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Abstract: Rapid and accurate detection of driver fatigue is of great significance to improve traffic
safety. In the present work, we propose the man-machine response mode (MRM) to relieve driver
fatigue caused by long-term driving. In this paper, the characteristics of the complex brain network,
which can effectively reflect brain activity information, were used to detect the change of driving
fatigue over time. Combined with the traditional eye movement characteristics and a subjective
questionnaire (SQ), the changes in driving fatigue characteristics were comprehensively analyzed.
The results show that driving fatigue can be effectively delayed using the MRM. Additionally, the
response equipment is low in cost and practical, so it will be practical to use in actual driving
situations in the future.
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1. Introduction

Fatigue driving is one of the main causes of traffic accidents [1,2]. Previous investigations found
that 15%-20% of fatal crashes involve driver fatigue [3-5]. Therefore, it is necessary to quickly and
accurately detect driving fatigue and take measures to relieve it in time. Researchers have mainly
studied the problem of driving fatigue detection from subjective and objective aspects. The former
type of judgment of driving fatigue is mainly based on the subjective judgment of the driver [6]. The
latter mainly judges driving fatigue based on physiological characteristics of drivers. Previous studies
have found that human physiological signals, such as electrocardiogram (ECG), electrooculogram
(EOG) and electroencephalogram (EEG), can effectively reflect people’s mental fatigue.

There have been many studies on mental fatigue based on human physiological signal
characteristics [7,8]. Previous studies have showed that human mental fatigue is associated with eye
movement characteristics [9-11]. Di Stasi et al. found that the saccadic eye movement parameters are
sensitive indicators for human mental fatigue [12]. Schleicher et al. found a strong correlation
between human mental fatigue and eye movement [13]. Cruz et al. showed that the eye and eyelid
movement can be used as predictors of performance decrement resulting from mental fatigue [14].
There have been many studies on human mental fatigue based on EEG signal features. Four
frequency sub-bands d (0-4 Hz), 0 (4-8 Hz), a (8-14 Hz) and p (14-32 Hz) are widely applied to
analyze the state of driving fatigue. For example, the relative energy ratio (a + (3)/01 [15] is an
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algorithm that uses the EEG alpha spindle and detection of the alpha band relative energy to signify
the level of driving fatigue [5]. A previous study has shown that the brain fatigue characteristics can
be easily detected from the posterior (P3, P4) brain region using EEG signals [7]. Therefore, the leads
associated with the brain region can be used as the preferred ones for the analysis of driving fatigue
in this study. In our study, we mainly measure the driving fatigue based on the characteristics of EEG
and EOG.

There are many traditional ways to relieve human mental fatigue, such as reducing the intensity
of work, having a short rest, drinking caffeinated beverages and taking special medicines. In recent
years, electrical stimulation has been widely studied as a novel method to relieve human fatigue
[16,17]. Dailey et al. found that human pain and fatigue can be relieved by using transcutaneous
electrical nerve stimulation [18]. Zhao concluded that human physiological fatigue can be relieved
by stimulating points of the human body [19]. In terms of human cognition, some studies have shown
that a proper number of cognitive tasks are more conducive to alleviating mental fatigue than a small
number. Oron-Gilad et al. demonstrated that some cognitive tasks, especially ones involving
understanding and memory, could keep drivers alert [20]. Research by Verwey and Zaidel showed
that when drivers perform an attention-demanding secondary task while driving, this can effectively
improve alertness [21]. Drory’s experimental results showed that a non-mandatory driving-related
task of a reasonable size could make a driver maintain high levels of alertness [22]. Gershon et al.
indicated that undertaking an interactive cognitive task could effectively inhibit driving fatigue [23].
In our study, based on the above research [20-23], we adopted a method to appropriately increase
the driver’s cognitive intensity (for example, by doing a non-mandatory driving-related task) to
relieve driving fatigue caused by long-term driving.

2. Materials and Methods

2.1. Subjects

A total of 12 healthy subjects (10 males and 2 females; aged 32 + 1.6 (standard deviation, SD))
were selected from a pool of volunteers to carry out the experiment. All subjects had to hold a driver’s
license. Additionally, they needed to satisfy the conditions of having no sleep diseases and no other
mental disease. They also had to be free of medication during the experiment. During the experiment,
subjects were not allowed to drink alcohol, coffee or other nerve-stimulating drinks. Additionally,
the experiment was divided into two types, with the normal driving mode being arranged in the first
type of experiment and the man-machine response mode (MRM) being arranged in the second one.
All subjects needed to complete the two types of driving mode experiments. It should be noted that
the MRM mode of experiment can only be carried out after all subjects have completed the first type
of experiment. All subjects were numbered from 1 to 12. In the experiment, the subjects were tested
in sequence according to their number. Only one subject was assigned to the experiment each day.

2.2. Procedure and Electroencephalogram (EEG) Recording

This experiment was carried out in a laboratory-simulated driving environment. The indoor
temperature of the laboratory was 2025 °C, and the humidity was 30-50% relative humidity (RH).
A vehicle simulator (JT/T378) was used to simulate the real driving environment. This model of the
simulator included several main components such as the accelerator, clutch, foot brake, computer,
steering wheel, hand brake, and liquid crystal display. The upper computer driving software
included a variety of driving modes, one of which was the driving teaching mode. In the experiment
stages, all subjects were required to drive continuously at a speed of 80-100 km/h. The weather was
sunny, with broad vision and good visibility. Meanwhile, the subjects were asked to drive in a road
environment with low traffic volume. All subjects were instructed to drive in automatic mode.
Movements unrelated to the experiment, such as head and hand movements, were avoided as much
as possible to reduce artefacts in the EEG recording.
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This experiment was carried out using a car simulator. Figure 1 shows the experimental
environment and the experimental equipment used. All subjects continuously drove for three hours
(13:00-16:00 p.m.). Seven sets of data were collected for every subject. The data acquisition was
divided into seven stages (stage 1-13:00 p.m., stage 2-13:30 p.m., stage 3-14:00 p.m., stage 4-14:30 p.m.,
stage 5-15:00 p.m., stage 6-15:30 p.m. and stage 7-16:00 p.m.). For each stage, data collection lasted for
3 min at a time. Additionally, half an hour of sleep (12:00-12:30 p.m.) was arranged for all subjects to
avoid the influence of fatigue due to a lack of sleep. We collected EEG data using Neuroscan, whose
electrodes (Ag/AgCl) were attached to the scalp according to the international 10-10 system.
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Figure 1. The experimental set-up.

Previous studies have shown that EEG equipment with fewer electrodes (Emotiv) can effectively
monitor people’s driving fatigue [24-27]. The Emotiv EEG acquisition equipment has 14 electrodes
(14 channels = AF3, AF4, F3, F4, FC5, FC6, F7, F8, T7, T8, P7, P8, O1, and O2), which is consistent with
the 14 electrodes (14 channels = F3, F4, F7, F8, FT7, FT8, C3, C4, TP7, TP, P3, P4, O1, and O2) on the
Neuroscan device selected in this paper. The sampling rate of this device is selected to be 1000 Hz. In
addition, the 14 electrodes of these two devices are placed in almost the same positions on the surface
of the brain’s cerebral cortex. Therefore, in this paper, we chose a relatively small number of 14
electrodes to study driving fatigue to effectively reflect the brain activity features in the frontal,
central, and posterior regions of the human brain.

In our study, all subjects were informed of the research background and research plan of the
experiment. Additionally, all subjects were free to choose whether to continue participating in the
experiment or not. Moreover, all of them gave their written informed consent to be included in the
study. The Ethics Committee at the Northeast Electric Power University Hospital endorsed the study
protocol, according to the Code of Ethics of the World Medical Association (Declaration of Helsinki).

The experiments were carried out in a laboratory simulation environment. Figure 1 shows the
experimental set-up.

In the experiment, the MRM was used to relieve driver fatigue caused by long-term driving. The
hardware of the MRM mainly includes an answer switch, a Micro Control Unit (MCU), a speaker,
and a voice chip module (ISD1700) produced by the Information Storage Devices. For the MCU, the
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model we chosen was the STM32F103RCT6. There are three ways in which fatigue can be relieved by
adopting this mode. Firstly, the MCU randomly gives two two-digit numbers through the speaker,
which take values from 0 to 100. After hearing these two numbers, the subjects need to calculate the
sum of the two numbers and judge whether the sum is three digits. If this sum exceeds three digits,
the subjects press the “right” answer switch, otherwise press the “left” answer switch. Secondly, the
subjects need to judge whether this sum is divisible by 3. Similarly, subjects need to press the “right”
answer switch on the steering wheel if the sum can be divided by 3, otherwise press the “left” answer
switch on the steering wheel. The subjects need to complete both responses within 5 s, otherwise, it
isregarded as a mistake. Thirdly, the MCU plays cheerful music (Bandari Light Music) for 3 s through
the speaker if the response is correct, otherwise, the speaker plays an error warning sound (Siren
Vintage Sounds). In the experiment, the MCU continuously raises questions. This fatigue-relieving
operation mode (MRM) was repeatedly executed until the end of the driving experiment in the MRM.
In the experiment, the data acquisition needed to stop responding to eliminate interference.

Additionally, before the start of the experiment, we needed to judge whether the extra increase
of the cognitive load (arithmetic operation) induced by the MRM will affect the subjects’ ability to
cope with unexpected problems. For 12 subjects, each of them needed to drive for 1 h in the two
driving modes (the MRM and normal driving mode), respectively. When the driving time reaches 1
h in one driving mode, the subjects need to do an emergency test on the emergency stop of the vehicle
in front of them and record the reaction time. The emergency test in the MRM can only be carried out
after all the subjects have completed the test in the normal driving mode. The test period was from
13:00 p.m. to 16:00 p.m.

2.3. Methods

In the experiment, EEG signals were collected every half an hour, as shown in Figure 2A. Then,
the EEG signals were preprocessed by wavelet packet decomposition (WPD), as shown in Figure 2B.
Finally, the preprocessed EEG signals were used to analyze the characteristics of the brain network,
eye movement, and power spectrum, respectively. The whole process of EEG signal processing in
this paper is shown in Figure 2.

Signal preprocessing

——

(B)
(A) EEG signal acquisition 0

Brain network IEye movement Relative power
spectrum ratio

2 the relative power
H vl |spectrum ratio /8 +a
z | P

‘ | \

e o i (&)

Driving fatigue
characteristics
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Figure 2. (A) EEG signal acquisition; (B) 14 channels of original signals collected; (C) Building brain
network; (D) Analysis of eye movement signal characteristics; (E) Calculate the relative power
spectrum ratio 3/0+a; (F) Analysis of Driving Fatigue Characteristics.
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2.3.1. Statistical Analysis Algorithm

The statistical analysis method (two-tailed t-tests) was applied in our study. Using this method,
we compared the differences in detection results. In the comparative analysis section, the two-tailed
test was used to identify significant differences in driving fatigue between the two driving modes
(the MRM and the normal driving mode).

2.3.2. Signal Preprocessing

The EEG signal is a weak electrical signal, which is extremely vulnerable to external interference.
Therefore, denoising is needed before signal analysis. In our experiment, we chose the WPD, which
can provide more sophisticated analysis of signals, to deal with the noise. Additionally, the WPD can
also select a suitable frequency band to match the signal spectrum according to the characteristics of
signal analysis, which can reflect the essential characteristics of the signal. The formula of WPD is
shown as follows:

Assume that the original signal is expressed as f(t). We obtained 2i sub-bands in the i points class
after WPD. The source signal f{t) can be expressed as:

211
SO=Z 1) = Fol)+ @)+ (1) @

in which, j=0, 1, 2, ..., 2. =1, fii(t) is the reconstruction of signals in the ith layer node (i,j) when
using wavelet packet decomposition. According to Parseval theorem and Equation (1), the energy
spectrum of the signal f(t) after WPD can be calculated and obtained:

E =51 f,0)F di=E v, ®

in which, Eij(tj) is the band energy by which f(t) was decomposed to node (i,j) using WPD. xjx (j =
0,1,2,...,2-1; k=1,2,...,m) is the discrete points amplitude of the reconstructed signal fi;(tj). m is the
signal sampling points. In our study, we conducted 4-layer decomposition of the band to extract ©
(4—8 Hz), o (8—14 Hz) and 3 (14-32 Hz) rhythms.

2.3.3. Correlation Coefficient

In statistics, the Pearson correlation coefficient (Pearson product-moment correlation coefficient,
abbreviated as PPMCC or PCCs) is a method for measuring the relationship between two variables.
In this paper, we use this method to analyze the relationship between any two channels of EEG
signals. The Pearson correlation coefficient is defined by:

A= ECOXY =B _ B0~ EQOED) -

OxOy OOy

in which, E(-) is the expected value operator, and ox, oy are the standard deviation (SD). In the present
situation, we analyzed series consisting of n samples of data. Accordingly, the correlation coefficient
was computed by:

- — x.y.—n;;
] & x.—x - Z o 4
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in which, x and y are the series means, and ox, oy are the standard deviation.
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2.3.4. The Complex Brain Networks

Previous studies have shown that the method of analyzing brain network connectivity has been
proven to be a very effective and informative way to analyze brain function and mental state [28-30].
In this study, we used the two parameters of the complex network, clustering coefficient and global
variables, to analyze the brain functional differences of subjects. These two parameters are described
in the following sections.

e  Clustering Coefficient

For node i of a complex network, which is expressed as the ratio of the number of existing edges
to the number of maximum possible edges between the neighbors of i [31,32], the clustering
coefficient can be represented as:

E,
C =— =i
" D(D,-1)/2 ®)

in which, Ei is the number of existing edges between the neighbors of node i and D is the degree of
connectivity of node i.

e Global efficiency

The higher the value of the complex network’s parameter G, the faster the information
transmission is. Lij is the path length between two nodes i and j, which is the minimum number of
edges needed to connect. Lij is mathematically defined as Equation (6) [31,32]:

1 N
L=——7— D, 6

N(N_l)i,j;,#j ! ( )
in which, Dj is the minimum path length L between nodes i and j. N is the number of nodes within a
network. The global efficiency of nodes can be defined by:

1 1

G=E, =— % —
global N(N _ 1) et Li’j (7)

in which, Lij is the minimum path length between nodes i and j. N is the number of nodes within a
network. From Equation (7), it can be concluded that a network, which is characterized by a short

minimum path length between any pair of regional nodes, has high global efficiency [33,34].

In this paper, the correlation coefficients between pairs of signals from 14 channels were calculated
using Equation (4). Then, brain networks were constructed according to the following steps.

The sub-band signals 0 (4-8 Hz), which were extracted from the denoised EEG signals (Figure 3A),
were used to construct the adjacent matrix (Figure 3B). Then, a reasonable threshold value T was
determined, which was used to determine the edge connection between two nodes. This means that
there was an edge connection between node i and node j if the correlation coefficient between them
was greater than the threshold value T, otherwise, no edge existed between nodes i and j. Finally, the
networks were formed (Figure 3C).



Sensors 2019, 19, 4883 7 of 19

X13,0 X13,13

(A) EEG data (B) Adjacent matrix (C) Brain network

0o 100 200 300 400 500

Figure 3. Steps of the construction of brain network.

2.3.5. The Relative Power Spectrum

The four sub-band signals of human EEG signals o (0-4 Hz), 0 (4-8 Hz), a (8-13 Hz), and {3 (13-
35 Hz) are particularly useful for characterizing brain activity. Their different power spectrum ratios,
0/p, O/a + B, 0 + a/B, O + a/a + 3, and P/a, are often used to analyze people’s mental fatigue
characteristics, which can also show different characteristics of driving fatigue [31,35,36]. In this
paper, we used the ratio 3/(0 + o) to analyze driving fatigue.

2.3.6. Subjective Questionnaire

Previous studies have shown that the subjective questionnaire (SQ) is an effective method to
evaluate people’s mental fatigue [37,38]. In this paper, we used the 7-point Samne Perelli Fatigue
Scale (1-Fully alert, wide awake, 2-Very lively, responsive, but not at peak, 3-Okay, somewhat fresh,
4-A little tired, less than fresh, 5-Moderately tired, let down, 6-Extremely tired, very difficult to
concentrate, 7-Completely exhausted, unable to function effectively) to evaluate the driving fatigue
of the subjects. At each stage of the experiment, subjects were asked to rate their subjective fatigue
and give a score.

3. Results

3.1. Subjective Questionnaire

The subjective questionnaire is a common subjective way to evaluate human mental fatigue
[38,39]. Figure 4 shows the variation tendency of the average questionnaire scores for the 12 subjects
at the 7 driving stages.
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Figure 4. Subjective questionnaire (SQ) scores (mean + standard deviation (SD)) for the 7
driving stages.

As can be seen from Figure 4, the average SQ score of subjects driving in the two test modes
presented an increasing trend, which means that the subjective driving fatigue degree of subjects
continued to deepen over time. In addition, there was no significant difference in the average SQ
score between the two driving modes from driving stage 1 to stage 4. However, the subjective fatigue
degree of the subjects in the last three driving stages (stages 5-7) was obviously lower in the MRM
than in the normal driving mode, which means that the MRM can alleviate driving fatigue compared
with normal driving.

3.2. The Response Error Rate of Subjects

In our experiment, with the prolongation of driving time, the subjects experienced different
degrees of driving fatigue and their alertness also decreased. When the response time of a subject
exceeded 5 s, the system thought that the response was overtime, and when the subjects answered
incorrectly, the system recorded the answer as wrong. Both cases were recorded by MCU within 27
min of each experimental stage. The results are shown in Figure 5 below.

[ overtime
B Error response

The response error rate of subjects

Driving stages Subjects

Figure 5. The response error rates of the subjects.
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Figure 5 shows the response error rates of subjects in this experiment. From the data in the figure,
it can be concluded that with the driving time, the reaction time of the subjects increased, and some
of them had already exceeded the time limit. In addition, the response error rate also showed an
upward trend over time. This means that although this driving mode can combat driving fatigue,
driving fatigue will still become more and more serious with the extension of driving time.

3.3. Brain Network Analysis

3.3.1. Choice Threshold (T)

Previous studies have shown that when people gradually enter a state of mental fatigue, the
EEG activity characteristics in the human brain will change accordingly [39]. Craig et al. found that
the activities of 0 and a increased with the gradual increase of human mental fatigue [32]. Belyavin
and Wright observed an increase in the O activities and a decrease in the 3 activities when a human
gradually became mentally fatigued and their alertness decreased [40]. Other studies have also
shown an increase in O activity during mental fatigue [36,41,42]. Summing up the research results of
the above studies, we can conclude that when humans gradually become mentally fatigued, their
alertness decreases along with an increase in 0 activity (see Section 4.2 for details). Therefore, we used
the O sub-band signals to analyze driving fatigue using the brain network.

In order to analyze the differences in brain network features constructed using different
thresholds, networks were formed at all the thresholds for each stage. In our study, we conducted a
comparison of the whole range of values of T, 0.01 < T < 0.51, with increments of 0.025, and repeated
the calculation for each value of T. In general, the selection of the threshold value should depend on
the research problem and should fall within the scope of an educated guess [43]. Figure 6 shows the
comparison of the coefficient C averaged over subjects in the driving stage 1 with that of other stages
(driving stages 2-7).

1

—A Driving stage1 Driving stage1
—il- Driving stage2

Driving stage1
—B- Driving stage4

—i- Driving stage3

0.8
0.6
o

0.4

0.2

0 01 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Threshold Threshold Threshold
(A) (B) ©

A Driving stage1
— Driving stage§

A Driving stage1
— Driving stage6

A Driving stage1
— Driving stage?

0.8 0.8

0.6 0.6
0.4 0.4

0.2 0.2

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 04 0.5
Threshold Threshold Threshold
(D) (E) (F)

Figure 6. (A) Comparison of the C between driving stage 1 and driving stage 2 when the
threshold value take different values; (B) comparison of the C between driving stage 1 and
driving stage 3 when the threshold value take different values; (C) comparison of the C
between driving stage 1 and driving stage 4 when the threshold value take different values;
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(D) comparison of the C between driving stage 1 and driving stage 5 when the threshold
value take different values ; (E) comparison of the C between driving stage 1 and driving
stage 6 when the threshold value take different values; (F) comparison of the C between
driving stage 1 and driving stage 7 when the threshold value take different values.

Figure 6 shows the changes in the clustering coefficient C for different brain networks.
Obviously, the changes in C showed a downward trend in all driving stages. The contrast difference
was significant when the threshold value was chosen in the numerical interval 0.235~0.46 (stage 1-
2:1t] =4.151 > foos,18 = 2.101, p = 0.001 < 0.05; stage 1-3: 1| =3.653 > foos18=2.101, p = 0.002 < 0.05; stage
1-4: 1t] = 3.492 > toos,18 = 2.101, p = 0.003 < 0.05; stage 1-5: It = 3.983 > foos,18 = 2.101, p = 0.001 < 0.05;
stage 1-6: || = 4.091 > foos18 = 2.101, p = 0.001 < 0.05; stage 1-7: |¢| = 4.772 > to0518 = 2.101, p = 0.001 <
0.05).With this method, the threshold interval (0.26~0.435) with significant differences in global
efficiency was determined. We can conclude that the parameter (G, C) difference in the brain network
is obvious when the threshold interval is selected to be 0.26~0.435. In our study, the mean value of
the threshold interval 0.26~0.435 was calculated to be T =0.3475. The brain network corresponding to
each stage of the driving experiment was constructed. The results are shown in Figure 7.

3.3.2. Network Characteristics

In this paper, we built brain networks for subjects driving in normal mode and the MRM
according to the steps in Figure 3. Figure 7 shows the brain network for the subjects at 7 stages (stages
1-7).

JAN
)
Stagel Stage6 Stage7
(A)
JAN
I AN

v XN/
4
Stage2 Stage3 Staged Stage5

(B)

Figure 7. (A) Changes of Brain Network Connections at all driving stages (1-7) in normal driving
mode; (B) Changes of Brain Network Connections at all driving stages (1-7) in Man-machine
Response mode.

Figure 7 shows the change trend of the brain network for subjects following extended driving time
under two experimental driving modes. There were no significant differences in the brain network
between the two driving modes in the first three driving stages. However, after driving stage 3, there
was a significant difference in the brain network between the two driving modes (t = 2.719 > foos6 =
2.447, p = 0.04 < 0.05). The brain network parameters C and G were calculated by Equations (5) and
(7), respectively. The change tendencies of the mean values of the two parameters are shown in Figure
8.
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Figure 8. (A) Variation tendency of the cluster coefficient C at 7 driving stages; (B)Variation
tendency of the global efficiency G at 7 driving stages.

From Figure 8, we can clearly see that these two brain network parameters (C and G), which
relate to the brain networks of the subjects in two driving modes (driving in normal mode and in the
MRM), showed increasing trends over time. Moreover, these two brain network parameters (C and
G) showed significant differences in the two driving experimental modes (C: t = 2.678 > to.05,12=2.179,
p=0.02<0.05; G: t =2.289 > t0.0512=2.179, p = 0.04 < 0.05). The growth trends of the parameters (C and
G) of subjects driving in MRM were slower compared with subjects driving in normal driving mode.

3.4. The Relative Power Spectrum Ratio

Previous studies have shown that it is very common to analyze people’s mental fatigue state by
using the relative power spectrum of EEG signals. The variation tendency of the relative power
spectrum ratio [3/(0 + a) over time is shown in Figure 9.

1.4+ [ INormal 1.4 —
- Normal
I vRM

4
o -

Ratio B/(8+a)
o
s

Ratio B/(8+a)

o
ES

e
N

o

Driving stages Driving stages

(A)P3 (B) P4

Figure 9. The ratio (3/0 + ot of the relative power spectrum.

Figure 9 shows that the ratio (/0 + a) of the relative power spectrum presented a downward
tendency over time, which indicates that the level of brain activity decreased over time. The driving
fatigue degree of subjects gradually decreased over time. Additionally, the ratio /0 + o, which relates
to the MRM, showed a smaller downward trend compared with driving in the normal driving mode.
The difference between the two driving modes is significant (P3: [t =2.527 > t00512=2.179, p = 0.03 <
0.05; P4: [t =2.633 > to0512=2.179, p = 0.02 < 0.05). This means that the driving fatigue of subjects in
the MRM decreased more slowly compared with that of the normal mode.
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3.5. Eye Movement

Studies have shown that humans make coordinated movement of the eyes to orient the high-
acuity part of the retina on relevant objects in the world and facilitate their processing [12,13,44].
Human eye movement signals are easily detected in the prefrontal region of the brain. In this paper,
channels F3 and F4, in which the signal waveforms have a negative correlation when eye movements
occur, were chosen to identify eye movement features. Taking eye movement to the right as an
example, the waveforms of the two leads F3 and F4 are shown in Figure 10.

—F3
Eyes F4
movement
: v
3
)
o
2
=
£ g Ml
= ey
T A
300 800 1300 1800 2300
Time (ms)

Figure 10. Eye movement signals.

In the experiment, a moving window with a width of 20 samples was established, and the eye
movement signals were identified using Equation (8):

K = Y(Xi20) = ¥(x;) ®)
20
The absolute value of K, which reflects the signal fluctuation characteristics of F3 and F4, is
greater than 2 when eye movement occurs. At the same time, the signal waveforms of F3 and F4 show
a negative correlation when eye movement occurs, and the absolute value of the correlation
coefficient is greater than 0.85. In our work, K and the correlation coefficient r were used to identify
eye movements. The discrimination logic is shown in Figure 11.

1: Eye movement
0: Non - eye movement

OuUT

Figure 11. The logic of motion recognition.

The logical relationship for eye movement recognition is illustrated in Figure 11. The recognition
results of eye movement are shown in Figure 12.
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Figure 12. The sum of the eye movements of each driver in the experiments.

Obviously, Figure 12 shows that the number of eye movements per minute presented an overall
downward trend, which means that the two driving modes (driving in MRM and driving in normal
mode) can gradually deepen the driving fatigue of subjects. In addition, the number of eye
movements, which relates to the MRM, showed a smaller downward trend compared with driving
innormal driving mode and the difference between the two driving modes was significant (t =2.288 >
toos12 = 2.179, p = 0.04 < 0.05). This indicates that the driving fatigue of subjects in MRM decreased
more slowly compared with in the normal mode.

4. Discussion

Previous studies have shown that people in a state of driving fatigue show abnormal external
physiological characteristics such as unresponsive behaviors, decreased vigilance and errors in
judgment, which seriously threatens traffic safety [45—-47]. Traffic accidents caused by driving fatigue
account for a considerable proportion of all accidents [48,49]. Hence, it is necessary to effectively
relieve driving fatigue. Studies have shown that repetitive and monotonous external environmental
information can easily lead human beings to be in a state of mental fatigue, in which our brain activity
is inhibited [50-52]. In our study, we tried to stimulate human brain nerves repeatedly to keep them
active all the time to combat mental fatigue.

4.1. Brain Network

Previous studies have shown that the characteristics of the brain network change with the
changes of human alertness [53-55]. Kar and Sun indicated that there is a growth trend of the two
parameters (C and G) as subjects’ fatigue deepens [33,56]. Stam et al.’s study showed that human
mental fatigue continues to deepen during the continuous operation processes, and the
corresponding brain network parameters C and G show overall upward trends [57]. This result is
consistent with our research. In this study, as shown in Figure 8, the two brain network parameters
(C and G) of the subjects driving in normal mode also showed overall upward trends. However, the
subjects driving with MRM showed slower upward trends because the brain nerves were
continuously stimulated at successive driving stages, which keep the nerves in a relatively excited
state.

4.2. The Relative Power Spectrum Ratio

Previous studies have shown that when people gradually enter a state of mental fatigue, the
EEG activity characteristics in the human brain will change accordingly [39]. Craig et al. found that
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the activities of O and « increased with a gradual increase in human mental fatigue [32]. Belyavin and
Wright observed an increase in O activities and a decrease in 3 activities when humans gradually
became mentally fatigued and their alertness decreased [40]. According to the study by Torsvall and
A’kerstedt, an increase in a activities is the most sensitive indicator of mental fatigue [58]. Other
studies have also shown an increase in 0 activity during mental fatigue [36,41,42]. Summing up the
research results of the above researchers, we conclude that when humans gradually become mentally
fatigued, their alertness decreases along with increases in 0 and a activities and a decrease in 8
activities. Based on this viewpoint, the ratio (3/0 + a) will decrease with the deepening of mental
fatigue, which is consistent with our research results, as shown in Figure 9.

4.3. Eye Movement

In our experiment, the eye movement signals were very obvious. When people perform eye
movements (move to right or move to left), the voltage changes in opposite directions will occur in
symmetrical brain regions and corresponding EEG waves will also show fluctuations in opposite
directions. In our study, for eye movement signals, the timestamp from the beginning of the
fluctuations to the stable fluctuations was at least 20, as shown in Figure 10. At this time, the K value
is calculated by Equation (8), whose absolute value was at least 2. In our study, we chose a time
window of 20 and K| >2 to detect eye movements. The eye movement signals, whose waves showed
opposite characteristics in symmetrical brain regions, were identified using the Pearson correlation
coefficient. In this paper, taking the time width as 20, the fluctuation characteristics of the eye
movement signals were calculated, and the absolute minimum value of the Pearson correlation
coefficient for two symmetric channel (F3 and F4) signals was 0.85. Therefore, we chose this condition
(IKI'>2and |7l >0.85) to judge eye movement.

Studies have shown that eye movement frequency is related to mental fatigue [59,60]. Marzano
et al. studied human eye movements and concluded that when humans gradually enter a state of
mental fatigue, their eye movements become significantly slower [61]. The research organized by
Shin et al. showed that when subjects’ driving fatigue gradually deepened, their eye movement
frequency decreased obviously [62]. Cazzoli et al. and Russo et al. concluded that people’s ability to
obtain external information from the eyes was weakened when their mental fatigue continued to
deepen, which was characterized by a decrease in eye movement frequency [63,64]. These research
conclusions are consistent with our experimental results. In this study, as shown in Figure 12, the eye
movement frequency of subjects driving in normal mode also showed an overall downward trend.
However, the eye movement frequency of subjects driving with MRM showed a relatively slow
downward trend. The reason for the difference was that the MRM stimulated the brain nerves,
causing subjects to maintain their normal thinking activities, which meant that the brain nerves
maintained their ability to obtain outside information.

From the above comparative analysis, we can conclude that human bioelectric signals (EEG and
EOGQG) can effectively be used to monitor human driving fatigue and the MRM proposed in this paper
can effectively relieve driving fatigue caused by long-term monotonous driving. Thus, it can play an
important role in alleviating the symptoms of mental fatigue.

4.4. Previous Studies and This Study

Many traditional methods can be used to relieve human mental fatigue, such as stimulating
acupuncture points, reducing the intensity of work and having a short rest. Although using electricity
to stimulate acupuncture points of the human body can effectively combat mental fatigue, electrical
stimulation has some unavoidable side effects on the human body. Other traditional methods of
relieving fatigue usually require parking, which may not be feasible for long-distance driving. It is
uncertain whether there are side effects of relieving mental fatigue by long-term electrical stimulation
of human acupoints. Oron-Gilad et al. demonstrated that completing an appropriate number of
cognitive tasks, especially ones that involved understanding and memory, could keep drivers alert
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[21]. Verwey and Zaidel indicated that performing an attention-demanding secondary task can
effectively improve alertness when they drove for a long time [22]. Drory’s experimental result
showed that a non-mandatory driving-related task of a reasonable size could make a driver maintain
a high level of alertness [23]. An appropriate increase in cognitive activity by factors other than
driving can indeed effectively combat driving fatigue [21-23]. In this paper, we used this method to
relieve driving fatigue. However, we used mental arithmetic combined with reward and punishment
mechanisms to stimulate human brain nerves in order to effectively relieve mental fatigue. The
equipment used in our experiment is simple, portable and inexpensive. Normal driving is not
affected when the equipment is used to resist fatigue, and no sides effects are caused. The MRM
method of resisting driver fatigue is carried out online and in real time, which is of great significance
for future practical applications.

In our experiment, we found that human eye movement signals were easily detected in the
prefrontal region of the human brain, and in symmetrical areas of the human brain, the wave signals
of eye movement were in opposite directions. Although eye movement signals can also be recognized
by selecting these two electrodes (one vertical and one horizontal), the signals of these two channels
fluctuate unidirectionally in the time domain. The simple method Equation (8) used in our
manuscript cannot distinguish unidirectional fluctuations from common interference signals, such as
blinking. To measure the signals in the prefrontal region of the human brain in this paper, we chose
two symmetrical channels (F3 and F4), for which the signal waveforms have a negative correlation
when eye movements occur. We used the Pearson correlation coefficient algorithm to identify eye
movements.

In addition, the driving fatigue process is a process of physiological function change, and its
change is not completed instantaneously [65]. Previous experiments show that the driving fatigue
test generally lasts for 3-5 h, and the fatigue change curve also changes regularly with time [32]. The
research by Rongrong demonstrated that the fatigue parameter (posterior probabilities) showed an
overall upward trend over time [3]. In the study of Luo, 5" EEG signals, which were used to analyze
the variation characteristics of driving fatigue, were saved in each experimental period [52]. In the
whole experimental process, the experimental stages are evenly divided, and in each experimental
stage, the subjects’ driving signals are detected for a short time. Then, the change trend of driving
fatigue in the whole experimental stage can be effectively detected [32]. Based on the above
experimental research methods, we chose the method of collecting three-minute EEG signals every
half hour to carry out this research.

4.5. Limitations

In this study, we used the MRM to relieve driving fatigue caused by long-term monotonous
driving. And we also studied whether the extra increase of the cognitive load (arithmetic operation)
induced by the MRM will affect the subjects” ability to cope with unexpected problems. The results
show that the average time taken by the subjects to respond to the emergency stop of the vehicles
ahead is 0.53 s in the MRM and 0.87 s in normal driving mode. Moreover, the standard deviation of
reaction time is 0.09 s in the MRM and 0.16 s in normal driving mode. There was a significant
difference in the emergency response time between the two driving modes (1t =6.108 > fo.05.22=2.074,
p =0.00 <0.05). It means that the extra increase of the cognitive load in this study will not affect the
subjects” ability to cope with unexpected problems. Although this method was proven to be effective
in relieving long-term driving fatigue, only a simple mathematical operation was used in our work
to stimulate cranial nerves to make them active. Whether more complicated arithmetic operations are
more conducive to relieving or aggravating mental fatigue has not yet been studied.

Additionally, the selected threshold T in this paper is a common value for all subjects (10 males
and 2 females; aged 32 + 1.6 (SD)). The T value in Figure 4 is a grand average between the subjects. In
the future, when the brain network method is applied to detect the driver’s driving fatigue state, the
selected threshold value T (T = 0.3475) will change due to the differences of individual drivers or
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driving environment and other factors. Therefore, the brain network threshold T determined in this
paper is not applicable to all users.

4.6. Future Research Lines

Driving drowsiness is a state of physical fatigue that describes serious driving fatigue caused by
continuous long-term driving. At this time, the driver must stop driving for a rest. In future research,
our work will be mainly divided into three aspects. One is choosing different algebraic operations to
determine the relationship between the amount of cognition required other than driving and the
effect of relieving mental fatigue. The next is comparing the MRM method with existing effective
fatigue relieving methods, such as electrode shifts for head-resting, to further improve these methods.
The last one is using our method to alleviate driving fatigue in real driving.

5. Conclusions

In the present work, the MRM method was proposed for alleviating driving fatigue.
Characteristics of the complex brain network, which can effectively reflect brain activity information,
were used to detect the change of driving fatigue over time. Combined with the traditional eye
movement characteristics and the SQ, the changes of driving fatigue characteristics were
comprehensively analyzed. The results show that driving fatigue can be effectively relieved using
the MRM, which means that rhythmic stimulation of brain nerves for thinking activities can slow
down the rate of fatigue development. In addition, the response equipment is low cost and practical;
therefore, it has the potential to be used in actual driving situations in the future.
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