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Abstract: Due to the widespread presence of noise, such as clouds and cloud shadows, continuous,
high spatiotemporal-resolution dynamic monitoring of lake water extents is still limited using
remote sensing data. This study aims to take an approach to mapping continuous time series of
highly-accurate lake water extents. Four lakes from diverse regions of China were selected as cases.
In order to reduce the impact of noise and ensure high spatial and temporal resolution of the final
results, two sets of MODIS products (including MOD09A1 and MOD13Q1) are used to extract water
bodies. This approach mainly comprises preliminary classification, post processing and data fusion.
The preliminary classification used the Random Forest (RF) classifier to efficiently and automatically
obtain the initial classification results. Post-processing is implemented to repair the classification
results affected by noise as much as possible. The processed results of the two sets of products
are fused by using the Homologous Data-Based Spatial and Temporal Adaptive Fusion Method
(HDSTAFM), which reduces the effect of noise and also improve the temporal and spatial resolution
for the final water results. We determined the accuracy using Landsat-based water results, and
the values of overall accuracy (OA), user’s accuracy (UA), producer’s accuracy (PA), and kappa
coefficients (KC) are mostly greater than 0.9. Good correlation was achieved for a time series of water
area and altimetry data, obtained by multiple satellites, and also for water-level data selected from
hydrological stations.

Keywords: lake water extent; continuous dynamics monitoring; data fusion; MODIS; HDSTAFM

1. Introduction

Lakes are closely related to human life and the natural environment [1]. Accurate recognition
of long-term or dynamic changes in lakes is essential [2]. Remote sensing satellites can provide a
significant amount of data which is necessary for monitoring. Long-term dynamics of terrestrial water
bodies have been mapped [3–5]. However, continuous short-term monitoring of terrestrial lake-water
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with high spatial resolution is still a difficult task. Appropriate data sources and robust methods are
both the key to long-term monitoring of water bodies.

MODIS data is a good source, due to its high temporal and medium spatial resolution [6–10].
Ogilvie et al. [10] monitored the spatiotemporal dynamics of the annual flood across the Niger Inner
Delta by using 526 MOD09A1 images during 2000–2011. Feng et al. [11] used MODIS Level-0 time
series data to map the inundated extents of Poyang Lake from 2000 to 2010. However, dense optical
remote sensing data is susceptible to noise, and these noises can cause very large errors for the final
results. Some studies have focused on the removal of noise [12–15]. Pekel et al. [3] considered terrain
shadows, glaciers, lava, building cast shadows, and cloud shadows for Landsat-based water results. In
order to obtain continuous surface water, it is critical to repair the water covered by noise, such as
clouds and cloud shadows. Khandelwal et al. [16] introduced an effective post-processing technique
based on MODIS products to extract the long-term water extent of 94 reservoirs worldwide. These jobs
are useful, but the results are still greatly affected by noise.

A suitable classifier is very useful for long-term water extraction. The water extraction method is
relatively mature and can be roughly divided into threshold methods using some index, supervised and
unsupervised classification, and some other methods [17]. Index methods (such as NDWI) are simple
and feasible, but it is difficult for time series water bodies extraction, because the threshold values need
to be constantly adjusted in different seasons [18]. Supervised classification methods are feasible, and
which one does not need to determine the threshold, only need to provide some reliable sample points.
Some studies have demonstrated that the Random Forest (RF) classifier is robust and has efficient
classification capabilities in land cover and surface water [19–21]. Compared to a single data source,
the joint use of efficient multiple data sources help to avoid noise and achieve better results [22,23].
Some data assimilation and fusion methods for multiple data sources are well presented [24], such
as the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) [25] and the Spatial and
Temporal Reflectance Unmixing Model (STRUM) [26]. However, data fusion for the acquisition of lake
“water” bodies’ time series is a challenge, due to its dramatic dynamic characteristics. The fusion of
different data sources has significant differences, because of the sensor itself and the zenith angle [27].
Moreover, the use of fused products may cause greater errors due to error overlapping. In this study,
a Homologous Data-based Spatial and Temporal Adaptive Fusion Method (HDSTAFM) has been
proposed to better avoid these problems. The HDSTAFM mainly consider the combined use of multiple
sets of MODIS products. It not only improves the spatiotemporal resolution, but also reduces the
effects of noise on the final water results.

Four different types of lakes around China, including Bosten Lake, Namco Lake, Hulun Lake, and
Poyang Lake, are selected as cases. In order to reduce the impact of noise on the results, we first use a
robust classifier to classify water and non-water bodies, and perform some post-processing (including
de-noise and water body restoration) on the results. Then, the HDSTAFM is used to integrate the
two results from MOD09A1 and MOD13Q1 which correspond to a period of 8 and 16 days with a
resolution equal to 500 and 250 m, respectively. Finally, data related to water measurements for eight
days, characterized by a resolution equal to 250 m, were produced.

2. Case Study Areas and Materials

2.1. Case Study Areas

Four case study areas around China, characterized by different water types, climate features, and
underlying landscapes, were chosen to examine the robustness and the applicability of the approach.
Figure 1 shows their locations and remote sensing images, and Table 1 provides basic information
about case study areas.
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Figure 1. Location of four case study areas. Landsat true color images show the water body extent of 
the case study areas. 

Table 1. Basic details of the four lakes. 

Lakes Location 
Elevati
on (m) 

Area 
(km2) 

Maximum 
Depth (m) 

Average 
Depth (m) 

Salinity  
(g L−1) 

Climate 
Annual 

Precipitation 
(mm) 

Bosten 

E86°40’–
87°25’ 

N41°56’–
42°14’ 

1048 992 16.5 8.08 1.865 
Temperate 
Continent 

121 

Namco 

E88°33’–
89°21’ 

N31°34’–
31°51’ 

4718 1920 >95 – 1.78 
Plateau 
Alpine 

434 

Hulun 

E117°00’–
117°42’ 

N48°30’–
49°21’ 

545 2339 8 5.92 1.17 
Temperate 
Continent 

244 

Poyang 

E115°47’–
116°45’ 

N28°22’–
29°45’ 

10 3283 25.1 8.4 0.047 
Subtropica
l Monsoon 

1500 

  

Figure 1. Location of four case study areas. Landsat true color images show the water body extent of
the case study areas.

Table 1. Basic details of the four lakes.

Lakes Location Elevation
(m)

Area
(km2)

Maximum
Depth

(m)

Average
Depth

(m)

Salinity
(g · L−1)

Climate
Annual

Precipitation
(mm)

Bosten E86◦40’–87◦25’
N41◦56’–42◦14’ 1048 992 16.5 8.08 1.865 Temperate

Continent 121

Namco E88◦33’–89◦21’
N31◦34’–31◦51’ 4718 1920 >95 – 1.78 Plateau

Alpine 434

Hulun E117◦00’–117◦42’
N48◦30’–49◦21’ 545 2339 8 5.92 1.17 Temperate

Continent 244

Poyang E115◦47’–116◦45’
N28◦22’–29◦45’ 10 3283 25.1 8.4 0.047 Subtropical

Monsoon 1500

2.2. Materials

The data used in this paper includes several MODIS datasets, DEM data, and validation
data (including some Landsat images, the water level data from the multiple satellite and the
hydrological station).

2.2.1. MODIS Datasets

MOD09A1 is a set of surface reflectance products, containing bands 1–7 with an approximate
resolution of 500 m in an eight-day gridded product. Each pixel is related to the best observation
during eight days based on high observation coverage, low view angle, absence of clouds or cloud
shadows, and aerosol loading. It also provides quality assignments (QA) data that contain MOD35
cloud/snow/ice flag, and the day of the year (DOY) for all pixels.



Sensors 2019, 19, 4873 4 of 19

MOD13Q1 is mainly designed to monitor vegetation. It contains NDVI and EVI, as well as red,
near-infrared, blue, and mid-infrared bands, corresponding to bands 1, 2, 3, and 7, respectively. The
product is available every 16 days at approximately 250 m spatial resolution. Additionally, it also
provides QA and DOY related data.

MOD44W product is the global surface water dataset with a spatial resolution of 250 m [27]. The
product provides relatively reliable surface water extent and it can be used for training classification
models [16,28]. Of note, These MODIS products were downloaded from the Level 1 and Atmosphere
Archive and Distribution (LAADS, https://ladsweb.modaps.eosdis.nasa.gov).

2.2.2. ASTER GDEM Data

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital
Elevation Model (GDEM) is probably the most accurate DEM dataset which can be obtained for free
on a global scale. ASTER GDEM dataset with 30 m resolution, has been proven to have high vertical
and horizontal accuracy, downloaded from https://search.earthdata.nasa.gov.

2.2.3. Validation Data

Some validation data were used as the key to verify the accuracy of the results. As higher-resolution
remote sensing images, some cloudless Landsat images in the same period can be used to verify the
accuracy. In addition, the satellite altimetry water level data were also collected (Table 2), including:
(1) U.S. Department of Agriculture (USDA) Global Reservoir and Lake Monitoring (GREALM,
http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir); (2) the Database for Hydrological Time
Series of Inland Waters (DAHITI, http://dahiti.dgfi.tum.de/en/); and (3) the Laboratoire d’Etudes en
Géophysique et Océanographies Spatiales (LEGOS, http://hydroweb.theia-land.fr). Some of them
which have the same observation date as the MODIS date were selected for the reliability analysis of
the classification result.

Table 2. The number of altimetry data obtained and correlation coefficients corresponding to water areas.

Lakes
The Number of Valid Data Linear Correlation (R)

USDA DAHITI LEGOS USDA DAHITI LEGOS

Bosten 476
(2000–2016)

384
(2002–2016)

252
(2002–2015) 0.76 0.87 0.88

Namco – – 169
(2000–2016) – – 0.79

Hulun 543
(2000–2016)

389
(2000–2016)

371
(2000–2015) 0.93 0.93 0.92

Poyang – 261
(2002–2016)

156
(2000–2016) – 0.82 0.46

“–”: No data available.

In addition, there are some hydrological stations to monitor the water level in Poyang Lake. In
order to better verify the time-series results, we also collected the observed water level data from the
Hukou hydrological station that is the most representative for the lake.

3. Methods

The flowchart of the proposed research algorithm, mainly includes three major parts: Classification
using the RF classifier, post-processing, and results fusion using the HDSTAFM (Figure 2).

https://ladsweb.modaps.eosdis.nasa.gov
https://search.earthdata.nasa.gov
http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir
http://dahiti.dgfi.tum.de/en/
http://hydroweb.theia-land.fr
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Table 2. The number of altimetry data obtained and correlation coefficients corresponding to water 
areas. 
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The Number of Valid Data  Linear Correlation (R) 
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384 (2002–2016) 

252 (2002–
2015) 

0.76  0.87  0.88  

Namco – – 
169 (2000–

2016) 
– – 0.79  

Hulun  
543 (2000–

2016) 
389 (2000–2016) 

371 (2000–
2015) 

0.93  0.93  0.92  

Poyang  – 261 (2002–2016) 
156 (2000–

2016) 
– 0.82  0.46  

“–”: No data available. 

In addition, there are some hydrological stations to monitor the water level in Poyang Lake. In 
order to better verify the time-series results, we also collected the observed water level data from the 
Hukou hydrological station that is the most representative for the lake. 

3. Methods 

The flowchart of the proposed research algorithm, mainly includes three major parts: 
Classification using the RF classifier, post-processing, and results fusion using the HDSTAFM (Figure 
2). 

 
Figure 2. The flowchart of the research methodology. 

3.1. Water Preliminary Classification 

Figure 2. The flowchart of the research methodology.

3.1. Water Preliminary Classification

The RF classifier belongs to the ensemble learning algorithms. Compared with a single tree classifier,
it is more robust, and it has good generalization ability in classification, due to the characteristics of
multiple trees and repetitive sampling [19,20]. The main advantages of RF are the following: (a) Robust
behavior in handling outliers and noise; (b) efficient and fast classification performance; (c) high level
of immunity to overfitting and efficiency in classification of time-series images [29,30].

NDVI, NDWI, and MNDWI were developed by using bands 1–7, and they made up 10 feature
variables for the classification of the MOD09A1 product. Regarding MOD13Q1, its own two indices
and four bands were considered as feature variables.

To choose accurate samples, we created a buffer using the MOD44W product of each lake, including
core water, transition, and core land zones (CLZ). The core water zone (CWZ) was created by selecting
the minimum value of 20 pixels × 20 pixels. The transition zone (TZ) is the zone selecting the maximum
value of 20 pixels × 20 pixels but removing the CWZ. CLZ is the zone selecting the maximum value of
60 pixels × 60 pixels but removing CWZ and TZ. For different study areas, we randomly selected 2000
water sample points in CWZ and 2000 non-water sample points in CLZ (Figure 3c).
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randomly selected 2000 water sample points in CWZ and 2000 non-water sample points in CLZ 
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Figure 3. The example of automated extraction of water extent and water fusion result in Bosten Lake. 
(a) False-color composite (bands 1, 4, and 3) on 2,016,081th day; (b) the MOD44W water result; (c) the 
buffer, including CWZ, TZ, and CLZ; (d,e) water results of 2,016,081th and 2,016,089th days from 
MOD09A1, respectively; (f) the water result of 2,016,081th day from MOD13Q1; (g,h) fused water 
results of 2.016,081th and 2,016,089th days, respectively; and (i) the water inundation frequency (WIF) 
map. 

According to the provided multi-feature variables and sample points, the water and land can be 
classified using the RF classifier.  

Figure 3. The example of automated extraction of water extent and water fusion result in Bosten
Lake. (a) False-color composite (bands 1, 4, and 3) on 2,016,081th day; (b) the MOD44W water result;
(c) the buffer, including CWZ, TZ, and CLZ; (d,e) water results of 2,016,081th and 2,016,089th days
from MOD09A1, respectively; (f) the water result of 2,016,081th day from MOD13Q1; (g,h) fused
water results of 2.016,081th and 2,016,089th days, respectively; and (i) the water inundation frequency
(WIF) map.

According to the provided multi-feature variables and sample points, the water and land can be
classified using the RF classifier.

3.2. Post-Processing

Post-processing includes de-noise and water restoration (Figure 4). MODIS QA data is used to
remove the noise for the preliminary water results, including ice, snow, clouds, and cloud shadows. In
addition, some lakes in the mountain or plateau need to remove terrain shadows by slope data. In this
study, we considered that no surface water is present in places where the slope is >5◦.
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remove the noise for the preliminary water results, including ice, snow, clouds, and cloud shadows. 
In addition, some lakes in the mountain or plateau need to remove terrain shadows by slope data. In 
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Water restoration is firstly restored by using the previous and subsequent results (Figure 4). 
Notably, we consider that these kinds of weather events, such as clouds and cloud shadows, increase 
the water of the lake, and the water area is generally relatively large. Hence, when the pixels of both 
two adjacent results correspond to water, the relative pixel of the middle result (located in the same 
position) that is covered by noise, is also water. Moreover, for each lake, we find the mode of the 
elevation values for all water pixels in the CWZ after de-noise. Then we convert non-water pixels 
whose elevation values are less than the mode, into water pixels. If there are multiple modes, we 
choose the minimum of them as the final value. 

 
Figure 4. An illustrative example showing the water restoration after de-noise. (a–c) The denoised 
water results in Bosten Lake on 2,010,001th and 2,010,017th days, respectively; (d,f) the first and 
second water restoration results; and (e) the elevation data. 

3.3. The Homologous Data-Based Spatial and Temporal Adaptive Fusion Method 

The homologous data-based spatial and temporal adaptive fusion method mainly uses the 
composite day of the annual data of the MOD13Q1 products. 

1. 1. The principle of the HDSTAFM 

The examples are selected from the MOD09A1, between the 20xx001th and the 20xx009th days 
(0 ≤ xx ≤ 16), and from the MOD13Q1 in the 20xx001th day (Figure 5). The pixels of the 20xx001th 
MOD09A1 product are all optimal selected from the 20xx001–20xx008th day, and the pixels of the 
20xx009th MOD09A1 product correspond to the 20xx009–20xx016th day. Moreover, the pixels of the 

Figure 4. An illustrative example showing the water restoration after de-noise. (a–c) The denoised
water results in Bosten Lake on 2,010,001th and 2,010,017th days, respectively; (d,f) the first and second
water restoration results; and (e) the elevation data.

Water restoration is firstly restored by using the previous and subsequent results (Figure 4).
Notably, we consider that these kinds of weather events, such as clouds and cloud shadows, increase
the water of the lake, and the water area is generally relatively large. Hence, when the pixels of both
two adjacent results correspond to water, the relative pixel of the middle result (located in the same
position) that is covered by noise, is also water. Moreover, for each lake, we find the mode of the
elevation values for all water pixels in the CWZ after de-noise. Then we convert non-water pixels
whose elevation values are less than the mode, into water pixels. If there are multiple modes, we
choose the minimum of them as the final value.

3.3. The Homologous Data-Based Spatial and Temporal Adaptive Fusion Method

The homologous data-based spatial and temporal adaptive fusion method mainly uses the
composite day of the annual data of the MOD13Q1 products.

1. The principle of the HDSTAFM

The examples are selected from the MOD09A1, between the 20xx001th and the 20xx009th days
(0 ≤ xx ≤ 16), and from the MOD13Q1 in the 20xx001th day (Figure 5). The pixels of the 20xx001th
MOD09A1 product are all optimal selected from the 20xx001–20xx008th day, and the pixels of the
20xx009th MOD09A1 product correspond to the 20xx009–20xx016th day. Moreover, the pixels of the
20xx001th MOD013Q1 product are also best collected from the 20xx001–20xx016th day. This fusion
process can be explained as follows:
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16 days for the window 3 × 3 (source: Rao et al. [18]). 
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Regarding the HDSTAFM process, the first and the second steps depend only on the 
classification results and process most of the pixels. The third step is mainly performed on the pixels 
that are related to two inconsistent classification results with different periods. These results are 
affected by the window size. The primary reference window sizes are 3 × 3, 5 × 5, and 7 × 7. In order 
to determine the best window size, an illustrative example is shown in the following Figure 6. Pixels 
A11 and A21 are at the junction of water and land, where A11 = 0 and A21 = 1. The value of the fused 
pixel A1 is equal to 1 (D1 = A21) for 3 × 3 or 5 × 5 windows, whereas it is equal to 0 (D1 = A11) for the 
7 × 7 window. This example illustrates that the water-and-land boundary pixel tends to the “water” 
result of MOD13Q1 when the window is small; otherwise, it tends to the “non-water” result of the 
MOD09A1 when exceeding a certain range.  

Pixels A12 and A22, are also at the junction of water and land, but A12 = 1 and A22 = 0. The 
resulting value of the fused pixel A2 is equal to 1 (D2 = A12) for the 3 × 3 window, and it is equal to 
0 (A22 = 0) for the 5 × 5 or 7 × 7 windows. This example illustrates that when the window is small, the 
“water-and-land” boundary pixel tends to the “water” result of MOD09A1; otherwise, it tends to the 
“non-water” outcome of MOD09A1 when exceeding a certain range. Combining the two examples, 
the fusion results of A1 and A2 are both biased towards the “water” for a smaller window and 
towards the “non-water” for a larger window. Moreover, it indicates that 5 × 5 is the best alternative 
window size compared to 3 × 3 and 7 × 7. A13 and A23 pixels, are relatively far from a wide range of 
water bodies but A23 is recognized as “water” because of its higher resolution or we have a potential 
misidentification when the fusion results are biased towards “non-water”.  

Figure 5. Fusion schematic of two sets of water results within 500 m every eight days and 250 m every
16 days for the window 3 × 3 (source: Rao et al. [18]).

First of all, the 20xx001th and the 20xx009th MOD09A1 results data were directly split into 250 m,
so one pixel was split into four pixels. The pixel values (0 or 1) were not changed; that is, if the initial
pixel value was 1, the values of the four pixels (obtained by the division) were also equal to 1. Their
number of pixels after splitting was equal to the number of 20xx001th MOD13Q1. We took some
corresponding pixels as the analysis objects (Figure 5). A1 was any one of these pixels from 20xx001th
MOD09A1. Correspondingly in the same position, they were A2 pixel of 20xx009th MOD09A1 and the
B pixel of 20xx001th MOD13Q1. The C pixel was the corresponding production date (The day of the
year, DOY) of the B pixel, whose value ranged from 1 to 16 at the 20xx001th day.

Let us compare the results of the MOD09A1 and MOD13Q1 on the 20xx001th day. The following
three steps exist in the overall process.

• First step: If 1 ≤ C < 9: We consider B as accurate, and D1 is assigned to B if the case is the
following: The result from MOD13Q1 (that is the 16-day optimal value with 250 m resolution) is
more accurate than the one obtained from MOD09A1 (that is the eight-day optimal value with
500 m resolution).

• Second step: If 9 ≤ C < 17 and A1 = B, this means that the two classification results are consistent,
and D1 can be assigned either to A1 or B.

• Third step: If 9 ≤ C < 17 and A1 , B, we need to compare their correlation with the surrounding
pixels to determine the final result. A gradient equation is being proposed in this study
(Equation (1)). Comparing the gradient values of A1 and B, if gradientA1 < gradientB, the
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correlation between A1 and the surrounding pixels in the window can be considered more
reasonable than B, so D1 = A1; otherwise D1 = B.

gradienti =

√√√√√√ T∑
i,t=1∼T

(dyit/dxit)
2

T
(1)

where T is the number of surrounding pixels in the window, dxit is the distance of pixel i and the
surrounding pixel t, and dyit is the difference between them. If the pixel window is set to 3 × 3, T = 8,
dxit = 1 or

√
2, and dyit = 0 or ±1.

These steps can also be expressed as the follows:

D1 =


B (1 ≤ C < 9)
A1 (9 ≤ C < 17&A1 = B)
A1 (9 ≤ C < 17&A1 , B&gradientA1 < gradientB)

B (9 ≤ C < 17&A1 , B&gradientA1 ≥ gradientB)

(2)

where D1 is the pixel of fusion results for the 20xx001th day.
According to the above process, all pixels of the 20xx001th day results can be calculated. Likewise,

using A2, B, and C, all pixels D2 corresponding to the results of the 20xx009th-day can also be produced.
The D2 can be expressed as follows:

D2 =


B (9 ≤ C < 17)
A2 (1 ≤ C < 9&A2 = B)
A2 (1 ≤ C < 9&A2 , B&gradientA2 < gradientB)

B (1 ≤ C < 9&A2 , B&gradientA2 ≥ gradientB)

(3)

2. Comparison of the different sized windows

Regarding the HDSTAFM process, the first and the second steps depend only on the classification
results and process most of the pixels. The third step is mainly performed on the pixels that are
related to two inconsistent classification results with different periods. These results are affected by the
window size. The primary reference window sizes are 3 × 3, 5 × 5, and 7 × 7. In order to determine
the best window size, an illustrative example is shown in the following Figure 6. Pixels A11 and A21
are at the junction of water and land, where A11 = 0 and A21 = 1. The value of the fused pixel A1 is
equal to 1 (D1 = A21) for 3 × 3 or 5 × 5 windows, whereas it is equal to 0 (D1 = A11) for the 7 × 7
window. This example illustrates that the water-and-land boundary pixel tends to the “water” result of
MOD13Q1 when the window is small; otherwise, it tends to the “non-water” result of the MOD09A1
when exceeding a certain range.

Pixels A12 and A22, are also at the junction of water and land, but A12 = 1 and A22 = 0. The
resulting value of the fused pixel A2 is equal to 1 (D2 = A12) for the 3 × 3 window, and it is equal
to 0 (A22 = 0) for the 5 × 5 or 7 × 7 windows. This example illustrates that when the window is
small, the “water-and-land” boundary pixel tends to the “water” result of MOD09A1; otherwise, it
tends to the “non-water” outcome of MOD09A1 when exceeding a certain range. Combining the
two examples, the fusion results of A1 and A2 are both biased towards the “water” for a smaller
window and towards the “non-water” for a larger window. Moreover, it indicates that 5 × 5 is the best
alternative window size compared to 3 × 3 and 7 × 7. A13 and A23 pixels, are relatively far from a
wide range of water bodies but A23 is recognized as “water” because of its higher resolution or we
have a potential misidentification when the fusion results are biased towards “non-water”.

In general, the 5 × 5 window is optimal compared to 3 × 3 and 7 × 7, although some separate
“water” or “land” results from the MOD13Q1 may be eliminated.
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Figure 6. An illustrative example showing the fusion results under different windows when both
the period and the value of the two results are inconsistent. (a) The schematic of MOD09A1; (b) the
schematic of MOD13Q1; and (c) fusion results under different windows.

3.4. Accuracy Assessment

Some cloudless Landsat images were used to test the results. This study has employed the NDWI
to initially extract “water” bodies and to manually correct them. Overall accuracy (OA), user’s accuracy
(UA), producer’s accuracy (PA), and kappa coefficients (KC) have been calculated.

4. Results

4.1. Comparison of the Results and Accuracy Assessment

4.1.1. Comparison of the Results of Different Windows

Figure 7b–d shows that the fusion results of the 3 × 3, 5 × 5, and 7 × 7 windows in Poyang Lake
have all been feasible for the methodology. However, some details also exist for small water bodies,
especially for complex ones, which are characterized by algae, clouds, and their spatial resolution. The
“non-water” part of the 3 × 3 window result is relatively large, and some “water” pixels and plaques
have not been extracted. The result of the 7 × 7 window is relatively small, and some “non-water”
pixels have been treated as “water”.
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Similarly, Figure 8b–d shows the fusion results of 3 × 3, 5 × 5, and 7 × 7 windows in Hulun Lake, 
respectively. There are both obvious misclassification in “water” and “non-water” plaques in the 
result of the 3 × 3 window (Figure 8b). Most of the “water” pixels have been extracted but there are 
also some subtle “water” pixels or plaques that have been misclassified in the result of the 7 × 7 
window (Figure 8c). Compared to the result of the 7 × 7 window, the advantage of the 5 × 5 window 
is mainly reflected in the better extraction effect on some fine “water” bodies. 
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Similarly, Figure 8b–d shows the fusion results of 3 × 3, 5 × 5, and 7 × 7 windows in Hulun Lake,
respectively. There are both obvious misclassification in “water” and “non-water” plaques in the result
of the 3 × 3 window (Figure 8b). Most of the “water” pixels have been extracted but there are also
some subtle “water” pixels or plaques that have been misclassified in the result of the 7 × 7 window
(Figure 8c). Compared to the result of the 7 × 7 window, the advantage of the 5 × 5 window is mainly
reflected in the better extraction effect on some fine “water” bodies.
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4.1.2. Accuracy Assessment with Landsat Images

Some classification results generated by the methodology have been validated by comparing with
some cloudless Landsat-based results in the same period (Table 3). The OA, UA, PA, and KC of the
four cases with eight images are almost all high. There are some shortcomings for Poyang Lake, where
many narrow “water” bodies are not easily detected by lower spatial-resolution MODIS data.

Table 3. Validation of MODIS-based classification results using Landsat-based reference results.

Lakes Date OA UA PA KC

Bosten
16/July/2003 (High) 0.95 0.93 0.94 0.90

24/September/2011 (Low) 0.97 0.99 0.92 0.93

Hulun
16/June/2000 (High) 0.97 0.99 0.97 0.94

28/October/2011 (Low) 0.97 0.96 0.98 0.95

Namco
02/October/2015 (High) 0.97 0.99 0.96 0.93

18/November/2003 (Low) 0.97 1.00 0.96 0.93

Poyang 16/February/2016 (High) 0.94 0.92 0.91 0.86
23/June/2016 (Low) 0.91 0.85 0.79 0.78

NOTE: For each of the four lakes, dates with high and low water extent were selected.

4.2. Case Monitoring Results

The results of Bosten, Namco, Hulun, and Poyang lakes for the period 2000–2016 have
been acquired.

4.2.1. The Case of Bosten Lake

Water extent variations are mainly located in the north and west of Bosten Lake (Figure 9a). The
maximum “water” area occurred in 2003/5/1 (Figure 9b) and the minimum in 2012/1/1 (Figure 9c).
The “water” area is consistent with the relative height obtained by the USDA, DAHITI, and LEGOS,
respectively (Figure 9d). The number of valid auxiliary data can be seen in Table 2, and the correlation
coefficients between “water” area and relative height, are 0.76 (USDA), 0.87 (DAHITI), and 0.88
(LEGOS). The quality of the USDA data is relatively low (Figure 9e).
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is relatively stable, but a slight increase trend occurred in the period 2010–2016 (Figure 10d). The 
results have proven to be reasonable, where the correlation coefficient was found to be R = 0.79 in the 
case of “water” area and “relative height” for the LEGOS. 

Figure 9. Spatial distribution and temporal variation of Bosten Lake. (a) The WIF map in 2000–2016; (b)
water body map of 2003/5/1, with the largest water area in 2000–2016; (c) water body map of 2012/1/1,
with the smallest water area in 2000–2016; (d) time series of the water area (km2) and relative height
(m) in 2000–2016; and (e) correlation between water area (km2) and relative height (m).
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4.2.2. The Case of Namco Lake

The “water” area of Namco Lake has shown an increasing trend, but it is minimal compared
to the entire lake (Figure 10a). The maximum water area occurred in 2016/6/2 (Figure 10b) and the
minimum in 2000/7/2 (Figure 10c). The increase of the lake area mainly occurred in 2000–2009, and it is
relatively stable, but a slight increase trend occurred in the period 2010–2016 (Figure 10d). The results
have proven to be reasonable, where the correlation coefficient was found to be R = 0.79 in the case of
“water” area and “relative height” for the LEGOS.
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4.2.3. The Case of Hulun Lake 

The water extent of Hulun Lake has presented large variations in the period 2000–2016, which 
can be divided into two phases: It has decreased in the period 2000–2010 and increased in the time 
interval 2011–2016 (Figure 11d). The maximum “water” area occurred in 2003/4/7 (Figure 11b), and 
the minimum in 2010/11/9 (Figure 11c). The “water” variations mainly occurred in the northeast and 
southeast of the lake. Figure 11e presents the relationship between the “water” area and the “relative 
height” in Hulun Lake. They are equal to 0.93, 0.93, and 0.92 for the USDA, DAHITI, and LEGOS, 
respectively, which indicates the fact that the obtained results are quite reliable (Table 2). 

Figure 10. Spatial distribution and temporal variation of Namco Lake. (a) The WIF map in 2000–2016;
(b) water body map of 2016/6/2, with the largest water area in 2000–2016; (c) water body map of
2000/7/15, with the smallest water area in 2000–2016; (d) time series of the water area (km2) and relative
height (m) in 2000–2016; and (e) correlation between water area (km2) and relative height (m).

4.2.3. The Case of Hulun Lake

The water extent of Hulun Lake has presented large variations in the period 2000–2016, which
can be divided into two phases: It has decreased in the period 2000–2010 and increased in the time
interval 2011–2016 (Figure 11d). The maximum “water” area occurred in 2003/4/7 (Figure 11b), and
the minimum in 2010/11/9 (Figure 11c). The “water” variations mainly occurred in the northeast and
southeast of the lake. Figure 11e presents the relationship between the “water” area and the “relative
height” in Hulun Lake. They are equal to 0.93, 0.93, and 0.92 for the USDA, DAHITI, and LEGOS,
respectively, which indicates the fact that the obtained results are quite reliable (Table 2).

4.2.4. The Case of Poyang Lake

There are obvious dynamic variations in the water extent for Poyang Lake. The maximum “water”
area was as high as 3413.51 km2 (Figure 12b) whereas the minimum was 886.03 km2 (Figure 12c) and
they were recorded on 2016/7/20 and 2004/1/25, respectively.
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(DAHITI) and 0.46 (LEGOS) (Figure 12e).  

It looks like the “water” extraction results are poor compared with the “relative height” from 
LEGOS. Therefore, we further compared the relationship between the “water” area and the observed 
“water” level from the Hukou Station. The results have shown that this correlation is good with  
R = 0.90 (Figure 13b). It shows that the “water” extraction result is reasonable, and that the LEGOS 
data may have some defects. 
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Figure 12. Spatial distribution and temporal variation of Poyang Lake. (a) The WIF map in 2000–2016;
(b) water body map of 2016/7/20, with the largest water area in 2000–2016; (c) water body map of
2004/1/25, with the smallest water area in 2000–2016; (d) time series of the water area (km2) and relative
height (m) in 2000–2016; and (e) correlation between water area (km2) and relative height (m).
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Seasonal dynamic variation of water extent in Poyang Lake is prominent and regular (Figure 12d).
The correlation coefficients between the “water” area and the “relative height” are 0.83 (DAHITI) and
0.46 (LEGOS) (Figure 12e).

It looks like the “water” extraction results are poor compared with the “relative height” from
LEGOS. Therefore, we further compared the relationship between the “water” area and the observed
“water” level from the Hukou Station. The results have shown that this correlation is good with
R = 0.90 (Figure 13b). It shows that the “water” extraction result is reasonable, and that the LEGOS
data may have some defects.
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5. Discussion

5.1. Advantages of the Approach

The RF classifier, a robust and efficient machine learning method, can perform well in the case of
this preliminary classification of “water” and “land”. However, noise such as clouds is inevitable for
the time series of “water” extraction. In order to ensure the reliability and continuity of the results,
post-processing including de-noise and “water” restoration has been built based on existing research in
this paper. The denoising process mainly used QA layer data and slope data. The “water” restoration
included two steps. In past research, the first step commonly used technical means by considering the
results of adjacent images. However, many “water” pixels were still not restored, so the second step
aimed to further improve the results by using the elevation data. It has to be emphasized that this
process mainly relies on the accuracy of the DEM data, where the current ASTER GDEM data basically
meet the requirements, but they still need to be improved in the future.

The HDSTAFM provides a good approach for data fusion in remote sensing applications. It has
two main advantages: (1) It uses multiple sets of data from the same data source (MODIS), and it takes
into account the temporal and spatial information for each pixel; and (2) it performs fusion only for the
classification results, which reduces errors caused by the fusion method itself. In fact, compared to the
classification results of MOD09A1 or MOD13Q1, the accuracy of the fusion result is higher [18]. The
HDSTAFM utilizes more bands information and reduces the impact of noise because of the integration
of the two results. In addition, it must be mentioned that the window size is set to 5 × 5, which looks
better than 3 × 3 and 7 × 7. The two examples (A1 and A2) have shown that the fusion results of
the 5 × 5 window are more robust than the other two, and the example A3 has clearly proven that
the fusion results can eliminate some small separate “water” or “land” plaques that may cause noise
(Figure 6).
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5.2. Challenges for the Four Lakes

Although the classification results have proven to be reliable, several challenges are still existing
in mapping time series “water”, such as clouds, snow or ice, terrain or cloud shadows, and turbidity.
The noise varies significantly for these four lakes due to their different “water” types, climates, and
underlying surfaces.

Namco Lake is the only saltwater lake among them. Its “water” type is relatively simple with
little sediment or algae, and there are few other features around it that can interfere with the “water”
classification. The results are mainly affected by snow, ice, and clouds. The “water” type of Bosten
Lake is also relatively simple, but there are some vegetation and artificial buildings as well as the
“water” is relatively shallow on the west side of the lake. Other noises such as clouds, cloud shadows,
snow and ice are relatively few. The classification results of the lake are good despite some noise
effects. Hulun Lake is less affected by the cloud. However, the salinity of the “water” is higher than in
the freshest “water” cases. Due to the large fluctuation of the “water” extent and temperature, the
classification results have shown some differences.

These problems from the three lakes have been well resolved by the approach, according to the
test results (Table 3). The classification results of Poyang Lake are relatively poor. Many types of noise
have a severe effect of the “water” extraction, including clouds, clouds shadows, turbidity, vegetation,
and algae. Clouds and cloud shadows are common in Poyang Lake, especially in spring and summer.
There are no completely reliable methods to remove their effect; however, some serious attempts have
been made in this paper (Section 3.2). In addition to the noise, the low spatial resolution of the MODIS
data is the main influencing factor for accuracy. There are many small “water” patches and narrow
river channels in the Poyang Lake region. They are challenging to be detected using MODIS products,
but they can be well detected using Landsat images. Overall, the results of Poyang Lake are reliable
(Table 3 and Figures 12 and 13).

5.3. Further Improvement

5.3.1. Potential Improvement to Remove Noise

Some improvements can still be worth considering, including denoisng and “water” restoration.
Zhu et al. [12] detected clouds, cloud shadows and snow for Landsat 4–8 by improving the fmask
algorithm. The multi-satellite methodology helps to avoid the noise [31,32]. In addition to optical
remote sensing data, radar and microwave remote sensing data are partially suitable for “water”
extraction [33,34]. Some optical remote sensing images with much cloudiness can be replaced by radar
data during the same period.

5.3.2. Selection of More Efficient Classification Methods

The RF classifier is more efficient and robust than some traditional methods. However, it will also
appear obvious misclassification when the samples are poorly representative. Some new classification
methods proposed have also been applied successfully towards “water” classification [35,36].
Unfortunately, there are no classification methods that can classify “water” and “land” without
being influenced by a certain level of noise so far. Robust and efficient classifiers are still our main
pursued goal.

5.3.3. Applications of the Fusion Method for Higher-Resolution Data

The HDSTAFM mainly considers the temporal and spatial relationships of each pixel, where the
temporal and spatial features are compared through a gradient value for the adjacent time and the
neighboring pixels. The fusion results have proven to be more robust and accurate, and a higher
spatiotemporal resolution has been achieved. This method can also be considered to fuse other data
sources, such as Landsat time series data. Even different data can still refer to the fusion idea if the
temporal and spatial relationship is satisfied.
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6. Conclusions

This study aimed to map continuous lake water extents with high spatiotemporal resolution. It is
conducive to more accurately understand the “water” variations of the lakes. Four different types of
lakes have been selected and used as application cases. The approach comprises of three basic parts:
(1) Preliminary water classification using the RF classifier; (2) post-processing, including de-noise and
water restoration; and (3) water result fusion using the HDSTAFM method. Continuous water results
at high frequency (every eight days) and moderate spatial resolution (250 m) have been provided for
these four lakes.

Some specific conclusions can be conducted:

1. The classification results are reliably validated using some Landsat-based results. The approach
performs efficiently in obtaining time series “water” extent of the lakes based on the MODIS
products by comparing against altimetry data and water level data.

2. The RF classifier is efficient in the long-term sequence classification, and post-processing is also
critical in removing noise and restoring water bodies.

3. Although there are still some shortcoming (e.g., single water pixel information may be eliminated),
the HDSTAFM is feasible for the fusion of two sets of water results. Moreover, the 5 × 5 window
performs better than the 3 × 3 and 7 × 7 windows.

In general, the approach is effective for continuous long-term monitoring of the lake “water”
extent. In the future, we will try to improve it further and mapping dynamic “terrestrial water”,
including several lakes and rivers.
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