic which has also been popularly used in the existing multi-core mapping
approaches [28,34]. The initial mapping consists of three sub-procedures: (i) task-to-logical-core
mapping; (ii) frequency modulation; and (iii) logical-to-physical-core mapping.

Algorithm 1 delineates the initial mapping procedure. Firstly, it determines the task-to-logical-core
mapping in a way that the workloads are evenly distributed over the all constituent cores by means of
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the WF bin-packing heuristic (lines 1–6). After sorting out the tasks in descending order of utilization
(line 1), it maps the tasks one by one to the idlest logical core (lines 4–5). Once the logical mapping
is done, it scales up the operating frequencies of the cores as necessary (lines 8–16). That is, if a
core is used by too many tasks exceeding its limit (line 9), its frequency is scaled up by one level
until the utilization gets less than or equal to 1.0. With these frequency assignments done, we can
calculate the power consumption of each core excluding the temperature-dependent part (line 17).
At last, the logical-to-physical-core mapping decision is made in the third part (lines 19–34), in which
the maximum steady-state temperature of the system is supposed to be minimized. In doing so,
the logical core with the maximum power consumption that remains unmapped is chosen (line 21).
Then, all possible physical core mapping candidates are investigated (lines 23–30) and the one that
results in the lowest maximum steady-state temperature is chosen for mapping (line 31).

Algorithm 1 Initial Mapping and Frequency Assignment

1: sort W in a descending order of exn
pn · f1

;
2: ∀n, set mapl(τn) = 0; . (i) Logical core mapping
3: for n = 1 to N do
4: find lpm with the minimum um value;
5: set mapl(τn) = lpm and update um;
6: end for
7:
8: for m = 1 to M do . (ii) Frequency modulation
9: while um > 1 do

10: if f a(lpm) = fL then . Highest frequency
11: return not schedulable;
12: else . Scaling up the frequency by one level
13: when f a(lpm) = fl , adjust f a(lpm) to fl+1;
14: end if
15: end while
16: end for
17: calculate P with Equation (1) (w/o Pleak)
18:
19: ∀i, set mapp(lpi) = 0; . (iii) Physical core mapping
20: while LP 6= φ do
21: find lpi ∈ LP with the maximum P[i];
22: Tcurr_min ← ∞; ind_min← 1;
23: for j = 1 to M do . Find the smallest temp
24: set mapp(lpi) = pej; . Try mapping lpi on pej
25: evaluate the maximum temperature Tmax;
26: if Tmax < Tcurr_min then
27: Tcurr_min ← Tmax; ind_min← j;
28: end if
29: set mapp(lpi) = 0; . Restore the mapping
30: end for
31: set mapp(lpi) = peind_min;
32: LP← LP− {lpi};
33: end while
34: return schedulable;
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Figure 2. Overall procedure of the proposed mapping/DVFS technique.

4.2. Derivation of the Temperature Threshold

Once the initial mapping/DVFS decision is fixed, we derive the temperature threshold vector
Tth, above which the target system is always kept at runtime. For that, we first derive a model
temperature profile Tev whose minimum temperature is Tth. The main challenge in finding a good Tev

is to maximize the MTTF value considering TC and other three failure sources within the given power
budget, Pmax.

The procedure of finding Tev is as follows. From the initial mapping, we can already determine
the highest temperature vector, denoted as Ttop, in a single revolution cycle. Basically, we iterate
a number of candidates for the lowest temperature vector, Tbot, by means of binary search to find
the one that results in the largest MTTF value. In order to limit the search range (Tbot,min ≤ Tbot ≤
Tbot,max), we lower-bound Tbot by Tbot,min which can be obtained by invoking Algorithm 1 at the
lowest ambient temperature (TPCB in Figure 3). Similarly, we set the upper-bound of Tbot as Tbot,max,
which can be obtained by assuming that every core is utilized by 100% at the highest frequency
with the same mapping. Once those maximum and minimum temperatures, Ttop and Tbot are fixed
and the intermediate temperatures between the two can be interpolated using the cosine function
as follows (Note that the temperature changes caused by highly varying ambient temperature are
modelled by a cosinusoidal form based on the observation of the temperature measurement data from
SwissCube [10].):

Tev(t) =
Ttop − Tbot

2
cos(

2πt
tp

) +
Ttop + Tbot

2
(12)

where tp denotes the revolution period of the satellite.
The first half of Algorithm 2 (lines 1–23) illustrates this binary search procedure. Note that we

borrow the Monte-Carlo simulation framework from Xiang et al.’s work [16] for the evaluation of
MTTF for a temperature profile T and this is denoted as SIM(T) in the pseudocode. It is worthwhile
to mention that the temperature profile used during the binary search is not the exact one. It is an
approximated one that is temporarily used for quantifying the effect of candidate TCs. Figure 3a
demonstrates exemplary temperature profiles that are compared in the binary search.

Note in Equation (11) that TC is only dependent on the peak and bottom temperatures of the
cycle, not on the intermediate temperatures in-between. Thus, regarding the TC effect, just keeping the
system temperature above Tth is fine. Considering the other three effects, it is desirable to minimize
power consumption to reduce the temperature. So, we keep the mapping/DVFS decision obtained by
Algorithm 1 as long as the temperature threshold is not violated. On the other hand, if this threshold
is too high, it would not be feasible to heat up the system within the given power budget. So, in the
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second half of the algorithm (lines 25–30), Tth is adjusted to confirm that the threshold is always
maintainable with the given power budget. The expected power consumption is calculated using
the modified Equation (5): P(t) = (G + K) · T(t)−K · Tamb. That is, we calculate back the required
power P(t) that results in the steady-state temperature of T(t). If it violates the following power
constraint, ∀t, ∑M

i=0 Pev(t)[i] = Psum
ev ≤ Pmax, it repeatedly reduces the temperature threshold (line 29)

until satisfied.
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Figure 3. (a) Example temperature traces compared in the binary search and (b) the truncated envelope
temperature and the temperature threshold.

Algorithm 2 Derivation of the Temperature Threshold

1: Th_bot ← Tbot,max; . Initialization
2: Tl_bot ← Tbot,min;
3: Tth ← Tl_bot;
4: Th(t)← Equation (12) using Tbot = Th_bot;
5: Tl(t)← Equation (12) using Tbot = Tl_bot;
6: MTTFh ←SIM(Th), MTTFl ←SIM(Tl);
7:
8: while true do . (i) Binary search
9: Tm_bot ← (Th_bot + Tl_bot)/2;

10: Tm(t)← Equation (12) using Tbot = Tm_bot;
11: MTTFm ←SIM(Tm);
12: if MTTFh ≥ MTTFl then . Tbot to be increased
13: Tl_bot ← Tm_bot, MTTFl ← MTTFm;
14: if Th_bot ' Tm_bot then
15: Tth ← Th_bot; break;
16: end if
17: else . Tbot to be decreased
18: Th_bot ← Tm_bot, MTTFh ← MTTFm;
19: if Tl_bot ' Tm_bot then
20: Tth ← Tl_bot; break;
21: end if
22: end if
23: end while
24:
25: Ttrunc(t)← Equation (12) using Tbot = Tbot,min;
26: repeat . (ii) Power constraint
27: ∀t s.t. Ttrunc(t) < Tth, Ttrunc(t)← Tth;
28: calculate Psum

ev with Ttrunc(t);
29: Tth ← Tth − [1, . . . , 1]′;
30: until Pmax ≥ Psum

ev ;
31: return Tth;
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4.3. DVFS and Virtual Task Injection

At runtime, the initial decision made by Algorithm 1 is preserved unless the temperature threshold
is violated. In case of the violation, the system needs to artificially heat up properly. On the occasion
of the Tth violation, Algorithm 3 is invoked. It first reads the current temperatures Tcur from the
temperature sensors (line 1) and calculates the current power vector Pcur (line 2). At line 3, the power
consumption needed to reach the threshold temperature Tth is calculated. Then, for each core (line 5),
it tries to scale up the frequency repeatedly (lines 7–8) until it either reaches to the maximum level
(line 7) or the target power consumption is reached (line 6). When a core frequency is scaled up
maximally and the target power consumption is not reached yet (line 9), a virtual task vi is injected on
the core (lines 11–12). Note that the execution cycle and period of the virtual task is fixed a priori.

As invoked at runtime, it is important for Algorithm 3 to be light-weight to be executed without
causing considerable overheads in CPU. The time complexity of Algorithm 3 is O(|M| · L), where
L denotes the maximum number of iterations of the while loop in lines 6–19. We believe that both
|M| and L are manageably small for the following reasons. First, the number of cores installed in the
small satellite, |M|, is typically small. And, the maximum number of the while loop iterations, L, is
also not too big due to the triggering condition of Algorithm 3. Note that Algorithm 3 is invoked
each time the Tth violation is detected. Thus, the current power that causes the temperature violation
(Pth[m]) is not so far away from (Pcur[m]). Thus, the actual number of loop iterations is not usually
big. From our empirical evaluations, that will be presented in Section 5, the maximum number loop
iterations caused by the frequency scaling (lines 7–8) and virtual task injection (lines 9–17) were only 2
and 5, respectively.

Algorithm 3 DVFS and Virtual Task Injection

1: Tcur ← current temperature sensor values;
2: Calculate Pcur with Tcur using Equation (1);
3: Pth = (G + K) · Tth −K · Tamb;
4: i← 0;
5: for m = 1 to M do . For each core
6: while Pth[m] > Pcur[m] do
7: if f a(pem) 6= fL then . Frequency scaling
8: when f a(pem) = fl , f a(pem) to fl+1;
9: else . Virtual task injection

10: if um + v_ex
v_p · fL

≤ 1 then
11: V ← V ∪ {vi};
12: set map(vi) = pem and update um;
13: i← i + 1;
14: else
15: break;
16: end if
17: end if
18: update Pcur[m];
19: end while
20: end for

4.4. Inaccuracy of Temperature Analysis

In Algorithm 2 and 3, the temperature is not exactly evaluated, but approximately assuming
a steady-state. In some cases, task execution time is not long enough to reach the steady-state
temperature. The exact transient temperature can only be calculated by Equation (6), which is
computationally too expensive. Therefore, we adopt the steady-state temperature approximation
(line 28 in Algorithm 2 and line 3 of Algorithm 3). To compensate for the inaccuracy caused by the
approximation, we introduce a margin P∆ in the temperature comparison. That is, the inequality at
line 3 of Algorithm 3 can be replaced with Pth[m] + P∆ > Pcur[m]. It is also worthwhile to mention that
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there could be a lot of small TCs in an actual schedule as the task execution bursts and idle times are
interleaved in a complicated pattern. However, we decide to ignore the effect of such small cycles by
approximating the temperature evaluation as it has been reported that they do not cause any serious
long-term reliability problems [27,35].

In summary, Algorithm 1 minimizes the peak temperature of the core at the highest PCB
temperature to reduce TC amplitude. Algorithm 2 derives the minimum temperature (threshold),
above which the system’s temperature should be maintained, considering the power budget.
Algorithm 3 artificially heats up the processor by means of DVFS and virtual task injections, whenever
the temperature goes below the threshold.

5. Experiments

5.1. Evaluation Environment and Parameters

For evaluation, we choose Nvidia’s Jetson TK1 as the target architecture, which has quad-core
ARM Cortex-A15 CPU and supports 12 different frequencies from 1.24 to 2.32 GHz, that is, PE =

{pe1, pe2, pe3, pe4} and F = {1.24, 1.33, 1.43, 1.53, 1.63, 1.73, 1.84, 1.94, 2.01, 2.12, 2.22, 2.32}. Though all
cores operate at the same frequency in the actual setup of the target architecture, we assume that each
core can have an independent frequency level in the simulation. (Ma et al. [15] also had the same
assumption in their evaluations.)

We borrow the power and temperature parameters of Nvidia’s Jetson TK1 from Ma et al.’s
work [15] to characterize the power and temperature behaviors. For the temperature-dependent
leakage power, we extend their power model using the PWL approximation [30]. And, the model is
calibrated to have the same power consumption reported in Reference [15] at the ambient temperature
of 20 ◦C using the leakage power estimation, presented in Reference [31]. The resultant power model
and its parameters are as follows: Pact( f ) = 0.8031 · f 2 − 2.046 · f + 1.481, Poth( f ) = −0.08089 · f 2 +

0.3841 · f , and Pleak(T(t)) = α · T(t) + β, where (α, β) is (0.001796, 0.1098) if T(t) < 0, (0.00393, 0.1079)
if 0 ≤ T(t) < 40, (0.006781,−0.0080065) if 40 ≤ T(t) < 80, and (0.01035,−0.2955) if T(t) ≥ 80. For all
cores, thermal capacitance C and thermal ground conductance K is set to 2.34 J/◦C and 0.098 W/◦C,
respectively. The thermal conductance G to the adjacent cores and to the core are set to −0.03 W/◦C
and −0.0075 W/◦C, respectively, for all cores. To obtain the temperature profile with respect to the
given power profile, the architecture-level thermal RC-circuit with the above parameters is evaluated.
In doing so, Equation (6) is calculated with the given parameters for each time step in MATLAB.

In the reliability model, since we consider the failure of the brittle materials [18,36,37], we set the
Coffin-Manson exponent q to 6 in the Monte Carlo simulator [16]. All other parameters of the four
mechanisms were set to the default values.

We modeled a set of periodic tasks using actual satellite workload periodic profiles such as
executive, attitude determination and control, thermal management, and power management software,
that is, W = {τ1, τ2, . . . , τ9}, the tuple denoted as ( exn

f1
, pn), that is, τ1 = (0.06, 0.1), τ2 = (0.06, 0.1),

τ3 = (0.3, 0.5), τ4 = (0.3, 0.5), τ5 = (0.8, 1), τ6 = (0.8, 1), τ7 = (2, 8), τ8 = (3, 8), and τ9 = (3, 8). For the
virtual task, we use the parameter of vi = (1, 8), that is, its execution time at the lowest frequency and
the invocation period is 1 and 8 s, respectively.

5.2. Simulation Results

5.2.1. Comparison to the Conventional Low-Power Mapping

We first compare the proposed technique with the conventional low-power mapping approach.
We choose Xian et al.’s work [34] as a comparable target which is based on the WF bin packing heuristic
that balances the load to minimize the total energy consumption. The mapping decision is made in
each hyper-period, that is 8 seconds and the EDF scheduling policy is adopted for the scheduling
of the multiple workloads assigned to the same core. Figure 4a depicts the resultant temperature
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profile of Xian et al. [34], which causes a large TC with an amplitude of about 98 degrees. In this case,
the average power consumption is 3.79 W.

We first apply the proposed technique without virtual task injections (lines 10–13 of Algorithm 3)
and the resultant temperature trace is shown in Figure 4b. As can be seen in the figure, applying DVFS
solely is not enough to prevent the temperature threshold violations from happening at the lower
ambient temperatures. However, despite that, the normalized MTTF has been improved by 5.48 times
as summarized in Table 1. Due to the artificial heat up procedure (Algorithm 3), the average power
consumption has increased to 4.59 W.
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Figure 4. Temperature profiles of Tcore[0] caused (a) by Xian et al. [34] and (b) by the proposed technique
without virtual task injections.

5.2.2. Different Power Budgets

In order to investigate the effects of the power budget in the proposed technique, we try six
different power budgets (4.02 W, 4.08 W, 4.34 W, 4.59 W, 4.81 W, and 5.00 W), and, in this case,
the virtual task injection is enabled. Figure 5 shows the temperature profiles caused by each case and
Table 1 summarizes the threshold temperature, the average power consumption, and the normalized
MTTF. Due to space limitation, only the temperature profiles for one core (Tcore[0]) are displayed in
Figure 5 and Table 1. It is clearly noticeable that a bigger power budget allows for a higher threshold
temperature. Thanks to the higher threshold, the amplitude of the TC could be effectively reduced,
bringing the gain of enlarged MTTF values of up to 8.03 times. In all cases, the average power
consumption was kept below the imposed power budget as summarized in Table 1.

Table 1. Comparisons of Tth, average power consumption, and normalized MTTF.

Figure 4(a) 4(b) 5(a) 5(b) 5(c) 5(d) 5(e) 5(f)

Tth[0] (◦C) − 24.11 −6.89 −2.89 7.11 14.11 19.11 24.11

Average Power (W) 3.79 4.59 3.81 3.89 4.11 4.35 4.53 4.81

Normalized MTTF 1 5.48 1.02 1.32 2.24 3.65 4.89 8.03

5.2.3. Effect of Frequency Ranges

If the hardware supports a wider frequency range, it has more room for lifetime enhancement.
In the setup we used in the previous experiments when the frequency scaling is possible up to 2.52 GHz,
the normalized MTTF is further enhanced to 22.15 with the average power consumption of 5.56 W.
In modern satellite systems, however, it is not common to have such high frequency. In the case of
narrower ranges, the proposed technique could considerably maximize the MTTF. When the maximum
frequency is set to 1.73 GHz, the normalized MTTF is 1.21 with the average power consumption
of 3.87 W.
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Figure 5. Temperature profiles asb of Tcore[0] with the proposed technique using virtual tasks and
DVFS under different power constraint: (a) 4.02 W, (b) 4.08 W, (c) 4.34 W, (d) 4.59 W, (e) 4.81 W, and
(f) 5.00 W.

5.2.4. Effect of Coffin-Manson Exponent

Lastly, we show how sensitive the proposed technique to the parameters of the Coffin-Manson
equation. As mentioned in Section 3.3, the Coffin-Manson exponent q is material dependent and
the effect of TC is significantly dependent on the q value. In order to quantify the effect of this
value, we compare the two TCs presented in Figure 3, varying q from 7 to 2. The MTTF gains of
the cycle with a smaller amplitude ([Ttop, Tbot,max]) to the other one ([Ttop, Tbot,min]) were 17.50, 11.42,
7.50, 4.91, 2.21, and 0.52, respectively for q = 7, q = 6, q = 5, q = 4, q = 3, and q = 2. When q is
relatively big, the MTTF gain is more significant. Conversely, a very small q value, q = 2 in this case,
the reduced amplitude may result in a negative effect in MTTF. This is because that the adverse effects
in EM, TDDB, and SM, due to the increased temperature, nullify the gain in TC. However, we could
observe a considerable gain in MTTF even with a considerably small q value, that is, 2.21 X gain in
MTTF with q = 3. The typical choice of q is 6–9 for brittle fracture (Si and dielectrics), 3–5 for hard
metal alloys/intermetallics (Al-Au), and 1–3 for ductile metal (solder) [18]. Therefore, we believe
that the proposed technique is effective for the most materials used in the IC and package of the
multi-core microprocessors.

6. Conclusions and Future Works

In this paper, we presented a lifetime enhancement technique in multi-core satellite embedded
systems using virtual tasks and DVFS under power constraints. In LEO CubeSats, the temperature
changes greatly and a large TC occurs in the electronic parts, which is a well-known lifetime reliability
threat. Conventional reliability enhancement techniques focus on lowering the operating temperature
whenever possible, but in LEO CubeSats, the TC can be large and the MTTF may deteriorate.
The proposed technique focuses on reducing a large TC amplitude by intentionally consuming more
power while considering other high temperature-dependent failure mechanisms. The proposed
technique manages the system temperature in three steps. First, it minimizes the peak temperature at
the highest PCB temperature to reduce TC amplitude. Second, it derives the minimum temperature
(threshold), above which the system’s temperature should be maintained, considering the power
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budget. Lastly, at runtime, whenever the temperature goes below the threshold, it artificially heats
up the processor by means of DVFS and virtual task injections. Experimental results show that the
proposed technique improves the MTTF up to 8.03 times in the Nvidia’s Jetson TK1 board with a
real workload of a small satellite system. In the extension of the proposed technique of no virtual
tasks, different frequency range and different Coffin-Manson exponent, we show that our proposed
technique is effective in improving the MTTF.

The proposed technique can be further extended as follows to be better utilized in the small
satellite systems. Firstly, it has been reported that spatial thermal gradients in the satellite system
would result in negative effects in reliability [38]. As the reliability model that we used in this work only
focuses on the temporal gradient, it is necessary to investigate how the spatial gradients, for example,
between cores, can be analyzed and mitigated in mapping and DVFS. Another future work that can
be done is to co-optimize the reliability and power consumption at the same time. Whilst the power
budget was given as input and the lifetime is just to be maximized in this work, the mission lifetime
can be different from one mission to another in reality. Thus, how much power to be sacrificed can
be effectively balanced with the target lifetime during the optimization, which also remains as a
future work.
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Abbreviations

The following abbreviations are used in this manuscript:

COTS Commercial-off-the-shelf
CubeSats Cube satellites
LEO Low earth orbit
TC Thermal cycling
BAT Battery
EXT External
PCB Printed circuit board
MB Motherboard
FPGAs Field-programmable gate arrays
GEO Geostationary orbit
ICs Integrated circuits
EM Electromigration
TDDB Time-dependent dielectric breakdown
SM Stress migration
MTTF Mean time to failure
RAMP Reliability-aware microprocessor
NBTI Negative bias temperature instability
SOFR Sum-of-failure-rates
DPM Dynamic power management
DVS Dynamic voltage scaling
DTM Dynamic thermal management
ECUs Electronic control units
DVFS Dynamic voltage and frequency scaling
EDF Earliest-deadline-first
PWL Piece-wise linear
WF Worst-fit
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