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Abstract: A laser-induced-graphene (LIG) pattern fabricated using a 355 nm pulsed laser was applied
to a strain sensor. Structural analysis and functional evaluation of the LIG strain sensor were performed
by Raman spectroscopy, scanning electron microscopy (SEM) imaging, and electrical–mechanical
coupled testing. The electrical characteristics of the sensor with respect to laser fluence and focal
length were evaluated. The sensor responded sensitively to small deformations, had a high gauge
factor of ~160, and underwent mechanical fracture at 30% tensile strain. In addition, we have applied
the LIG sensor, which has high sensitivity, a simple manufacturing process, and good durability,
to human finger motion monitoring.

Keywords: laser-induced graphene (LIG); 355 nm pulsed laser; strain sensor; polyimide;
polydimethylsiloxane (PDMS)

1. Introduction

Recently, metal wires, carbon nanotubes, and graphene have been applied to substrates such
as polyethyleneimine (PEI), polyethylene terephthalate (PET), ECOFLEX, and polydimethylsiloxane
(PDMS); the resulting materials are mechanically flexible and robust, and are used in many areas
such as touch screens, biomedical devices, wearable devices, human–robot interfaces, solar cells,
and supercapacitors [1–15]. In particular, graphene is widely used in sensors due to its high electrical
conductivity and various superior mechanical characteristics [7,11,16–20]. Graphene production
methods include (1) exfoliation from graphite crystals and (2) chemical vapor deposition (CVD)
involving deposition of carbon on a transition metal at high temperature [21,22]. Recently, research
on the production of porous graphene using lasers, i.e., laser-induced graphene (LIG), has been
reported [21,22]. Irradiation of a laser onto polyimide film at a certain degree of laser fluence, i.e.,
the optical energy delivered per unit area, resulted in photothermal ablation by the locally high
temperature, which breaks the chemical bonds of the polyimide film; this process has been reported to
produce LIG with a porous multilayer structure [11,20–22]. The LIG has improved electrical properties
due to the conversion of sp3 carbon atoms to sp2 carbon atoms. [11]. Therefore, LIG is widely applied
to humidity-, bio-, and mechanical sensors [11,18,19,22]. Mechanical sensors include strain sensors
and pressure sensors; PDMS, which is actively used as substrate for these sensors, is thermally and
chemically stable, physically robust, and flexible, with a shear modulus of 250 kPa, loss tangent
<<0.001, and Young’s modulus of 750 kPa [14,15]. In addition, PDMS is transparent, nonfluorescent,
nontoxic, and biocompatible; it undergoes no adhesion with polymer films, and so is suitable for use
in MEMS and biomedical applications [14,15].
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Strain sensors are generally sensors in which an electrical signal changes according to strain,
indicating the degree of deformation of an object according to the applied force. Conventional
metal-based strain sensors have a low fabrication cost but also a low gauge factor (GF) sensitivity
of ~2 and maximum measurable strain of ~5% [4–10]. Therefore, other strain sensors have been
reported that have a piezoresistive effect that overcomes the shortcomings of conventional sensors;
these sensors combine an elastomer and a material with a multidimensional structure, such as graphene
or carbon nanotubes (CNTs). Amjadi et al. reported a strain sensor based on silver nanowire–elastomer
nanocomposite; it showed strong piezoresistivity, with a GF in the range of 2–14, and maximum
stretchability of 70%. [4]. Ryu et al. reported a CNT composite sensor and demonstrated its good
sensitivity (GF~117) [5]. Bae et al. reported a graphene-based sensor that had piezoresistive properties
that were present under strains up to 7.1% [7]. Stretchable CNT strain sensors [6,9,12,13,19,23] and
ZnO wire sensors (GF~1250) [8] have also been reported. Despite many attempts to fabricate strain
sensors that use sensitive, high-performance nanoparticles, such as CNT and graphene, previous
research on sensors has led to good sensitivity and mechanical performance but was unsuccessful in
making the fabrication process easier or in reducing the fabrication costs. Therefore, a one-step direct
laser writing (DLW) method is proposed to simplify the process and reduce fabrication costs [18].

In this paper, we fabricate an LIG pattern using a 355 nm pulsed laser; we then implant the pattern
on an elastomeric substrate, suggesting the possibility of its application as a strain sensor. To simplify
the fabrication process, patterns are fabricated using the DLW method, and the electrical characteristics
such as electrical resistance and sheet resistance are evaluated. In addition, structural analysis of
the LIG pattern according to the laser fluence and laser focal length, as well as evaluation of device
applicability as a sensor, is performed.

2. Experimental

2.1. Fabrication of LIG Pattern

We used a 355 nm UV pulsed laser to form LIG on a polyimide film (DuPont™ Kapton®HN);
we then used the film as a strain sensor. The 355 nm pulsed laser is widely used for microfabrication.
The laser setup and specifications are shown in Figure 1 and Table 1, respectively.

Table 1. 355 nm UV pulsed laser specifications.

Parameter Unit Value

Wavelength nm 355
Average power Watt ~2.5

Pulse length ns 25
Repetition rate kHz 30

Mode TEM00
Beam diameter mm 0.4

Polyimide has 90% absorption for the 355 nm wavelength and this absorption increases with
increasing laser fluence [24]. When the 355 nm pulsed laser is irradiated onto polyimide film, the surface
temperature rises locally to over 1000 ◦C, which causes ablation by photothermal phenomenon [19].
The polyimide film releases oxygen and nitrogen gas at 550 ◦C and is carbonized at 700 ◦C; the carbonized
polyimide forms a porous graphitic structure [22]. Figure 2 shows the generation principle of the
LIG. Since the C–N binding force of polyimide is the lowest, it is the first to be broken and separated.
In addition, separated unstable compounds exist in various forms, such as CO, CN, C, C2, CH, C2H2,
HCN, in combination with each other or other elements in the atmosphere [25].

In order to observe structural changes of the LIG pattern, the laser was irradiated onto the substrate
at different laser fluences; the laser fluence was set by adjusting the laser power and the scanning
speed. A 25 µm-thick polyimide film was used to better implant the LIG pattern in PDMS; the degrees
of implantation and carbonization were evaluated according to laser fluence.
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change of polyimide film after laser irradiation.

2.2. Fabrication of Flexible and Bendable Strain Sensor

In order to improve the sensitivity of the sensor and to obtain a uniformly thin thickness of the
substrate and top, spin coating, a common microfabrication method for polymer films, was used for
fabrication of PDMS. The PDMS was spin-coated at 100 rpm for 5 min, leading to a uniform thickness
of 400 µm. The sensor fabrication process is shown in Figure 3a.

By placing a PI film on the PDMS and irradiating the 355 nm pulsed laser with laser fluence
under certain conditions, the desired graphitic pattern was implanted on the substrate by the Galvano
scanner (Figure 1). When the remaining polyimide film on the PDMS was removed, only the LIG
pattern was implanted on the PDMS, which was then covered with PDMS to protect the pattern.
This demonstrates the fabrication of sensitive and flexible sensors in a simple and inexpensive process
without any technology, overcoming the disadvantages of previously reported piezoresistive strain
sensors [4–10,12,13,18,26,27].

Strain sensors are evaluated according to their sensitivity, maximum strain, response speed,
stability, and fabrication cost. In particular, the GF, which is expressed as the change in the electrical
resistance of the strain to the sensitivity of the strain sensor, can be used as a typical measure of efficiency.

Gauge Factor =
∆R/R0

ε
(1)

where ∆R is the variation of electrical resistance when strain is applied, R0 is the initial electrical
resistance, and ε is the strain.

The LIG strain sensor in this research measured strain through bending and tension. Strain
generations by bending and elongation are shown in Figure 3b. The change of electrical resistance to
strain was measured using a sourcemeter (Keithley®, sourcemeter 2450).

Figure 3c shows the electrical properties of the carbonized pattern depending on the laser fluence:
the electrical resistance value ranged from 237 Ω to 60 kΩ and sheet resistance ranged from 10.86 to
65 Ω/�.
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Figure 3. Fabrication of LIG sensor: (a) process of fabricating the LIG strain sensor, (b) strain generation
by bending, and (c) changes in electrical characteristics according to laser fluence.

3. Results and Discussion

3.1. Morphological Characterization of the LIG Pattern

The carbonization of the LIG pattern is mainly due to photothermal ablation [20,28,29]; the degree
of carbonization depends on laser parameters such as laser power, scanning speed, and focal length.
We set up various laser fluences to produce a porous LIG pattern, which is shown in Figure 4. The LIG
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pattern was fabricated by the DLW method; the morphology of the pattern was observed by field
emission scanning microscopy (FE-SEM). Samples were platinum coated before observation.
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The SEM images in Figure 4a–d show the graphene-like and porous structure of several microscale
graphene-like flakes; the line width of the LIG pattern is about 30 µm and the sensor has a biaxial
strain gauge. Lines fabricated by the DLW method can form very thin and desirable shape patterns,
suggesting that strain gauges grow rapidly when the laser scanning direction and elongation or
bending direction are the same. The graphene-like flakes can be seen forming fine graphitic projections
of several micro-meters. The LIG pattern fabricated by the DLW method under various laser irradiation
parameters usually has a line width in the range of approximately several tens of micrometers.
The influence of laser fluence on the structure and morphology of the material was studied by
irradiating the laser at a laser fluence from 5.6 to 7.4 J/cm2. When the laser is irradiated beyond
the specific fluence that can produce graphene, the characteristics of the porous structure gradually
deteriorate, the permittivity is lowered, and the electrical resistance becomes smaller, but we have
found the optimal laser fluence creates graphene-like flake patterns. Figure 5a clearly shows the
prominent graphene-like flake structure of the LIG pattern. Most of the structure, except for residual
areas of the polyimide film, is carbonized to the bottom.

The chemical structure of the LIG pattern was further investigated using a micro Raman
spectrometer (NRS-5100). As can be seen in Figure 5b, the Raman spectrum of the LIG pattern
clearly shows three distinct peaks: the D peak at 1350 cm−1 was induced by sp2 carbon bonds;
the G peak at 1580 cm−1 and the 2D peak at 2700 cm−1 show similar shapes, proof of graphene’s
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graphene-like flake structure and confirmation of the results of previous studies on LIG [18–24,30–33].
The analysis of the 2D peak provides important information for estimating the number of layers and
the stacking order in graphene or graphic layers [30]. LIG patterns have been successfully implanted
into PDMS by adjusting the laser fluence through changing various laser settings such as laser power
and scanning speed.
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3.2. Piezoresistive Effect of Fabricated Strain Sensor

A porous and graphene-like flake-structured LIG pattern was implanted on a flexible PDMS
substrate and then protected again with PDMS to produce a bendable and highly sensitive strain
sensor (Figure 6).

Sensors 2019, 19, x FOR PEER REVIEW 7 of 12 

 

various laser irradiation parameters usually has a line width in the range of approximately several 
tens of micrometers. The influence of laser fluence on the structure and morphology of the material 
was studied by irradiating the laser at a laser fluence from 5.6 to 7.4 J/cm2. When the laser is irradiated 
beyond the specific fluence that can produce graphene, the characteristics of the porous structure 
gradually deteriorate, the permittivity is lowered, and the electrical resistance becomes smaller, but 
we have found the optimal laser fluence creates graphene-like flake patterns. Figure 5a clearly shows 
the prominent graphene-like flake structure of the LIG pattern. Most of the structure, except for 
residual areas of the polyimide film, is carbonized to the bottom. 

The chemical structure of the LIG pattern was further investigated using a micro Raman 
spectrometer (NRS-5100). As can be seen in Figure 5b, the Raman spectrum of the LIG pattern clearly 
shows three distinct peaks: the D peak at 1350 cm−1 was induced by sp2 carbon bonds; the G peak at 
1580 cm−1 and the 2D peak at 2700 cm−1 show similar shapes, proof of graphene’s graphene-like flake 
structure and confirmation of the results of previous studies on LIG [18–24,30–33]. The analysis of 
the 2D peak provides important information for estimating the number of layers and the stacking 
order in graphene or graphic layers [30]. LIG patterns have been successfully implanted into PDMS 
by adjusting the laser fluence through changing various laser settings such as laser power and 
scanning speed. 

3.2. Piezoresistive Effect of Fabricated Strain Sensor 

A porous and graphene-like flake-structured LIG pattern was implanted on a flexible PDMS 
substrate and then protected again with PDMS to produce a bendable and highly sensitive strain 
sensor (Figure 6). 

 
Figure 6. Photographs of the strain sensor under (a) twisting and (b) bending; (c) SEM image of 
carbonized pattern embedded on polydimethylsiloxane (PDMS). 

Figure 6. Photographs of the strain sensor under (a) twisting and (b) bending; (c) SEM image of
carbonized pattern embedded on polydimethylsiloxane (PDMS).



Sensors 2019, 19, 4867 8 of 12

In order to evaluate the sensing properties of the strain sensors, we studied the strain-induced
changes in electrical resistance of the LIG patterns. As shown in Figure 7a, when the strain sensor
is fabricated by irradiation with a 355 nm pulsed laser with a laser fluence of 7.4 J/cm2, the electrical
resistance to strain changes from 234 to 837 Ω, which means that the porous LIG pattern shows high
sensitivity (GF ~ 160) even for fine strain (1.6%). When the bending distance changed, the corresponding
variation in the electrical resistance increased linearly and the GF values of the laser fluence at 6.4, 6.1,
and 5.6 J/cm2 were 8.5, 4.18, and 2.03, respectively (Figure 7b).
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As can be seen in Figure 7b, when the laser fluence is higher, the polyimide film is carbonized
more by photothermal ablation and has better electrical properties and higher sensitivity as a strain
sensor. Moreover, when the sensor is fabricated with a high laser fluence, the depth of the graphitic
pattern of the polyimide film becomes deeper, the pattern is better embedded in the substrate, and
the durability of the sensor becomes stronger. As shown in Figure 8, fracture of the strain sensor was
caused by 30% strain and was caused entirely by the fracturing of the PDMS.
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Figure 8. Change in electrical resistance corresponding to strain and fracture.

Cyclic tensile testing was applied to the strain sensor; we evaluated the piezoresistive effect by
measuring the electrical resistance with a sourcemeter (KEITHLEY, sourcemeter 2450). As can be
seen in Figure 9, it is possible to evaluate the response of the electrical resistance when the sensor is
periodically stretched/released at the same strain (ε = 1%, 3%, and 7%). Even after the cycle test (over
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200 iterations), the sensor demonstrated no hysteresis. All sensors increase–decrease the electrical
resistance as strains increase–decrease accordingly. In addition, for all applied strains, the initial
resistance of the LIG strain sensor did not change after 200 cycles of testing. Since our LIG strain
sensor had its LIG pattern embedded in PDMS, sensor linearity (R2 = 0.9984) was far better than
those of the previously reported silver nanowire sensor (R2 = 0.94), CNT-based sensor (nonlinear),
and graphene-based strain sensors (nonlinear) [4–9].
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As shown in the experimental results, our strain sensors can be applied in many areas with
advantages such as high sensitivity, fast response speed, high linearity, and low hysteresis. Figure 10a
shows the current–voltage characteristics according to the different strain conditions of the LIG strain
sensor and indicates that Ohm’s law is followed linearly when tensile strain is applied. When a certain
amount of voltage is applied to the sensor, it is confirmed that the electrical resistance increases as the
strain of the sensor increases and, therefore, the current value becomes smaller. LIG strain sensors have
been fabricated using different focal lengths; for the resulting GFs, initial electrical and sheet resistances
are shown in Figure 10b. The fabricated LIG strain sensor showed higher GF, and lower electrical
resistance and sheet resistance as the laser focal length was matched to that of polyimide. This indicates
that the degree of carbonization of the polyimide film has a great influence on the LIG sensor.Sensors 2019, 19, x FOR PEER REVIEW 9 of 12 
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In summary, the sensitivity, linearity, and elasticity of a sensor can be adjusted according to the
degree of carbonization and the embedding of the pattern; parameters can be selected according to
the application field. LIG strain sensors with low electrical resistance are suitable for applications
requiring high GF and high strain. On the other hand, low electrical resistance strain sensors can be
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used in applications requiring high linearity. The response time for strain sensing was about ~70 ms,
measured with a data acquisition (DAQ) system; the delay time due to bending was negligibly small
(Videos S1 and S2 in the Supplementary Materials). This is due to van der Waals forces between the
carbon network [14,17] of the LIG pattern and the PDMS used as the top layer. The electrical properties
of our sensors follow Ohm’s law in a very linear manner.

3.3. Application of the LIG Strain Sensor

Due to the flexible and highly sensitive nature of the LIG strain sensor, application to human
motion monitoring was considered. In terms of potential evaluation of our sensor’s application to
wearable devices, we built a glove sensor that combined latex gloves and sensors. As shown in
Figure 11, our sensor was fully responsive to finger movements. We strained the sensor by bending the
middle finger joint to a specific angle. As the finger bends more and more, i.e., as the bending angle
increases, the strain applied to the sensor increases, thereby increasing the electrical resistance. Also,
when we straightened the middle finger again, the sensor returned to its initial electrical resistance
value. Moreover, the LIG strain sensor showed very good durability because it returned to its initial
state even after repeated finger-bending cycle experiments.
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Figure 11. Motion detection of middle finger.

4. Conclusions

We report, in this paper, highly sensitive and flexible piezoresistive type strain sensors and
demonstrate their valuable use in strain sensing in the motion-monitoring industry. The LIG strain
sensor was investigated and found to have a response time of ~70 ms, good linearity to tensile strain,
high GFs that react to bending, and a good degree of creep in the bending/release cycle. There was no
fracturing due to bending. Also, due to its powerful piezoresistive effect, the sensor has a GF range of
1~160; its stretchability can reach ~30% depending on the carbonization degree of the LIG pattern,
and PDMS was destroyed after strain of 30%. Laser power, scanning speed, and focal length were
the main parameters involved in the degree of carbonization of the pattern. The LIG pattern shows
various electrical characteristics such as electrical resistance and sheet resistance; stretchability was also
demonstrated in various ways. Finally, we investigated the possibility that the LIG strain sensor could
be applied in industry for human motion detection. We attached the sensor to a latex glove and made a
glove sensor. Finger joint bending was monitored by our glove sensor made with the LIG strain sensor.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1424-8220/19/22/
4867/s1.
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