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Abstract: Noises such as thermal noise, background noise or burst noise can reduce the reliability
and confidence of measurement devices. In this work, a recursive and adaptive Kalman filter is
proposed to detect and process burst noise or outliers and thermal noise, which are popular in
electrical and electronic devices. The Kalman filter and neural network are used to preprocess data of
three detectors of a nondispersive thermopile device, which is used to detect and quantify Fusarium
spores. The detectors are broadband (1 µm to 20 µm), λ1 (6.09 ± 0.06 µm) and λ2 (9.49 ± 0.44 µm)
thermopiles. Additionally, an artificial neural network (NN) is applied to process background noise
effects. The adaptive and cognitive Kalman Filter helps to improve the training time of the neural
network and the absolute error of the thermopile data. Without applying the Kalman filter for λ1

thermopile, it took 12 min 09 s to train the NN and reach the absolute error of 2.7453 × 104 (n. u.).
With the Kalman filter, it took 46 s to train the NN to reach the absolute error of 1.4374 × 104 (n. u.)
for λ1 thermopile. Similarly, to the λ2 (9.49 ± 0.44 µm) thermopile, the training improved from 9 min
13 s to 1 min and the absolute error of 2.3999 × 105 (n. u.) to the absolute error of 1.76485 × 105 (n. u.)
respectively. The three-thermopile system has proven that it can improve the reliability in detection
of Fusarium spores by adding the broadband thermopile. The method developed in this work can be
employed for devices that encounter similar noise problems.

Keywords: burst noise; outlier; thermal noise; Kalman; filter; neural network; thermopile; Fusarium
detection

1. Introduction

Fusarium is a hazardous fungus. It can weaken the immunization system of the hosts such
as animals and human. It also and cause different diseases such as onychomycosis or keratitis for
human [1], or meningoencephalitis in the dog [2]. Fusarium also can result in many other diseases on
plants such as Fusarium wilt on watermelon or bean [3,4], Fusarium head blight on wheat [5], Fusarium
dry on citrus [6] or Fusarium root rot [7]. According to Fusarium management guide [8], Fusarium head
blight disease, which is the key factor to cause Fusarium damage kernel on wheat, has annually resulted
in losses of hundreds of million dollars. Many other previous studies of analyzing and detection
Fusarium were conducted by applying mass spectroscopy [9], Fourier transform infrared spectroscopy,
near-infrared spectroscopy [10,11], polymerase-chain-reaction machine [12], chlorophyll fluorescent
imaging [5] or impedance-based gold-electrodes sensor [13]. Though these mentioned approaches are
effective, some drawbacks can be seen such as expensive, complex to manipulate and hard to achieve
quick detection. Thus, early detecting of Fusarium spore help crops to avoid dangerous fungal diseases
and losses. Fusarium spores can spread out through the water, air and collaborative media of both
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water and air [14–16]. Based on dispersal mechanisms, it can be sorted in a one-phase mechanism or
two-phase mechanism. The one-phase mechanism means that spores can be dispersed by merely air or
water. The two-phase mechanism means that the spores can be dispersed by the cooperation of air and
water in the form of water drops in wind or bubbles in raining water containing spores [14–19].

From the studies pertaining to Fusarium, Fusarium spores can be dispersed most through the air
phase. From this feature, the Fusarium detection method and device proposed in [20] were suggested
and designed. In this research, based on the Beer–Lambert law [21], the group-distinction coefficient
(GDC) was proposed to distinguish the substances. The group-distinction coefficient was calculated by
using signals from two infrared narrow-bandwidth thermopiles. The detection method and the device
were proved that worked well. However, the authors encountered some difficulties which are similar
GDC values and system noises. In the research in [20], the studied samples were Fusarium oxysporum
chlamydospores [22], pollen, starch and turmeric, in which, the GDCs of Fusarium and starch were
very close to each other. The noises are background noise, thermal noise and burst noise [20].

There are many different types of noise such as thermal, background, burst, flicker and avalanche
noises [23,24]. These noises mainly occur in electronic or electrical devices and can be processed and
treated in different ways to reduce the effects caused by them to the performance of devices. A thermal
noise or Johnson noise, which is thermal agitation of electrons within electronic components can be
reduced by an analog or digital filter [24–26]. Background (BG) noise or direct current (DC) noise can
occur in amplifier circuits as they need bias currents to work, and the currents can be changed by the
operating conditions such as temperature [27]. Additionally, BG noise can be caused by input offset
voltage along with bias currents of the operational amplifiers [9]. Burst or popcorn noise can happen
in semiconductors and is unpredictable [24]. This type of noise can cause outliers in data, as a result,
outlier detection and treatment are crucial tasks. In the study on outlier detection [28], Dan L. et al.,
presented a Haar wavelet transform method to detect burst noise based on the singularity of the noise.
In a different work, to detect outliers that were from data in the frequency domain, Deschrijver, D.
et al., [29] suggested a modified vector fitting algorithm by solving the least-squares equations of a set
of scattering parameter data samples.

This paper proposes a novel method to detect Fusarium, to distinguish two substances with similar
GDCs, and to introduce techniques to reduce thermal and burst noises or outliers in the data collected
from the thermopiles. The method in this paper is upgraded from the previous work. To process both
thermal and burst noise, an adaptive and cognitive Kalman filter (ACKF) is proposed. In the filter, a
mechanism of outlier detection indicates the outlier positions and the filter will eliminate the outliers.
As BG noise affects the impulsive signals or peak data (PD), the PD should be processed to eliminate
the effect of the BG noise. The PD with the noise or error are eliminated by an artificial neural network
(NN). From [20], the two narrow-bandwidth thermopiles, λ1 (6.09 ± 0.06 µm) and λ2 (9.49 ± 0.44 µm),
were used. In this research, the third thermopile was added. This add-on thermopile is a broadband
(BR) spectrum detector (1 µm to 20 µm), which was upgraded from a reference sensor of monitoring
the IR light source [20]. The thermopiles BR, λ1, and λ2 can be used to analyze samples. The rest of the
paper is structured as follows. Section 2 is the background of the Kalman algorithm and the neural
network. Section 3 is about the outlier detection and adaptation mechanism for the Kalman filter.
Additionally, it also discusses the NN approach. Section 4 provides the results and discussion. Lastly,
Section 5 concludes the work.

2. Background of the Applied Algorithms

2.1. Kalman Algorithm

Kalman algorithm is a versatile tool as it can be applied in many applications such as tracking
objects (body parts, missiles, etc.) [30–33], navigation [34], error data correction [35] or finance [36].
Kalman algorithm always has two distinct stages: prediction and measurement. Kalman is an optimal
algorithm, as it can continuously improve the system outputs based on a recursive method of calculating
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the error covariance and prediction. With a linear system in the state-space model, the discrete Kalman
can be applied. The discrete-time state evolution equation of a linear system [37] can be defined as:

Xk = AXk−1 + BUk + Wk, (1)

where A is the state transition matrix impacting on Xk−1, which is the state vector at the discrete-time
k − 1; B is the control-input matrix; Uk and is the control vector and Wk is the process noise vector,
which is supposed to be zero-mean Gaussian with the process noise covariance matrix Q, Wk~N(0,
Q). The prediction Equation (1) will go along with an observation equation to describe the correlation
between the measured value and the prediction at the discrete-time k:

Zk = HXk + Vk. (2)

in which, Zk is the observation vector or measurement vector; H is the observation matrix and Vk is
the observation noise vector with the observation covariance matrix R, Vk~N (0, R). The A, B, H, Q
and R can have the subscript index k if they change with discrete-time, yet they are invariant in most
problems. Figure 1a illustrated the Kalman algorithm. In the diagram, P+

k and P−k are the updated and
predicted state error covariance matrices respectively [37]. X−k is called an a priori prediction. The
output from the Kalman is the updated X+

k or an a posteriori vector.
There are many systems that their state equation is nonlinear, so Equation (1) cannot be applied.

The state can depend on a certain function f, which is:

X−k = f
(
X+

k−1, Uk, Wk−1

)
. (3)

The observation equation of the measurement and prediction vectors can be:

Zk = h
(
X−k , Vk

)
. (4)

To be able to apply the Kalman filter, a linearization was suggested to approximate the nonlinear
problem into a linear problem by first-order Taylor series. At each discrete-time, it is essential to calculate:

Fk−1 =
∂f
∂X

∣∣∣∣∣
(X+

k−1, Uk, 0).
(5)

hk =
∂f
∂X

∣∣∣∣∣
(X−k , 0).

(6)

The extended Kalman filter (EKF) algorithm is shown in Figure 1b. Viewing the two algorithms
in Figure 1a,b, the differences are in the prediction equations. The update equations are the same in
both algorithms [30,37].
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2.2. Neural Network

In this work, as the neural network was applied to fix the error data caused by the BG noise,
the theory of the neural network was briefly discussed here. An artificial neural network or neural
network (NN) copying the work of biological neural systems [38–40] can react with certain inputs to
provides outputs. An NN can have many layers, and the number of nodes in each layer is arbitrary.
Looking at layer l with K nodes, one can have the output equation of this layer is:

a(l)j = σ(b(l)i +
∑R

r=1
w(l)

i j .a(l−1)
i )= σ(z(l)j ), (7)

where σ is an activation function such as linear function, binary step, hyperbolic tangent, sigmoid
function, tanh, rectified linear unit (ReLU), softplus functions or Leaky ReLU [40,41]; z(l)j = b(l)j +∑R

j=1 w(l)
i j .a(l−1)

i is the output of the jth neuron of the layer (l−1); W(l) = {w(l)
11 , w(l)

12 , . . . , w(l)
i j , . . . , w(l)

KR} and

B = {b(l)1 , b(l)2 , . . . , b(l)i , . . . , b(l)K } are weights and biases of the layer l respectively.
To have desired outputs from an input vector, the NN must be trained to find the weights

and biases of the NN. The training process is actually an optimal problem of finding the global
minima of a cost function, which is often based on the mean square error (MSE) [38,42,43]. NN has
applications in many areas such as signal processing [44], voice recognition [45], image processing [46]
or navigation [47]. The back-propagation algorithm (BPA) is a fundamental algorithm in NN. In this
algorithm, it needs a set of training data including input vector X of N elements {x1, x2, . . . , xN} and
output vector O of M elements {o1, o2, . . . , oM}. The quadratic cost function of the stochastic gradient
descent (SGD) is defined as:

C(O, Y)=
1
2
‖O

∣∣∣∣∣k − Y
∣∣∣∣∣k‖2 =

1
2

∑M

m=1
[om − y(L)m ]

2
. (8)

From Equation (8), the BPA to update the weight matrix and the bias vector for a hidden layer l is:

E(l)= (W(l+1))
T

.E(l+1)
�D(l)

∆W(l)
∣∣∣
k+1 = −η.[E(l)

∣∣∣
k. (A(l−1)

∣∣∣k)T
].

∆B(l)
∣∣∣
k+1= −η .E(l)

∣∣∣
k

In which ∆W(l)
∣∣∣
k+1 and ∆B(l)

∣∣∣
k+1 are the update matrices for weights and biases of the hidden

layer l respectively; A(l−1) is the output vector of the layer l-1; [D(l)]K×1 = σ′[Z(l)]K×1 is the activation

derivative matrix with the argument is Z(l) matrix of z(l)i and E(l) is the error matrix. η is the learning
rate. If η is too small, it may take a long time to find the global minima. If η is large, it can never obtain
the optimum global minima. To overcome this difficulty, the steepest descent algorithm was proposed
by using Taylor approximation to find an appropriate η [39]. In this algorithm:

E(W + ηd) ≈ E(W) + η.gT.d, (9)

where, g is the vector gradient of E(W), and d is the descent direction. η should be small enough to
make E(W + ηd) − E(W) < 0. Since η should not be so small, η can be chosen to minimize E(W + ηd).

Thus, E′η = 0→ gT.d = 0→
[

g = 0
g⊥d

. To increase the convergence speed, Newton algorithm can be

used. In this algorithm, the update form of the weights is:

W(l)
∣∣∣
k+1 = W(l)

∣∣∣k − ηk.H−1(l)
∣∣∣
k. g

∣∣∣
k, (10)

where, H(l)
∣∣∣
k = ∇2E

(
W(l)

∣∣∣
k

)
is the Hessian matrix. Solving the equation of H(l)

∣∣∣
k.d| k = −g

∣∣∣
k to find

the descent direction d| k at discrete time k. Equation (9) is applied to find ηk [39]. For the least square
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problems, as the Hessian matrix calculation is difficult sometimes, the Levenberg–Marquardt algorithm
(LMA) can be applied to avoid that calculation by the approximation of H = JT.J, in which, J is the
Jacobian matrix of first derivative ∇E

(
W(l)

∣∣∣
k

)
[39]. In our NN, the LMA was applied to find weights

and biases.

3. Methodology

3.1. System

The Fusarium detection device was upgraded from the authors’ previous work, which was
presented in [20] by removing the reference chamber or the splitting plate to make only one reaction
chamber. The trap has two silver-coated mirrors at the top and bottom, one IR source, one ZnSe
window, a pair of reflective mirrors to direct IR light to the IR thermopiles, an inlet pipe, an outlet
pipe and methyl methacrylate plates to cover the surrounding. The upgraded device structure is
shown in Figure 2. The reference or broadband (BR) thermopile became the third detector along
with the other two thermopiles to analyze the incident IR light. The broadband thermopile has
the IR spectrum of 1 µm to 20 µm; λ1 and λ2 thermopiles have very narrow bandwidth spectra by
using window filters of 6.09 ± 0.06 µm and 9.49 ± 0.44 µm respectively. The window filters were
supplied by Northumbria Optical [48] and installed into the 2 mm × 2 mm 2 M thermopiles supplied
by Dexter Research Inc. [49]. The typical internal resistance of these thermopiles is about 10 kΩ,
and the responsivity R is 18.9 V/W. From [49], the damage threshold Pthres is 0.5 W/cm2, so it is
not recommended to expose the 2 M thermopiles to any IR source higher Pthres. The IR source is
2.2 mm × 2.2 mm JSIR350-4-AL-C-D3.7-2-A5-I, and its spectrum is around from 1 µm to 20 µm [50].
In the measurement, the biased current and the voltage for the IR source were 141.4 mA and 5.65 V
respectively. As the signals from the thermopiles in this research were extremely weak, preamplifiers
were necessary. The preamplifiers employed the AD8629 integrated circuit (IC) devices because these
ICs have low bias current, low offset voltage, high common-mode rejection ration as well as chopping
stabilization circuit [51]. These features will help to lower the output noises. The final amplifier is
OPA320 IC [52]. The output of the final amplifier is digitalized by a 24-bit LT2400 analog-to-digital
converter (ADC) [53]. The setup voltage for the ADC was 4.096 V, so the resolution was 0.488 µV [20].
In the device, a vacuum pump was attached to the inlet pipe. An output of a 15 kV high voltage
(HV) circuit was connected to one of the silver-coated mirrors. In the device, to monitor the operating
conditions of the device, a temperature sensor DS18B20 and a 5 V monitor and a 9 V monitor were
used to monitor the output of the regulator circuits. When the temperature of the environment and
voltages of these regulators change, the changes will be recorded to serve for the data error correction.
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The microcontroller (µC) used to operate the system is an Atmelt 328p [54]. In Figure 2, to start,
the µC turns on the vacuum pump to deliver the air into the trap chamber. The particles in the air are
caught by the electrostatic charges provided by the HV circuit. After turning off the pump and the HV
module, the microcontroller starts to collect data by following the following measurement procedure:

• Phase 1: Measuring environment temperature—T1; then, measuring outputs of the 5 V and 9 V
regulators, which are V1 and V2 respectively.

• Phase 2: Measuring background data of BR thermopile in 6 s, when the IR source is still turned
OFF; turning ON the IR source in 1.5 s and measuring data from the BR thermopile during this
period to have peak data (PD); turning OFF the IR source in 6 s and measuring background data of
the BR thermopile again. Thus, the data include background data, peak data PD and background
data again.

• Phase 3: Similar to phase 2, λ1 thermopile data are measured.
• Phase 4: Similar to phase 2, λ2 thermopile data are measured.
• Phase 5: Repeating phase 1, but renaming temperature as T2, and the outputs of 5 V and 9 V

regulators as V3 and V4 respectively.
• Phase 6: Sending all data to the computer in time order for further processing and analyzing.

In the computer, the background data will be averaged to have BG mean value. The data order
is T1-V1-V2-BG-PD-BG-T2-V3-V4. After the measurement, one will have one data batch. To have
a precise analysis, this procedure can be repeated to have more data batches. The number of the
measurement batches is arbitrary. To have a good decision, five batches are sufficient [20].

3.2. Analyzing Method

To be able to detect a sample in the device, it is necessary to find a formula that depends only on
the monochromatic absorbance features of the samples. From Beer–Lambert law, we proposed a group
distinction coefficient equation, which can be applied to distinguish a group of samples in the device
as follow [20]:

η =
ελ1

ελ2

=
log(

Pλ1
Po,λ1

)

log(
Pλ2

Po,λ2
)

. (11)

In which Po,λ is the IR radiant power of a monochromatic light of the IR light source (W/sr); Pλ

is IR power of the monochromatic light going through a sample (W/sr) and ελ is monochromatic
extinction coefficient (1/obj.). The formula to determine the density of the sample is [20]:

Dx =
log(

Px, λ1
Pxo,λ1

)

ελ1 ∗ S
= D×

log(
Px,λ1
Pxo,λ1

)

log(
Pλ1

Po,λ1
)

, (12)

where Dx is an unknown density of a sample; D is a known-sample density (obj./cm2); S is the area of
the sample and obj. is the studied object, which is caught on the area S.

Additionally, from experiment results, the Fusarium curve of PBR and Dx can be plotted and in
the later measurements, the values of PBR and Dx can be found. Testing whether the data point of (PBR,
Dx) is on the curve can consolidate a decision of detection. This additional step helps to eliminate the
confusion between two samples having a similar group-distinction coefficient η. Therefore, the third
sensor is added to improve the reliability and extend application areas.

Power of incident light coming to a thermopile can be calculated by applying:

Pinc =
Ndig ∗ resolution(µV)

responsivity
(

V
W

)
∗Gain

, (13)
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where, Ndig is digital output from ADC when reading thermopile data. Actually, when
Px, λ1
Pxo,λ1

ratio is

estimated, the resolution, responsivity, and gain will cancel out each other. Therefore,
Px, λ1
Pxo,λ1

=
Ndig−x, λ1
Ndig−xo,λ1

.

3.3. Adaptive and Cognitive Kalman Filter

In our work, the Kalman filter had two functions, which were the noise filter and outlier reducer
for the signal data of each thermopile. As mentioned in Section 2.1, Q is the process noise covariance.
In our work, the Kalman filter processed signal data of each thermopile, and Q should be called as
the process noise error. The process noise, theoretically, depends on the working condition at each
discrete-time, but in many problems, this condition is almost unchanged. During the time of turning
ON the IR source, the IR radiation changed the working condition, so the process noise errors in the
turning ON and turning OFF periods were not the same. The observation error could be determined
from the experiments.

Section 3.1 described the measurement procedure. In a turning ON period, the temperature of the
IR source promptly increased. Since the IR source used the microelectromechanical system (MEMS),
the temperature would soon reach the saturation temperature. As a result, in the early of the turning
ON period, the signals on the thermopiles increased quickly but slightly improved in the end of this
period. In the turning OFF period, the IR source temperature quickly decreased until reaching the
environment temperature, so the data in this period would decline too. In practice, three types of data
pulse can be seen as illustrated in Figure 3.
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Figure 3. Three typical types of pulse data can be seen in the collected data. (a) Normal pulse data;
(b) abnormal pulse data with positive outliers in the background and in the peak; (c) abnormal pulse
data with a negative outlier in the peak and (d–f) close view of tangential line angles α1 and α2 of cases
(a), (b) and (c) respectively.

Figure 3a illustrates a normal pulse, in which, the front peak (FP) corresponds to turning OFF
and the back peak (BP) corresponds to turning OFF and the START of the temperature balance period.
In the research, the burst or popcorn noise may occur during the data collection and cause outliers in
background and PD. Figure 3b,c shows the two typical pulse data with burst noise or outliers. As the
front peak data caused by the reaction of the thermopiles with the coming-IR light reflecting from
analyzing samples, the data will contain useful information of the samples. Besides, from observation,
outliers often appear in FP range. Therefore, we focused on how to process outliers in the FP range.
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In the FP range (illustrated in Figure 3a), let us look at two adjacent points, P1 and P2 corresponding to
the discrete-time k and k + 1, in a data peak. D1 and D2 are the tangential lines going through P1 and
P2 respectively. α1 and α2 are the angles of the tangential lines D1 and D2 with the horizontal line. For
normal pulses, it can be seen that:{

0 ≤ α1,α2 < 90o

α2 < α1 → tan(α2) < tan(α1)
→

P2− P1
∆t

>
P1− P0

∆t
, (14)

where:
tan(α1)=

P1− P0
tk − tk−1

=
P1− P0

∆t
; tan(α2)=

P2− P1
tk+1 − tk

=
P2− P1

∆t
. (15)

Similarly, the conditions for Figure 3b,e are:{
0 ≤ α1,α2 < 90o

α2 > α1 → tan(α2) > tan(α1)
→

P2− P1
∆t

>
P1− P0

∆t
. (16)

For Figure 3c,f, the conditions are:{
0 ≤ α1 < 90o, 90o < α2 ≤ 180o

α2 > α1 → tan(α1) > 0 & tan(α2) < 0
→

P1− P0
∆t

> 0 and
P2− P1

∆t
< 0. (17)

The conditions in Equations (14), (16) and (17) can be used to determine normal or abnormal
pulses in the FP range. P0, P1 and P2 are the digital values of FP range. (P1–P0) and (P2–P1) could
be calculated by applying the firs-order discrete derivative of the pulse, and [(P2–P1)–(P1–P0)] is the
second-order discrete derivative of the pulse. Let us name f as the function of the peak, so the first
and the second-order derivative by discrete-time k are

.
f and

..
f respectively. Then (P1–P0) and (P2–P1)

become
.
f(k−1) and

.
f(k), respectively; [(P2–P1)–(P1–P0)] =

..
f(k).

As mentioned above, in the turning ON and OFF periods, the process noise and the other
parameters of the Kalman filter should be adjusted. Figure 4 shows the adjustment diagram of process
noise, and recursive coefficients based on the experiments, the conditions in Equations (14), (16) and
(17) for the ACKF.

Let us name Qo and Ro as the constant process noise and observation noise errors respectively.
In the discrete-time zones (I) and (III), the data are BG data. In these discrete-time zones, the process
noise error is set at Q = β1 × Qo and the observation noise error is R = Ro. Attentionally, R = Ro

everywhere, and the values β1, β2, β3, β4 and β5, which will be discussed later are cognitively determined
by experiments. Figure 3b shows an example of background range with an outlier that can be fixed by
the Kalman filter if β1 is appropriately chosen. In the discrete-time (II), the FP range is studied. In the
FP range, if

.
f (k) > 0 condition is true, the condition in Equation (16) is considered:

→
P2− P1

∆t
−

P1− P0
∆t

> 0→ (P2–P1)–(P1–P0) > 0→
..
f(k) > 0. (18)

If
..
f(k) < 0, it is normal and Q = β2 × Qo. If

..
f(k) > 0, it is abnormal and an outlier appears in the

FP range. If the outlier is large, it requires a correction for the observation value. In our research, if
.
f(k−1)

.
f(k)

≥ 0.5, then the outlier is not large→ Q = β3 × Qo. If
.
f(k−1)

.
f(k)

< 0.5, then the outlier is large. The

observation correction is conducted by using the previous normal data points at discrete times k − 1
and k − 2:

z+(k) = z(k− 1) + η× (z(k− 1)–(k− 2)), (19)

where z+(k) is the observation prediction and η is a percentage constant to take an amount of the
difference of z(k-1)–z(k-2). After this prediction, we still put more reliability on the process noise error
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rather than the observation noise error. In other words, at discrete time k, the observation noise error
should be larger than the process noise error (R > Q or Q

R < 1; R = Ro). It can be seen that:

P1− P0
P2− P1

< 1→
Q
Ro
∼

P1− P0
P2− P1

→ Q ∼
P1− P0
P2− P1

=

.
f(k− 1)

.
f(k)

.

Thus, Q = β4 ×

.
f(k−1)

.
f(k)

× Qo, and Q can adapt to the magnitude of
.
f(k−1)

.
f(k)

. In addition, a recursive

mechanism is designed to recall the Kalman filter module itself. The number of recalls, N, depends on

whether this ratio is small or large. The smaller
.
f(k−1)

.
f(k)

is, the more the Kalman module will recall itself.

Basically, even in a normal case, the Kalman filter is called two times, so N = 2. If 0.05 <

.
f(k−1)

.
f(k)

< 0.1,

N = 5. If 0.015 <
.
f(k−1)

.
f(k)

≤ 0.05, N = 5. If
.
f(k−1)

.
f(k)

≤ 0.015, N = 15. If
.
f(k) < 0, a negative outlier occurs in

this range. The observation data point is abnormal, and it will be corrected by applying again Equation
(19). The process noise error is Q = β5 × Qo. After being processed, the outlier point becomes a normal
data point. If the outlier still exists in the FP range, it will be detected and processed. After being
processed by the ACKF, thermopile data are symbolized as [BG, PD, BG]preprocessed.
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3.4. Entropy

To evaluate the effectiveness of the filter and outlier-elimination process, the entropies of the raw
and preprocessed signals is used:

S(y) =
∑

i
p(i) ∗ log2(

1
p(i)

). (20)
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In which y can be x, the raw data, or z, the processed signal data, and p(i) is the probability of
x(i) or z(i) to happen [55–57]. Entropy quantity can reveal the uncertainty or the randomness of the
investigated signal. To the raw signal containing much noise, the noise can cover the useful information
and show a high disorder, so the entropy of the signal is small. If the outlier elimination modules work
well, much noise including thermal or burst noise is reduced, then the entropy of the preprocessed
signal can be larger than the raw signal.

In the NN training, as the BG noise of each thermopile affects most to the output, it is crucial to
choose a standard BG (SBG), and corresponding with each SBG is a standard MP (SMP) based on the
measurements of each thermopile. The SBG for each thermopile is chosen based on the appearance
frequency of the BG data. The chosen BG should be the highest appearance frequency. We use the
absolute-mean error function (AME as a stop criterion and efficiency coefficient). AME equation is:

Error = mean
(∑

i
abs(SMP− y(i))

)
. (21)

However, we encountered some cases that the correction values swing around the SMP.
To overcome the problem, applying Equation (20) of the entropy provides a better operational
condition. As discussed above, to a data with much noise or a fluctuation data vector, the entropy will
be small. In the training, the program will train NN and drive corrected data to a trend of entropy
increase. Therefore, the best entropy will lead to the least swinging correction values.

3.5. Error Correction by Neural Network

In Section 3.1, temperature, 5 V and 9 V monitoring voltages and raw data were presented.
Section 3.3 introduced the data after being preprocessed. Although the thermal and burst noises can
be mitigated by the ACKF filter, the BG noise or error still exists in the data. To reduce this noise, a
NN was applied. The NN was trained by a set of collected data from the Fusarium detection device.
To prepare data for training NN, some estimations should be done first: T1 = T1+T2

2 , V1 = V1+V3
2 and

V2 = V2+V4
2 ; BG is the average of background data; STD(BG) is the standard deviation of background

data; MP is the maximum of PD; WP is the mean value of the whole PD and FP is the mean value of
data points in FP range. To train the NN precisely, many data batches were recorded. Each data batch
will have the previously introduced quantities. Gathering data for these quantities from the measured
data batches, one will have data vectors, which are presented in bold font: T1, V1, V2, BG, STD(BG),
MP, FP and WP. MP vector is used to analyze samples in the trap chamber (Section 3.1), and is the
Ndig data in equation (13) (Section 3.2).

Theoretically, if the operating conditions and the studied sample are unchanged, MP will be
stable. However, the operating condition set (OCS) of T1, V1, V2, BG, STD(BG), FP and WP are
hardly stable, so MP are changed too. These quantities can affect to the MP. In the work, a standard
operating condition set (SOCS) from OCS was chosen. Corresponding this SOCS is the three standard
MP (SMP) values for the three thermopiles. If r = SMP

MP is defined, then r depends on the OCS and SOCS.
If N data batches are measured, then MP = {MP1, MP2, . . . , MPi, . . . , MPN}. From MP vector, r = SMP

MP
vector can be calculated. From Section 3.1, we know that MP is the digital value of amplified signal
from an input signal X. MP can be estimated by: MP = G.X, where, G is the gain of the amplifiers.
As an OCS can affect to the gain, so G depends on the OCS. Therefore, SMP = GS.X, where GS is the
gain at standard condition set. If X is stable, the ratio of MPi is:

ri =
SMP
MPi

=
Gs

Gi
. (22)

Gi depends on the OCS at the measurement ith. The NN would be trained by using OCS of T1,
V1, V2, BG, STD(BG), FP, WP and r. The trained NN would be used to determine rx from a new OCSx

of a new investigation of any new sample. These procedures are depicted in Figure 5.
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From rx, MPx of the new sample can be corrected to eliminate the affection of OCSx by applying
Equation (22), so MPx is adjusted to SMP, which is the MP value corresponding the SOCS:

MPcorrected = SMP = rx ×MPx. (23)

In NN training, the input data and output data to supply into the NN were recorded in two
cases of without-sample and Fusarium sample and in different operating conditions. In this paper,
we mainly focused on the operation of the ACKF and the role of the broadband thermopile in the
upgraded nondispersive thermopile device. The collected data would be preprocessed by the ACKF,
and then being used to train the NN. To evaluate the effectiveness of the ACKF filter, the NN would be
trained by two OCSs of raw data and ACKF-preprocessed data. Based on the comparison of the errors,
entropies and times of NN training after employing the two OCS, the effectiveness can be concluded.
The diagram of using the collected data for NN training is shown in Figure 6.
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3.6. Samples

The samples were used in the experiments are Fusarium oxysporum [22] and starch as these two
samples have the group distinction coefficients are close to each other. In the previous work,
we also used pollen and turmeric to test the device and the analyzing formula, which is the
group-distinction coefficient [20]. The F. oxysporum was collected from rotten garlic bulbs and
nurtured in potato-dextrose-agar Petri dishes by following the instructions in [22]. To be able to collect
Fusarium samples, it requires at least 4 weeks of fostering. The starch sample was from a local food
market. The samples were used to test if the outlier reduction by ACKF and the upgraded Fusarium
detection device can work effectively.

4. Results and Discussion

In [20], four samples were used to test the Fusarium detection method and device. In that research,
the coefficients of Fusarium, pollen, starch and turmeric were 1.144 ± 0.153, 0.136 ±0.116, 0.939 ± 0.073
and 0.794 ±0.139 respectively. It can be seen that Fusarium and starch coefficients were very similar
to each other. Therefore if there is a way to process further the samples with similar coefficients,
it will be useful. In this work, we focused on mainly the method of using the combination of BR,
λ1 and λ2 thermopiles to distinguish the two samples, Fusarium and starch, which have similar
group-distinction coefficients.
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4.1. Reduction of Thermal and Burst Noises

This section presents the operation of the ACKF. Its results and the raw data are shown in Figure 7.
Figure 7a,d shows thermopile signals with noise and outliers. Especially, Figure 7a has many outliers.
Figure 7b,e shows the preprocessed signals by applying ACKF to filter out the noise and the outliers.
Figure 7c,f depicts the entropies of the first-order differentiation of these signals. Each entropy value
will stand for an uncertainty level of a signal. As seen, the ACKF work well, a few outliers still can be
seen in Figure 7b.Sensors 2019, 19, x FOR PEER REVIEW 12 of 21 
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Figure 7. One hundred raw signals and their ACKF preprocessed signals when applying the ACKF in
two different measurement sets. (a,d) Raw signal; (b,e) preprocessed signal and (c,f) entropies of the
first-order differentiate corresponding to each signal.

Figure 8 illustrates some cases showing a better view of the effectiveness of the ACKF. The outliers
can happen in the background or peak zones as shown in Figure 8a,d–f. In these plots, Figure 8f could
not be fixed well as the signal had too much affection from the thermal and burst noises. Figure 8b,c
did not get much effect from the burst noise and the ACKF function was to smooth the raw signals.

Sensors 2019, 19, x FOR PEER REVIEW 12 of 21 

 

 
Figure 7. One hundred raw signals and their ACKF preprocessed signals when applying the ACKF 
in two different measurement sets. (a,d) Raw signal; (b,e) preprocessed signal and (c,f) entropies of 
the first-order differentiate corresponding to each signal. 

Figure 8 illustrates some cases showing a better view of the effectiveness of the ACKF. The 
outliers can happen in the background or peak zones as shown in Figure 8a,d–f. In these plots, Figure 
8f could not be fixed well as the signal had too much affection from the thermal and burst noises. 
Figure 8b,c did not get much effect from the burst noise and the ACKF function was to smooth the 
raw signals. 

 
Figure 8. Close views of background, 𝜆 , and 𝜆  of the raw and preprocessed signals. (a) 
Background; (b,c,e) 𝜆  thermopile signals and (d, f) 𝜆  thermopile signals. 

Table 1 shows the max peak (MP) differences, ∆MP, between the MP of ACKF the preprocessed 
and raw signals of the three thermopiles. Similarly, it also introduces the entropies of the signals of a 
typical case of the outlier effect. It can be seen that 𝜆  raw signal had an outlier in the peak. Thus, ∆𝑀𝑃 of 𝜆  was very large, while ∆MPs of BR and 𝜆  were very small. The last two columns show 
the entropies of the signal differentiation of the three thermopiles of the raw and preprocessed 
signals. Table 1 proves that entropies of differentiation of the ACKF preprocessed data were better 
than the raw data. Thus, the ACKF could process the thermal noise and burst noise well. 

Figure 8. Close views of background, λ1, and λ2 of the raw and preprocessed signals. (a) Background;
(b,c,e) λ2 thermopile signals and (d, f) λ1 thermopile signals.



Sensors 2019, 19, 4900 13 of 21

Table 1 shows the max peak (MP) differences, ∆MP, between the MP of ACKF the preprocessed
and raw signals of the three thermopiles. Similarly, it also introduces the entropies of the signals of a
typical case of the outlier effect. It can be seen that λ2 raw signal had an outlier in the peak. Thus,
∆MP of λ2 was very large, while ∆MPs of BR and λ2 were very small. The last two columns show the
entropies of the signal differentiation of the three thermopiles of the raw and preprocessed signals.
Table 1 proves that entropies of differentiation of the ACKF preprocessed data were better than the raw
data. Thus, the ACKF could process the thermal noise and burst noise well.

Table 1. The investigation of the raw and preprocessed signals.

Illustration Thermopile ∆MP Entropies of Diff.
of Raw Signal

Entropies of Diff. of
Preprocessed Signal
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BR 1,162,693 0.9964 1.2808

λ1 9471 0.9993 0.9964

λ2 1873 0.9964 2.2958

4.2. Reduction of Background Noise

For training data of the NN, 5422 data were consecutively and automatically recorded in many
days to mimic normal working conditions. To find an appropriate and adequate NN structure for our
application, we simply started using a single hidden layer with two nodes, and then the number of
nodes was increased. The number of nodes was stopped at eight. The training times and absolute
errors from the training were taken note. Then, we increased the number of hidden layers to two layers
with m = 2 nodes for the first hidden layers and n = 1 node for the second layers; m was increased
until reaching eight nodes for the training. Then, n was increased to two nodes, and again m started at
m = 2 nodes. After m = 8 nodes and n = 2 nodes, we stopped there and compared the times and errors
in the simulation to find the best NN structure.

The best NN structure had two hidden layers, in which, the first hidden layer had three nodes,
while the second had two nodes. To compare the effectiveness of the ACKF, the raw data and the
preprocessed data were employed. The data aggregation was of five different samples in which there
were no sample, Fusarium samples at different densities and starch sample. In each case, the power
supply for the IR source and the other circuits were unchanged, so the outputs of the three thermopiles
were expected constant. Additionally, the number of batches in each sample-measurement case was
arbitrary. However, the working condition was probably unstable and even the power supply could
have a certain fluctuation, which could affect the output of the detectors. By using the inputs of the
information of the temperature, 5 V and 9 V monitors and the BG to train the NN, we could correct
the recorded-unstable outputs of these thermopiles, and return back more stable outputs. Firstly, we
checked the efficiency of the ACKF by comparing the training times and the absolute errors of the λ1

and λ2 thermopiles. The results are depicted in Table 2.

Table 2. The training results of raw data vs. preprocessed (prep.) data.

λ1 λ2

Raw data Prep. Data Raw Data Prep. Data

Time 12 min 09 s 00 min 46 s 9 min 13 s 1 min 00 s
Error 2.7453 × 104 1.4374 × 104 2.3999 × 105 1.76485 × 105
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In the training NN, both error and entropy criteria were applied. As mentioned in the entropy
section that the AME may cause the data correction swing even though the AME was optimized
through the weights and biases searching. Figure 9 shows the plots of the ACKF preprocessed data
and corrected data of λ1 thermopile of using error and entropy as operational criteria.

In the preprocessed MP data of the λ1 thermopile, Figure 8a illustrates the results of applying
entropy. Figure 9b is the close view of Figure 9a of the four different samples. Similarly, Figure 9c,d
show the results when using the AME criterion. The black lines in the plots are to show the expectation
of MP values. The expectation MPs were chosen from view the correlation of the MP data and the SBGs
of the three cooperative thermopiles. The close views show data of the other four different samples.
It can be seen the entropy operating criterion could work better than the error operating criterion.
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entropy operating criterion, when the entropy was optimized, then the error was very close to the 
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was not similar to the entropy, in this case, it was less than 1, which is not good. These points of view 
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Figure 9. The ACKF preprocessed (prep.) and corrected max peak (MP) data of λ1 thermopile of
using entropy and absolute-mean error function (AME) criteria respectively. (a) Full view of the data
achieved by entropy criterion; (b) close view of the data batches from 5001 to 5422 achieved by entropy
criterion; (c) full view of the data achieved by AME and (d) close view of the MP data from the batches
of 5001 to 5422 achieved by AME criterion.

Figure 10 shows the other views on the operation of these criteria when processing the λ1

thermopile MP data. Figure 10a,b presents the relationship between the training time and entropy of
differentiation, and error of the corrected data respectively. The two red dots in Figure 10a,c are the
two optimized entropies, which are close to each other. Figure 10c,d are the results that were recorded
in one searching batch of 1000 loops.
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Figure 10. The entropies and AMEs were achieved from the training NN, which was trained in 1000
loops for λ1 thermopile. The red dots show the optimization values. (a) Entropies from applying
entropy for the differentiated MP data; (b) errors from applying the AME criterion; (c) recorded
entropies after 1000 loops and (d) recorded errors after 1000 loops.

Figure 11 shows the results of processing BR and λ2 thermopiles, and the differentiation plots
of the data. Figure 11a is of the BR thermopile and Figure 11b is of the λ2 thermopile. A note that
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the entropy was applied to the differentiation of the preprocessed data and the corrected data. The
differentiation plots of the two types of data shown in Figure 11 belong to the λ1 thermopile. Table 3
shows the results of applying entropy and AME operating criteria for λ1 thermopile. In each method,
both AME and entropy quantities were recorded for investigation. From Table 3, in the entropy
operating criterion, when the entropy was optimized, then the error was very close to the optimal
error of the error operating criterion. However, in the error operating criterion method, it was not
similar to the entropy, in this case, it was less than 1, which is not good. These points of view could be
more consolidated by reviewing Figures 9 and 10.Sensors 2019, 19, x FOR PEER REVIEW 15 of 21 
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Table 3. The operating coefficients of the entropy and error operating criteria.

Entropy Operating Criterion Error Operating Criterion

Time 15 min 47 s 21 min 37 s
Optimal entropy 1.0071 N/A

Optimal Error N/A 1,293,496.24
Entropy N/A 0.9999

Error 1.2935 × 106 N/A

4.3. Analysis

From experiments, as the group distinction coefficients, η, of the Fusarium oxysporum
chlamydospore [22], and the starch samples were somewhat similar, in this section, the analysis
results of these samples were introduced. Applying the trained NN for these two samples can help to
correct or calibrate the data of the three thermopiles. Figure 12 shows the ACKF preprocessed data
and corrected data of the two samples, which were measured in 50 batches.

From the figure, one can see that the output data of BR were very stable and the correction process
calibrates the data. Applying Equation (11), the group distinction coefficients of the two samples could
be found. Figure 13a shows ηstarch and ηFusarium plots. It can be seen that ηstarch and ηFusarium were very
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close to each other. To determine the number of Fusarium in the trap, Equation (12) was employed.

Figure 13b depicts the relation of the number of Fusarium and log(
Pλ1

P0,λ1
) in case of applying data of

λ1 thermopile.Sensors 2019, 19, x FOR PEER REVIEW 16 of 21 
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Figure 12. The ACKF preprocessed and corrected data of Fusarium and starch. (a) BR thermopile case;
(b) λ1 thermopile case and (c) λ2 thermopile case.

The fitted curve in Figure 13b was formed by applying data of the Fusarium samples, which their
known quantities (N):

fλ1= fitting(log(
Pλ1

P0,λ1

), N). (24)

As the group distinction coefficients of Fusarium and starch are close to each other, thus it can
cause confusion at certain times. Table 4 shows the means of the group distinction coefficients, the
absolute errors, and the relative errors of Fusarium and starch. From the table, one can see these values
were very close to each other.
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Table 4. Group distinction coefficient.

Fusarium Starch

η 1.125 1.31
∆η 0.110 0.06
εη 9.8% 4.6%
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To improve the fidelity, the broadband thermopile was used. We investigated the other samples
of starch and Fusarium that their quantities were unknown in advance. Making an assumption that

all the samples were Fusarium, we could find the sample quantities Nx by replacing log(
Pλ1
Pλ10

) into fλ1

of Equation (24). Figure 13b illustrates the extrapolated and interpolated values of the new samples.
From the data of the BR thermopile and the numbers of known-in-advance F. samples (Fusa. 0), the
fitted curve was formed:

fBR = fitting(N, log(
PBR

P0,BR
)). (25)

Additionally, it is necessary to form the lateral fitted curves for the max and min data points,
which can be seen from the error boxes. error1 and error2 are the errors of the numbers of the Fusarium
oxysporum chlamydospore and log10( PBR

P0,BR
) respectively. Thus, the lateral-fitted curves are:

fBRmax = fitting(N + error1, log(
PBR

P0,BR
) + error2). (26)

fBRmin = fitting(N–error1, log(
PBR

P0,BR
)–error2). (27)

In Equations (26) and (27), error1 and error2 are the errors of the quantity number of Fusarium
sample N and log( PBR

P0,BR
) respectively. The lateral curves will create a validation area (VA). In the case of

investigating new measurement, if the point of the quantity number N and log( PBR
P0,BR

) is in the VA and η
of the sample is in the range of 1.125 ± 0.110, we could conclude that the sample is Fusarium. Drawing
the points of (Nx, log( PBR,x

P0,BR
) ) is presented in Figure 14. The figure also provides a visual view of the

lateral curve and the VA. In Figure 14, the points of starch samples were out of the VA, so along with η
of starch, we could go to a conclusion with more confident and reliable. For the other two Fusarium
samples, we could see that almost all of the measurement points were in the VA, except few points on
the left of the figure.
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4.4. Discussion

The ACKF helps to reduce thermal noise and burst noise well. To be able to fix the outliers of BG
or peak data, at least some reference data points were not affected by the outliers. From these reference
data points, the ACKF could eliminate the outliers. In reality, there are cases that the ACKF cannot fix
the error data (Figure 8f), as the outliers happen too close to each other. Therefore, the reference data
points are covered by the burst noise. As a result, the error data cannot adequately be fixed. Besides,
from our experiments, we found that the ACKF could also help to reduce the time to search the global
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minima for the NN. This could be explained as the thermal noise and burst noise occurring in the BG
noise were filtered very well by the ACKF (Section 4.1), so the NN could go to the global minima faster.
The evidence of this point of view can be seen in Table 2.

Entropy is not only a useful tool to evaluate the work of Kalman filter, but also can be applied as
an operational criterion to replace the other criteria such as the mean absolute error. The results in
Sections 4.1 and 4.2 show the efficiency of the entropy. From Figure 8c,d, and Table 2, although the
error was the smallest after 1000 loops, the visual results were not what we expected. The corrected
points fluctuated surrounding the expected lines. Entropy was applied to the differentiation of the
preprocessed and corrected MP data rather than being applied directly to these data. Loosely speaking,
the differentiation step helped to remove the difference in the magnitude of these MP data, as we only
focused on the BG noise. The information left was mainly the BG noise, which influenced the MP data
(Figure 10c). Entropy now reveals how much BG noise is removed by comparing the entropies of the
differentiation of the preprocessed and corrected MP data.

Figure 12 presents the results when the trained NN was used to correct the error data of Fusarium
and starch in which these samples were measured in many batches. In Figure 11a, one can see that
the NN adjusted the MP of both samples. In Figure 11b,c, the MP data of starch achieved the largest
errors as they lasted from around 0.6 × 106 to 1.7 × 106 in the case of λ1 thermopile, and from around
4.3 × 106 to 9.2 × 106 in the case of λ2 thermopile.

As the group-distinction coefficient of Fusarium and starch were very similar, the addition of
another thermopile detector, the BR thermopile, could help to distinguish better these two samples.
Figure 13 shows that some Fusarium points were out of the VA. This could be explained that in the
data there were outliers, which the ACKF could not correct them. The figure also introduced a case
that the starch point was in the VA. However, in general, one could see that most of the experiment
points were in the VA, so the device could distinguish the Fusarium sample from other samples. With
an adding detector, the ability of the device could be expanded. It could help to detect the group of
many more substances.

The group-distinction coefficient of the starch was found in this work was a little bit different from
the value in [20], 0.9390 ± 0.0732. This could be explained that the moistures of the starch samples
used in this work and in [20] were different. A slight change in moisture of the starch sample might
affect its group-distinction coefficient.

5. Conclusions

The proposed adaptive-cognitive Kalman filter worked well to reduce the thermal noise and
burst noise. The background noise could be mitigated by applying a neural network. The entropy
could be applied to replace the mean absolute error as an operational condition. The upgraded device
increased the reliability and precision of the current Fusarium detection and quantifying by applying
the proposed techniques. Additionally, by adding one more thermopile, the group coefficients of
substances were more distinct. This assisted the device to distinguish different substances easier with
higher accuracy compared to the use of only two thermopiles.
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