ﬂ SCNSors m\py

Article

Robot Assistance in Dynamic Smart
Environments—A Hierarchical Continual Planning in
the Now Framework

Helen Harman *®/, Keshav Chintamani and Pieter Simoens

IDLab, Department of Information Technology, Ghent University—imec, Technologiepark 126,
B-9052 Ghent, Belgium; keshav.chintamani@ugent.be (K.C.); pieter.simoens@ugent.be (P.S.)
* Correspondence: helen.harman@ugent.be; Tel.: +32-9331-4975

check for

Received: 7 October 2019; Accepted: 5 November 2019; Published: 7 November 2019 updates

Abstract: By coupling a robot to a smart environment, the robot can sense state beyond the perception
range of its onboard sensors and gain greater actuation capabilities. Nevertheless, incorporating the
states and actions of Internet of Things (IoT) devices into the robot’s onboard planner increases the
computational load, and thus can delay the execution of a task. Moreover, tasks may be frequently
replanned due to the unanticipated actions of humans. Our framework aims to mitigate these
inadequacies. In this paper, we propose a continual planning framework, which incorporates the
sensing and actuation capabilities of IoT devices into a robot’s state estimation, task planing and
task execution. The robot’s onboard task planner queries a cloud-based framework for actuators,
capable of the actions the robot cannot execute. Once generated, the plan is sent to the cloud back-end,
which will inform the robot if any IoT device reports a state change affecting its plan. Moreover,
a Hierarchical Continual Planning in the Now approach was developed in which tasks are split-up
into subtasks. To delay the planning of actions that will not be promptly executed, and thus to reduce
the frequency of replanning, the first subtask is planned and executed before the subsequent subtask
is. Only information relevant to the current (sub)task is provided to the task planner. We apply our
framework to a smart home and office scenario in which the robot is tasked with carrying out a
human’s requests. A prototype implementation in a smart home, and simulator-based evaluation
results, are presented to demonstrate the effectiveness of our framework.

Keywords: smart environment; Internet-of-Things; Internet-of-Robotic-Things; cloud robotics; IoRT
architecture; ambient intelligence; continual planning framework; dynamic environment

1. Introduction

The deployment of mobile and dexterous robots is being envisioned by the research community
in an expanding range of environments. For instance, assistance and companion robots for elderly at
home, and service robots in office buildings. These robots work alongside humans, and therefore must
be able to adapt their task execution to unexpected changes in the environment’s state.

Instead of hard coding sequences of actions to accomplish a given task, a more generic approach is
symbolic task planning, an artificial intelligence technique that can be applied to real-world robotics [1].
A task is formulated as a desired goal state, and planners autonomously find the appropriate set of
actions (i.e., a task plan) to move from the current state to the desired goal state. Symbolic task planners
are ran by continual planners, for example, References [2-5], which interleave sensing, planning and
acting. The (re)planning phase is only performed when a state change that affects the plan is detected.

An increasing number of Internet-of-Things (IoT) devices with sensing and actuation capabilities
are being installed, resulting in smart environments [6]. Embedding robots in smart environments,

Sensors 2019, 19, 4856; d0i:10.3390/s19224856 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-3195-2579
https://orcid.org/0000-0002-9569-9373
http://dx.doi.org/10.3390/s19224856
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/22/4856?type=check_update&version=2

Sensors 2019, 19, 4856 2 of 32

a concept referred to as the Internet-of-Robotic-Things [7], can extend the scope of tasks a robot’s
continual planner can handle in two ways. First, the pervasive sensors provide valuable information,
which can be incorporated in the planner’s estimate of the current world state. Second, actuation
devices expand the set of available actions. For instance, imagine a robot that is able to drive around
a house but cannot open doors, for example, because it lacks arms or is carrying an object. If a door
on its planned path is closed, a robot that is not coupled to the smart environment will only discover
the infeasibility of its current plan when the door is within the perception range of its own sensors.
Whereas, an IoT door sensor could immediately notify the robot of the door being closed. If the door is
also equipped with an remotely controllable door pump, the robot can request a smart home system
to open the door. Otherwise, if there are no alternative routes available, a closed door would simply
result in the robot failing to accomplish its task.

In this paper, we introduce our Hierarchical Continual Planning in the Now framework, which
aims to (i) enable a robot’s planner to incorporate the state information and exogenous (off-board)
actuation capabilities provided by IoT sensors and actuators; and (ii) reduce the frequency of and
time spent (re)planning tasks in dynamically changing environments. Representing all devices
directly within a symbolic task planner’s state, together with the sensor information and the actuation
capabilities they provide, would cause unreasonable planning times. Therefore, in our framework,
cloud-based state monitors inform the robot of IoT-sensed state changes that are relevant to its current
task plan. Moreover, during the planning phase, remote devices are abstractly represented and calls to
an external (ontology-based) module check if one or more devices are capable of executing an action.

Actions further along in the planning horizon are more likely to become unexecutable or
unnecessary due to a unexpected change in the world’s state. State knowledge and actions are
therefore split-up into a hierarchical structure. A single branch is planned and executed before the
subsequent branch. This reduces how far in advance a detailed plan is generated and enables a robot
to replan subsections of its task plan.

In Reference [8], we presented an early version of our planner that recreated the entire plan when
an IoT or onboard sensor observations deemed the current task plan to be infeasible. In the current
paper, we introduce a hierarchical approach, avoiding an entire replanning if an observed state change
only impacts actions much later in the planning horizon. We have developed a much more generic
mechanism that allows for ontology-based reasoning on IoT actuator capabilities. Moreover, results
of deploying our framework in a smart home are presented. Our scenarios and experiments focus
on robots providing assistance at home and in smart offices; however, our planning framework is
applicable to any smart environment. Our framework does not address the challenges relating to
multi-robot planning, for example, conflict resolutions and resource negotiations.

The remainder of this paper is structured as follows. A summary of related work is provided in
Section 2. Background information on the concept of hierarchical planning in the now is provided
in Section 3. Section 4 provides an overview of the framework architecture. Details on the different
components are described in Section 5. Section 6 introduces how a engineer can design the hierarchy
of state knowledge and actions. Finally, in Sections 7 and 8 we evaluate our work through real world
tests and simulated experiments.

2. Related Work

This section discusses several strands of related work. First, approaches that perform planning
within a smart environment are introduced. This is followed by a discussion on how robots can reason
on the capabilities of themselves and IoT sensors and actuators. The third subsection outlines how
domain specific reasoning has been integrated into symbolic task planners. Finally, methods that
reduce the amount of planning performed upfront are described.

Sensors 2019, 19, 4856 3 0f 32

2.1. Planning in Smart Environments

As explained in the introduction, the sensing and actuation capabilities provided by a smart
environment can extend both the robot’s perception range and ability to manipulate the environment.
Below, only works that incorporate IoT sensor and/or actuator devices into planners are discussed.
For a broader survey on the integration of IoT and robotics, we refer to Reference [9].

In Reference [10], data from off-board RGB-D cameras allows a robot to create a plan that avoids
congested areas. When a sensor nearby the robot detects congestion, the robots within the local area
attempt to adapt their plan. If unsuccessful, a central scheduler recalculates the robots” plans by
reasoning on an ontology containing all robots, along with the tasks they can fulfil.

When using symbolic task planning in multi-agent robotics, which device (or robot) will execute
an action tends to be explicitly stated within the plan, for example, MA-PDDL [11] and MAPL [12].
However, the number of IoT devices installed in smart environments is rising, and adding all these
devices explicitly to the planning problem increases the planning time. This causes unreasonable
delays before task execution can begin. Further to this, devices may become unavailable, causing the
plan to fail; and new devices may be discovered, which could allow a less costly plan to be produced.

In Reference [13] plans containing abstract services are generated. These, abstract services, are
mapped to actual devices during run-time. As the plan contains abstract services, replanning is not
required when services appear and disappear. We aim to incorporate this concept into robot task
planning by adding an abstract remote device to the planning problem. As we use a mobile robot,
some knowledge about which device the robot should interact with is still required during part of
the planning process. For example, if the robot requires an IoT coffee machine, it needs to know the
location of the coffee machine.

The PEIS Ecology middleware [14-16] provides robots with the ability to discover what
heterogeneous smart devices are available and subscribe to their capabilities for assistance with
executing a task. When a device becomes unavailable, the ecology is automatically reconfigured to
use an alternative device. Like PEIS, in our system a robot is responsible for planning its own task;
however, rather than a robot directly communicating to devices, they communicate via a central server,
which reasons about devices and their capabilities.

2.2. Capability Reasoning

Robots come with many different capabilities, for example, some may have the dexterity to open
doors while others have no effectors for object manipulation [17]. A similar diversity in sensing and
actuation capabilities is observed across smart environments. Some capabilities may be provided
by more than one device. For instance, a door can be opened by another robot or by a nearby
human. Moreover, the available functions of a device may evolve over time and, for example, become
temporarily unavailable due to a malfunction. Therefore, during the planning process, the robot needs
to know that there is at least one device (possibly itself) capable of performing an action for a given set
of parameters (e.g., an open door action can be performed on door 1 but not on door 2); otherwise,
the action should not be planned. We propose calling an external module, which queries the cloud
for capable devices. The cloud reasons on an ontology about the capabilities of devices, and monitors
their status.

Numerous robotic and IoT ontologies exist for reasoning about devices and there capabilities,
such as IoT-O [18,19] and KnowRob’s SRDL [20]. These describe “things” and their relationships in the
Web Ontology Language (OWL). Rather than coming up with another new ontology, our framework
makes use of the KnowRob ontologies [21], which are part of the RoboEarth project. KnowRob enables
robots to be described in detail (e.g., their software and hardware components) and each robot can be
linked to one or more capabilities. As these capabilities do not include any parameters, we expanded
this ontology (see Section 5.2.2).

In the RoboEarth project, if a robot has the required capabilities, an action recipe is downloaded
onto the robot and tailored to its specific hardware to create an executable plan. Furthermore, a task

Sensors 2019, 19, 4856 4 of 32

plan is produced based on the most likely locations of objects. If the most likely location is incorrect,
the next most probable location is used. When the object is detected, information is sent back to the
cloud to update the probabilities. We aim to allow robots to execute tasks even if network connectivity
is lost; therefore, in our system a robot is responsible for performing its own planning. Although a
robot will be limited to its onboard capabilities, some tasks can still be accomplished.

In Reference [22], semantic maps are queried to enrich the planner’s initial state with additional
knowledge about the environment. Providing the planner with all knowledge derived from the
semantic map would be computationally expensive. Therefore, they only include knowledge
relevant to the current context, that is, concepts stated within the goal. Moreover, “semantic-level
planning” is performed to prune the initial state of unnecessary information. Similar to this approach,
our framework only provides relevant information to the planner; however, our approach focuses
on the splitting-up of actions and state into subtasks to reduce the amount to knowledge required by
a task planner. Our approach also performs planning in the now, thus reducing the planning time
required before the robot starts executing its task.

Kockemann et al. [23] integrated a constraint-based planner with an ontology to avail the
capabilities of IoT devices. To accomplish this, they enabled ontology queries to be written within
the planning language. Further, they also developed a method to generate the queries automatically
from statements within the domain definition. Their examples and experiment focus on querying
sensors. Similarly, we integrate a symbolic planner with an ontology but we focus on reasoning on
actuation capabilities. We also develop a continual planning framework that enables the planner to be
run onboard a robot, and the cloud to monitor IoT devices and reason on their capabilities.

2.3. Planners with External Reasoners

Often the (re)planning phase of a continual planner is performed by a classical symbolic (task)
planner, for example, Fast Downward (FD) [24]. These planners take a symbolic representation of an
agent’s behaviour and the world state as input, and search for a set of actions that will transform the
initial state into the goal state. A popular symbolic language is Planning Domain Definition Language
(PDDL). A PDDL problem definition usually consists of a problem file and a domain file. The problem
file contains an initial (current) state and a goal state, both expressed using predicates, fluents and
objects. Actions, along with their conditions and effects, are defined in a domain file.

As PDDL is restrictive in what can be represented, several works, such as TFD/M [17,25], enable
external modules to be called during planning. These modules incorporate low-level domain specific
reasoning into high-level symbolic planning to allow for better (i.e., more accurate and detailed) state
estimation. For example, an external module could be a motion planner to discover if it is possible for
a robot to reach a location [3] or a reasoner which determines if an object will fit into a container based
on its shape and size [25]. Unfortunately, as external module calls increase the planning time, it can be
difficult to balance determining the correct state with keeping computational costs down [4]. In our
framework, which expands on the work by Dornhege and Hertle [4] and Speck et al. [3], an external
module is called to reason on the capabilities of IoT actuators.

Checking the feasibility of plans with additional domain-specific algorithms has also been
previously investigated for Hierarchical Task Network (HTN) planners. In HTNs, a domain file
contains a set of compound and primitive (executable) tasks along with methods, which describe
how to decompose each compound task into subtasks. Subtasks can consist of both primitive tasks
and compound tasks (which will be further decomposed). HTN planners have been combined with
algorithms for geometric task planning [26] and for resource scheduling [27]. When the lowest level
of the HTN is reached, the respective algorithm is invoked and, if unsuccessful in finding a solution,
backtracking is performed.

Sensors 2019, 19, 4856 5 of 32

2.4. Interleaving Planning and Execution

Planning methods usually generate the full plan upfront before starting execution. Unexpected
changes in the state of the environment can cause the plan to become infeasible; therefore, the effort
to generate the full plan is wasted. As well as causing a cost to the robot itself, replanning can be
costly to the system as a whole due to resources having been assigned to the plan (e.g., the use of
external devices). Furthermore, additional state may become apparent during the execution of the
plan, which can enable a more cost efficient plan to be generated. In this case, replanning is required to
take this additional state information into consideration. To resolve these issues, scholars [28-32] have
suggested planning short term actions in more detail than those later in the planning horizon.

Sukkerd et al. [28] propose multi-resolution temporal planning using a Markov Decision Process
(MDP). Actions up until a given time are planned in detail; and those later in the planning horizon are
planned at a coarser level of detail. Replanning of the coarser sections is performed with up to date
state observation to generate a detailed plan. This approach enables distant actions to be taken into
consideration when generating the detailed, short-term plan.

In Belief-Desire-Intention (BDI) approaches [33-35], an agent selects its intentions (i.e., plan) from a
set of desires based on its beliefs about the current world state. Traditionally, the desires are a predefined
library of plans [36]; however, BDI has also been combined with planners. For instance, Mora et al. [34]
first select an intention and then plan the necessary actions. Besides actions, the plan can also contain
intentions, which require further refinement. An agent revises its beliefs and triggers replanning
when necessary.

Instead of time determining which actions are planned in detail, one can use the structure of
hierarchical plans. HTN’s task decomposition can determine which high-level actions to plan in detail.
Hierarchical Planning in the Now (HPN) recursively plans and executes actions [29]. An abstract
plan is formulated, and the first composite action is planned and executed before decomposing the
subsequent composite action. The authors use a hierarchical planning language in which the actions
must be labelled with the level of abstraction, and the complete world state is always reasoned on.
This has been expanded with belief states, that is, Belief Hierarchical Planning in the Now (BHPN),
and planning using continuous state information (e.g., position) [30].

As our system builds on many of the concepts from HTN planners, it has many of the same
benefits and disadvantages. Although HTN planners do not always guarantee an optimal plan [37],
the use of compound tasks enables HTN planners to be faster [26] and simpler [38] than classical
symbolic planning. HTNs are also claimed to represent tasks in a way more closely related to how
humans think about problems [26,39]. Unfortunately, there is no standard planning language for HTNs
and recent works, for example, Reference [40], attempt to transform a HTN planning problem into a
classical (PDDL) planning problem to apply more advanced heuristics. Therefore, in our work, PDDL
is split-up into a hierarchy.

In order to maximise the developer’s flexibility and to ensure compatibility with various types
of smart environment, our planning framework differs from HPN [29] and BDI [34] systems in a
number of ways. First, our approach splits-up both the state knowledge and actions into different
layers; therefore, only knowledge relevant to the current layer and context is reasoned on. Second,
any planner, including those using a different representation of the world, can be used at each layer.
Third, by planning with different domain files at each layer, domains can be re-used in different
scenarios and this prevents a single extremely large domain file from being developed. Finally, we also
focus on how the planner can use IoT devices found within a smart environment and replan when a
state change that causes the robot’s plan to be invalidated is detected.

3. Background: Hierarchical Planning in the Now

Our framework enables hierarchical task plans to be monitored, so that replanning is triggered
on a sub-branch of the plan when IoT sensors detect unanticipated state changes. This background
section describes the general concept of Hierarchical Planning in the Now (HPN), as introduced by

Sensors 2019, 19, 4856 6 of 32

Kaelbling and Lozano-Pérez [29]. In HPN, the initial task plan, generated by the planner, contains
a sequence of actions that can be primitive or composite. Each of these actions will be executed in
turn. The execution of a composite action will generate a sub-plan, which again will be comprised of
primitive and/or composite actions.

This concept is depicted in Figure 1. In this figure, the initial plan consists of a sequence of
two composite actions (Figure 1a). The first composite action produces a sub-plan composed of a
composite and a primitive action (Figure 1b). As the sub-plan’s first action is also a composite action,
it is decomposed and a plan containing only primitive actions is produced (i.e., Figure 1c). Once these
primitive actions have been executed, the effects of composite action 1.1 are reached, enabling the next
action within the second level to be executed (Figure 1d). This continues until all actions have been
completed (Figure le—f).

[1) composite action | [2) composite action |

‘ 1) composite action ‘ | 2) composite action | 1.1) composite action H 1.2) primitive action |
(a) Initial plan. (b) As the first action is a composite action, when it is
executed, a subtask plan is created.
| 1) composite action | | 2) composite action |
h 4
[1.1) composite action | | 1.2) primitive action | | 1) composite action | | 2) composite action
[1.1.1) primitive action | [1.1.2) primitive action |

[1.1) composite action || 1.2) primitive action |

(c) The first action of the sub-plan is also a composite (d) The first action in the sub-plan has finished, allowing

action, so executing it generates another sub-plan. .. second action to be executed.

As this only contains primitive actions, no further task
decomposition is required.

| 1) composite action | | 2) composite action ‘

_2.1) primitive action | 2.2) primitive action | | 1) composite action | ‘ 2) composite action |

(e) Once the first composite action in the initial plan has

. L . (f) The execution of the plan has completed.
finished, the subsequent action is executed. This causes

another plan to be generated.

Figure 1. Grey boxes indicate actions which have not yet been executed; blue shows the actions
currently being executed and green indicates executed actions. These figures describe the general
concept of hierarchical planning in the now, introduced by Kaelbling and Lozano-Pérez [29].

4. Architecture Overview

Our framework consists of components that are deployed onboard a robot and in the cloud.
The architecture of the framework is visualised in Figure 2. This sections explains which components
are deployed onboard the robot and which are run in the cloud. Further details, about these
components, are provided in the subsequent section. Communication with the IoT devices of a
smart environment is abstracted by an IoT middleware, namely, DYnamic, Adaptive MAnagement
of Networks and Devices (DYAMAND) [41]. DYAMAND enables all heterogeneous IoT sensors to
communicate using a standard format and IoT actuators can be commanded by sending JSON strings
(via a central-server) over HTTP.

The main components onboard a robot are the Continual Planner and a knowledge base. The
Continual Planner performs three processes: it composes the PDDL files based on the information
stored in the knowledge base, it generates a task plan containing composite and primitive actions and it
executes that plan. Running the planner on the robot allows it to continue operating when (wireless)
network connectivity towards the cloud drops but requires limiting the amount of information
transmitted from the smart environment to the robot. Sending the raw data streams of all IoT sensors
in the environment would incur prohibitively large network bandwidth and associated battery drain.

Sensors 2019, 19, 4856 7 of 32

Moreover, the robot would lack the required computational resources to process raw data, especially if
rich data from sensors such as cameras or microphones [42,43] is involved.

Continual
Planner

check for capable devices,

F(nowledgﬂ
_ base

Robot

Context
] Monitor)

Capability
Checker

check for capable device:

Plan Validator
Ontology

Cloud (— Capability [» Availability Monitor | World State Monitors |5

k Reasoner
\""’i’_’&‘-\r—f—/g_‘
\ loT Mid;ileware |
loT devices I = R W R |
- @ Q) k‘! A]

E light sensors door sensors human presence !

Figure 2. During planning, external module calls check if any device is capable of performing an action
by calling a service running in the Capability Checker, which queries the cloud for capable devices
and caches the results. The Context Monitor queries this when a plan has been generated, to know
which device(s) should perform which action. The plan (containing the list of actual device) is sent to
the cloud, which is monitoring the state of the environment and the devices. Any Internet of Things
(IoT) data relevant to the robot’s plan is sent back to the robot and inserted into the robot’s knowledge
base. If this information will cause the robot’s plan to fail, its current action is cancelled forcing the
state to be (re-)estimated and replanning to be performed.

During the task planning phase, the Continual Planner will check via the Capability Checker if a
remote (IoT) device is capable of performing an action. The Capability Checker queries the cloud-based
Ontology Capability Reasoner for capable devices and caches the result. All reasoning over IoT
actuators and their capabilities is thus delegated to the back-end components of the framework.

A robot, via its onboard Context Monitor, communicates its current hierarchical task plan to
the cloud back-end. In the cloud, World State Monitors process the data produced by IoT sensors
and the Availability Monitor tracks the availability of IoT actuators. The cloud informs the robot
of unanticipated state changes affecting its plan and, subsequently, the robot decides if replanning
is necessary. Rather than recreating the whole hierarchical task plan, replanning is triggered at the
level containing the action(s) that will fail. As only a small subsection of the plan is replanned,
the time spent planning is greatly reduced in comparison to planning everything upfront. If replanning
fails, the composite action becomes invalid. This will trigger its parent’s (i.e., a higher-level’s) state
estimation and replanning.

5. Incorporating IoT into Continual Planning

Our continual planning component, shown in Figure 3, is an expanded version of the framework
by Dornhege and Hertle [4]. The original framework loops through the phases of populating a PDDL
problem by calling State Estimators, running the TFD/M task planner and then calling the appropriate
Action Executor plug-ins to translate actions into executable robot instructions. We have expanded
this framework to incorporate IoT sensed information, utilise the capabilities of IoT actuators, produce
a hierarchical task plan and monitor that task plan. This section first discusses how the PDDL files are
formulated. Second, the capability checking process, which is performed during the search for a plan,
is described. Subsequently, the context monitoring and replanning processes are introduced. In the
final subsection, the action execution is detailed.

Sensors 2019, 19, 4856 8 of 32

5.1. Generating a Planning Problem

In the first phase a planning problem is generated by a set of State Estimators, which populate
a PDDL problem file and a Domain Enricher, which populates a PDDL domain file. These files can
then be provided to a task planner (in our implementation, this is TFD/M) to produce a task plan
containing both primitive and composite actions. Each action will be executed by its corresponding
Action Executor (see Section 5.4.2). Which State Estimators, Action Executors and domain file should
be loaded, is stated within a configuration file. Each composite action, that is, branch of the hierarchy,
can be configured with its own domain file and instances of State Estimators and Action Executors.
State Estimators and the Domain Enricher are detailed in this section.

State Estimators Action Executors
— 1
1
IStati: State Estimators LLlCZompmsile Actions Executors‘ 1

t| problem

planner
Remote Robot

t| domain

! '
' :
: :
: 1
' .
: 1 TFDIM enerate task ol E
i - R _i_u ask plan |—> - -
E L‘_‘Dynamic State Estimators‘ task Primitive Action Executors E
: i
1
| i
: 1

Figure 3. The continual planner calls the State Estimators (i.e., Static State Estimators and Dynamic State
Estimators) and Domain Enricher to generate the PDDL problem and domain based on observations
from the robot and smart environment. The TFD/M planner generates a task plan that contains
primitive actions, to be executed by the robot and IoT actuators and composite actions. Composite
action executors contain an instance of the the continual planner, which is configured with the relevant
State Estimators, Action Executors and domain file.

5.1.1. State Estimation

The PDDL problem file contains a goal state and the current state. The problem file is populated by
calling a set of State Estimator plug-ins, each of which implements a fillState method. State Estimators
query the most recent state either directly from the robotic middleware (e.g., to gain the robot’s
position) or from the knowledge database and transform this information into PDDL statements.
The knowledge base, implemented in MongoDB, stores information on the current state and the goals.
Updates to the knowledge database come from external IoT devices via the Context Monitor and from
the result returned by Action Executors.

We categorise State Estimators as either static or dynamic. Static State Estimators are called once,
and insert immutable state information such as waypoints and immovable objects. Dynamic State
Estimators are called at the start of each iteration to update the problem file; for instance, to reflect a
change in the current state or to add a new goal. Table 1 presents an overview of the different State
Estimators in our system; further State Estimators can easily be added.

5.1.2. Defining Actions and Devices

The PDDL domain file contains the set of action definitions from which the TFD/M planner
generates a task plan. In traditional approaches, this list is predefined with a fixed set of actions and the
same domain file is reasoned on in every iteration. In realistic environments, this list can quickly grow
in size, for example, for each type of object a robot may encounter different manipulation actions could
be defined.

Instead of always providing an exhaustive and predefined list of actions to the TFD/M planner,
a Domain Enricher is called. The Domain Enricher analyses the PDDL problem, obtained after calling
the State Estimators and expands it with actions that are relevant to the defined entities/objects.
Starting from a minimal domain file, only containing the most elementary actions a mobile robot
can execute (e.g., for a navigation layer this includes actions to drive around the environment and
inspecting objects), further actions are inserted in subsequent planning iterations. For instance, if a
closed door is detected on the robot’s path, the sensed__obstacles State Estimators will add a door to

Sensors 2019, 19, 4856 9 of 32

the problem file and the Domain Enricher will insert the open door action definition, which is shown
in Listing 1. Similarly, if the robot discovers a box, a push__box action will be inserted into the domain
file. These actions are obtained by requesting all actions that can be performed on the object type,
for example, objects of type door, from the cloud (which, for each object type, has a file containing the
set of action definitions).

(:durative - action open_door

:parameters (?r - device 7?s - location ?g - location ?d - door)
:duration (= ?duration 5000)

:condition (and

(at start (object-is-in-path ?d ?s 7g))

(at start ([checkCanOpenDoor open_door ?r ?d]))

)

:effect (and (at end (not (object-is-in-path ?d ?s 7g))))
)

Listing 1: The open_ door action definition.

Table 1. Description of the different State Estimators.

State Estimator ~ Description

object__state The object_state estimator is configured with a list of objects (given as arguments at initialisation or added
later by calling a method) that the planner requires the state of. The objects’ state is read from the robot’s
knowledge base and the relevant statements are added to the planner’s current state. A statement is
relevant if the predicates and object types, contained within the statement, have been defined in the
domain file. When one of its arguments is “request”, then all requests sent (by the cloud) to the robot are
inserted into the PDDL problem file. This enables a human to request the robot’s assistance at any point
in time.

locations This Static State Estimator inserts the waypoints, which are within the robot’s knowledge base, into the
PDDL problem. Waypoints are written in the format <ID>_<roomID> (e.g., doorway1.2_room1.1)
and those with matching <ID>s (e.g., locations either side of doorways) are set as being in-line.

robot__pose Obtains the robot’s position from odometry and localisation. If the position is equivalent to a location
that has previously been added to the state, the robot is assigned to the location using the at-base PDDL
predicate. If the robot is at an unknown location, a new location is created and inserted into the PDDL
problem file. Based on the work of Reference [3].

sensed _obstacles Adds PDDL statements for any identified obstacles on the robot’s path. Identification can come from
running object recognition algorithms on a robot’s RGB camera or directly from the cloud (e.g., closed
door). Obstacles that have been acted on and are no longer obstacles, are removed from the problem.

goal _creator Sets the robot’s goal. This Static State Estimator is used at the highest level of the hierarchy. Further
details are specific to the experiments that were ran (see Sections 7 and 8).

The actions provided by IoT devices are also defined in the domain file. Since the continual
planner must be able to request a device to execute an action (e.g., the robot itself, a door pump, an IoT
light switch or another robot), one solution would be to declare all individual devices as objects in
the PDDL problem file. Due to the resulting expansion of the problem file, this solution would lead
to long planning times. We recall the reader that frequent replanning might be required in dynamic
smart environments. Rather than defining all IoT devices in the PDDL problem file, we introduce a
single “remote” object that represents all remote devices.

5.2. Capability Checking

The availability of remote devices and thus the actions they can perform, may change over time.
An IoT device may become unavailable for numerous reasons, for example, because it is being used
by another service (or human), is under maintenance, is low on battery or has a degraded network
connection. As some actions can be performed by more than one device, this does not necessarily mean
the action cannot be executed. For instance, a door can be opened by an electric pump, another robot
or a nearby human; and a cup of coffee can be fetched from another location if the nearest machine has
run out of coffee beans.

Sensors 2019, 19, 4856 10 of 32

During the search for a plan, the TFD/M planner will evaluate the conditions of an action many
times with different argument combinations. It is difficult to formally represent the knowledge that
is needed to reason on the availability of an action in PDDL. Therefore, our framework provides an
external module, which in turn leverages an ontology-based reasoner, deployed in a cloud back-end.
In this section, the robot’s capability checking module and Capability Checker are described, followed
by the cloud’s Ontology Capability Reasoner.

5.2.1. Capability Checking Module

The TFD/M task planner of Reference [25] enables external modules to be called during the
planning phase. These enable domain-specific code to be executed. Inside the PDDL domain file we
define a list of external module definitions. Like predicates, these are stated within the conditions of
actions and are checked during the search for a plan, but rather than being compared to the world
model, external code is called. In our case, this is a single capability checking module.

The first two arguments in the capability checking condition are always the name of the action
and a device, that is, the name of the local robot or “remote”. The name of the action is given so
that, after a plan has been found, a planned remote action can be associated with the discovered
(capable) remote device(s). The number and type of the remaining arguments are specific to the action.
For instance, in the example of Listing 1, checkCanOpenDoor has a parameter of type door; whereas
checkCanFillObject would have two parameters, for example, a cup and coffee. If the name of a robot
is passed (as the second argument), the capability checking module will evaluate based on the robot’s
current capabilities. If “remote” is passed, the module will communicate with the Capability Checker,
which queries the cloud for a list of capable devices and caches that list. The cache is queried for
subsequent calls to speed up the process. Once a branch of the plan has been executed, the cache is
cleared for actions within that branch (layer). This allows any newly available devices to be reasoned
on in subsequent branching. In the cloud back-end, ontology reasoning determines the list of remote
devices that can execute an action.

5.2.2. Ontology-Based Reasoning

To decouple the availability of an action from the availability of a specific device, the requirements
of each action are modelled as a set of capabilities and each device has a number of capabilities. These
relationships, depicted in Figure 4, are inspired by the SRDL ontology [20]. We have expanded the
ontology by allowing capabilities to have requirements (e.g., the OpenDoorCapability can require a
door to be specified) and an associated cost. The cost allows the planner to select the least costly device
to perform an action. Currently this is a static (manually defined) value; in the future we envision
more intelligent reasoning and learning being utilised. Moreover, we created a device class which
represents simple devices, such as electronic doors, IoT lifts and smart coffee machines, as well as
(mobile) robots defined in SRDL [20].

Figure 4. Outline of what we define action, capability, device and robot as. PDDL actions require a
capability and devices along with what they are capable of are defined in an ontology.

Upon receiving the request for capable devices, the ontology is queried for devices with
a capability of the required type, for example, for all devices that have a capability of type
OpenDoorCapability. The OpenDoorCapability has a “canOpenDoor” property matching a specific
door; if this property is missing the device (or human) is assumed to be able to open all doors. The
Ontology Capability Reasoner also queries the IoT Context Monitor to check the device is available

Sensors 2019, 19, 4856 11 of 32

(e.g., is not down for maintenance). All capable devices, along with the costs associated with the
capability, are returned to the robot.

5.3. Context Monitoring

After a (hierarchical) task plan has been formulated, context monitoring and plan execution
(see Section 5.4) occur in parallel. Context monitoring is the process of continuously evaluating the
sensor data received from IoT devices, as well as the status of the devices and identifying any possible
state changes that affect the current plan. If replanning is necessary, this is performed at the layer of
the hierarchy affected by the state change. The robot’s onboard Context Monitor is discussed, followed
by the cloud-based Plan Validator and IoT context monitors (i.e., Availability Monitor and World
State Monitors).

5.3.1. Robot’s Onboard Context Monitor

The Context Monitor, running onboard the robot, is the component responsible for keeping track
of the hierarchical task plan and triggering the replanning of a branch of the plan. When a plan has
been generated, it replaces all references to the generic “remote” object with a list of actual devices,
which it obtains from the Capability Checker. The full hierarchical task plan, containing the device
list(s), is then announced to the cloud-based Plan Validator. The Context Monitor will receive relevant
IoT state updates from the cloud.

Although performing planning in the now restricts how far in the future a detailed plan is
produced, state changes can still cause parts of the plan to become infeasible. The robot itself may
detect that its current action will/has failed, for example, a box is blocking its path when executing a
drive_base action; or an IoT device may detect state that will cause one or more of the robot’s planned
actions to fail, for example, a door closes. In both these cases the robot needs to replan, to either bypass
the issue (e.g., find a different route) or solve it (e.g., open the door). When a state change that violates
one or more preconditions of a planned action occurs, the state change is inserted into the robot’s
knowledge base and the executing action from the affected layer is stopped, along with its subtasks.
For instance, in Figure 1c, if primitive action 1.2 will fail, composite action 1.1 (as it is currently being
executed) is stopped. Thus, primitive action 1.1.2 is also stopped. This will trigger composite action 1
to replan its subtask.

In other situations, a remote device may become unavailable. If there is an alternative device
available and all necessary dependencies are still met, no replanning is required. This is because the
actual device that will execute a remote action is only resolved by the continual planner when the
execution of a remote action is started.

Even when an alternative device is present, it might still be necessary to trigger a replanning.
This is the case if another action depends on the choice of the remote device. For instance, in the plan:
(1) move_to_object(robl remote), (2) hand__over_object(robl cup remote), (3) fill__object(remote
cup coffee), where “remote” will be replaced by [coffee_machinel, coffee_machine2], the actions
prior to the remote action (i.e., fill_object) mention the remote device. Therefore, if the execution of
one of these actions has started and the initially selected remote device (i.e., first device in the list)
malfunctions, replanning is required to enable the robot to move to the alternative coffee machine.
Note: if remote actions have dependencies, remote actions that are executed by different devices
should be planned within different branches of the hierarchy (e.g., the robot should move to and use
one device before planning its navigation to and use of, a second device).

5.3.2. Plan Validator and IoT Context Monitor

The Plan Validator communicates with robots and keeps a list of each robot’s plan and the
objects/devices whose state could affect that plan. The IoT context monitors, that is, an Availability
Monitor and set of World State Monitors, receive messages from the IoT middleware and provide the

Sensors 2019, 19, 4856 12 of 32

object specific information the robot requires when its plan is affected by a state change. This section
describes the Plan Validator, followed by the Availability Monitor and World State Monitors.

The Plan Validator receives the (JSON) messages sent by one or more robots” Context Monitors.
These contain the robot’s IP address and hierarchical task plan in which “remote” has been substitute
with the list of capable devices. The Plan Validator parses the task plan. Then queries the IoT context
monitors for the set of objects (e.g., doors, cups, boxes, etc.) and devices, whose state could affect
the robot’s planned actions. If the current state of an object or device already affects the robot’s plan,
the robot is instantly informed. To receive the state changes, the Plan Validator registers itself as an
observer of the Availability Monitor and each of the World State Monitors (which are observables).
When informed that an object/device has changed state, the Plan Validator notifies the appropriate
robots. The notifications, sent to the robot(s), contain which action the state change affects and the
information provided by the monitors. Although the Plan Validator handles multiple robots’ plans,
resource negotiations are beyond the scope of this paper.

When initialised, the Availability Monitor and World State Monitors query the ontology for the
list of objects they should monitor the state of, that is, the Availability Monitor gets all objects of
type device and, for example, a Door World State Monitor gets all objects of type door. To determine
which objects a robot should know the state of a default method is provided, which simple checks
the monitor’s list of objects against the robot’s planned actions’ parameters and returns the matches.
In some cases, some domain specific processing is required. For example, the Door World State Monitor
checks the plan for drive_base actions and returns a list of doors that sit between two locations the
robot plans to drive between (these locations are also stated in the ontology).

When the IoT middleware (i.e., DYAMAND), announces a state change (i.e., posts a JSON string,
which contains the name of the object/device and its state) the relevant monitor consumes that
message. The monitor then provides the Plan Validator with the information that should be sent to
the robots, whose plans could be affected by the change. In the case of the Availability Monitor, this
information just contains the name of the device and its availability (i.e., a boolean value). For the
World State Monitors, this includes the objects and PDDL statements that should be inserted into the
problem file. For instance, the Door World State Monitor provides a PDDL statement declaring which
locations the door blocks the robot from driving between, for example, (object-is-in-path doorl.1
doorwayl.1_rooml.1l doorwayl.l_rooml.2).

5.4. Plan Execution

Each action, defined in the PDDL domain hierarchy;, is linked to an Action Executor, a plug-in
containing the logic and low-level instructions to be executed. These plug-ins implement a execute()
method, which is called by the continual planner. The workings of this method depend on whether
the Action Executor is categorised as a Primitive Action Executor or a Composite Action Executor.
Examples of both types are provided in Appendix A. Figure 5 illustrates how these interact with the
other components of our framework.

5.4.1. Primitive Action Executors

Primitive Action Executors perform the lowest-level actions, for example, open_ door, drive_base,
request_lift. These include Local Action Executors and a single Remote Action Executor. Local
Action Executors interact with the robot’s actuators and sensors through a robot middleware,
for example, Robotic Operating System (ROS) [44]. For example, the drive_base action will be executed
by the DriveBaseActionExecutor, which, after querying the knowledge base for the geometric position
of the symbolically represented location, interacts with the move_base ROS ActionLib to command
the robot to drive to a specific position.

Any actions involving remote (off-board) devices are delegated to a single Action
Executor that acts as a proxy for all IoT actuators. When remote action execution is required,
the RemoteActionExecutor will retrieve the (least costly) device to execute the action from the Context

Sensors 2019, 19, 4856 13 of 32

Monitor. The action request is then sent to the cloud back-end (via a blocking HTTP post), where it is
redirected to the appropriate actuator service via the IoT middleware.

Action Executors

‘ | |
Primitive Action l Composite read ;
u. Executor Action Executor '@

call configure A
runPlanner
execute
robot v read -
middleware Continual domain

ite |
ca\l+ Planner \é‘vr;eead

|remote loT devices || device drivers|

Figure 5. Functionality of the types of Action Executors. Grey boxes indicate types of plug-ins, white
indicates classes/instances and yellow shows files.

5.4.2. Composite Action Executor

Further planning is required for high-level (abstract) actions in order to create a plan containing
only primitive actions. When invoked, a Composite Action Executor will start a new instance of
the continual planner and configure it with the necessary domain file, State Estimators and Action
Executors. If the resulting plan also contains composite actions, the procedure is repeated. Using this
recursion, the execution of a composite action, ultimately, results in a set of calls to Primitive Action
Executors. We provide a base CompositeActionExecutor class, which performs the action execution
and includes 4 overridable methods: (i) to load the correct plug-ins and domain file (which, by default,
are read from the configuration file), (ii) set the goal state, (iii) handle successful completion and (iv)
handle failure.

A threshold on the number of sense-plan-act iterations a composite action will perform can be set
to prevent endless attempts. Performing multiple iterations enables any additional (evolving) state to
be taken into consideration. For instance, if a human crosses the path of the robot, the robot’s drive
action might temporarily fail. By preforming a sense-plan-act iteration, the robot can continue driving
after the human has moved. When the threshold is reached, the cloud back-end is notified. This
enables the task to be assign to an alternative robot. In the future, this can enable the system to learn
about how successful composite actions are likely to be given the current context.

6. Designing the Hierarchy for Smart Environments

An important aim of our framework is to reduce the frequency of replanning and, when replanning
is required, reduce the time spent replanning. Applying principles of hierarchical planning, the domain
knowledge is split-up across multiple re-usable domain files, each containing action definitions written
in PDDL. Moreover, only knowledge relevant to the current context is inserted into the PDDL problem
file. Actions in higher levels of the hierarchy are more generic and abstract the details of the lower
level actions. This section describes the design process performed to create the layers of the hierarchy
for our experiments.

First, an example scenario set in a smart home is introduced, followed by the drawbacks of not
using a hierarchy. The last three subsections describe the three ordered steps an engineer could take to
design the hierarchy: (i) splitting up key concepts, (ii) separating repeated blocks and (iii) reducing
unused state knowledge. The actions contained within each domain file, for each design step and a
plan created using the domain file(s) are shown in Figures 6, 7, 8 and 9. To improve legibility for
the reader, figures show only the actions relevant for our discussion. The full plans are provided in
Appendix B. As previously mentioned, a description of all composite and primitive actions in our final
domain files is given in Appendix A.

Sensors 2019, 19, 4856 14 of 32

6.1. Example Scenario

A smart house, with two floors and an IoT-controllable lift, is notified via a bed sensor that a
child steps out of bed when they are supposed to be sleeping. The child may have woken up because,
for example, it is too hot, they want the night light on or they are thirsty. Initially the robot is at its
charging location and, when the child gets out of bed, the robot is instructed to complete the child’s
request. The robot must drive to the bedroom, find out what the child wants, carry out their request,
which is to switch on a night light and then return to the nearest charging station to await further
instruction. Below, this scenario is worked out.

Moreover, to show the applicability of our system to different situations, our domain files also
contain actions needed to guide a visitor and to fetch a cup of coffee. As well as being applicable to a
smart home, these are applicable to a smart office building.

6.2. Baseline: All Actions and State within a Single Level

Without a hierarchy, a planner would need to plan in terms of very specific low-level actions,
a few examples are shown in Figure 6. When the goal is provided to the planner, the entire plan
is generated. Therefore, if a state change causes the plan to become invalid (e.g., a device becomes
unavailable or a door in the robot’s path closes), the robot must replan the entirety of its plan. As the
state may change again prior to the affected action being executed, the time spent (re)planning may
be deemed unnecessary. For our example scenario, the Listing in Figure 6 shows the plan generated
by the TFD/M planner. In the generated plan, after discovering the child’s request, the robot starts
driving towards the location of its charging point (action 9) before performing the user’s request to
switch on the night light (action 10). More natural behaviour would be to switch the night light on first.
This could have been amended by creating a atom that prevents the robot from driving while fulfilling
a request; however, we opted to not add this atom as to fulfil a request the robot might need to drive.

1:(drive_base robl wl.1_r1.0 d1.3_r1.0)

[opdevel domain T 4:(request _1lift 1lift0_device 1ift0 f1 ...)

H ;] : - 165:(drive_base robl dl1.6_rl1.2 d1.6 _liftOloc)

| fch_object. r?0? tlift 2r 21 2f . blinds ?r 20 2 H - - -

‘ (swien_object.on 770 74 | (request_if 7) | (open_bins 7120 70 | 6:(request_floor 1ift0_device 1ift0 f2 ...)

‘ (request_floor ?2r 71 7f ...) H (open-door ?r ?s ?g 7d) H (drive-base ?r 7s 79) ‘ 1 7:(drive_base robl dl1.6 _liftOloc d2.6_r2.2)
(pick_up_object ?r ?0) ‘ (drive-base-with-follower ?r ?s ?g ?a) ‘ 8:(1d.ent1fy_requ1red_ob_]ect robl hun:lanl requestl)

H 1 9:(drive_base robl d2.6_r2.2 d1.6 _liftOloc)

|| (fill_object ?r 20 ?I) ‘(identify_required_object?r'?a ?0) ‘ 10:(switch_object _on plug_device night_lightl

5 (open_window ?r ?w ?q) H (hand_over_object ?r 70 ?a 7q) ‘ requestl) A A A

e == ._____ill:(request_floor lift0O_device 1lift0 f1 ...)

i'5-:(drive_base robl d1.3_r1.0 wl.1_11.0)
Figure 6. All actions definitions are contained within a single domain file. When planning everything
upfront, the planner must make an assumption on the most likely request and include all actions
needed to fulfil that request. In all figures the following words are abbreviated: doorway is shortened
to d, waypoint to w, room to r and floor to f. In all proceeding figures blue boxes (with downwards
arrows) indicate composite actions and green is used for primitive actions.

6.3. Splitting up Key Concepts

The main disadvantage of the above approach is the requirement to replan when a different
request is made or the state of the environment changes. The chance of replanning can be reduced
by adding a layer of abstraction onto the primitive actions. At a high-level the scenario has three
main subtasks: (i) discovering what the request is, (ii) performing the request and (iii) returning to the
charging point. Hence, a first step towards the design of our hierarchy is to create two levels, with the
three generic actions in the top level and specific actions in a primitive domain. The resulting domain
files are represented in Figure 7 alongside the actions that would be executed, that is, the composite
and primitive actions that were planned by running our framework.

Sensors 2019, 19, 4856 15 of 32

___ 1:(discover_request robl requestl humanl)
Top-level domain {1.1:(drive_base robl wil.1_rl.0 d1.3_r1.0)
; ‘ (dlscover requsst r ?q) ‘ ‘ (recharge ?r) ‘ ‘(psn‘orm request ?r ?q) ‘ [

- "146:(request_f lift0 _device 1lift0 f2 ...)
1 1.7:(drive_base robl d1.6 _liftOloc d2.6_r2.2)
!1.8:(identify _required _object robl humanl
requestl)

2:(perform_request robl requestl)
,241:(switch_object_on remote lightl)

'3

3

3

‘ (switch_object_on ?r ?0) “ (request_fift ?r ?1 ?f ...) H (open_blinds ?r ?0) |

‘ (request_floor ?r 71 7f .. “ (epen-door ?r ?s ?g 7d) ” (drive-base ?r ?s ?g) ‘

‘ (pick_up_object ?r 70) H (drive-base-with-follower ?r ?s ?g ?a) | :(recharge robl)

.1:(drive_base robl d2.6_r2.2 d1.6 _liftOloc)
.2:(request _floor 1lift0_device 1ift0 f1 ...)

(fill_object ?r ?0 ?1) ‘ (identify_required_object ?r ?a ?0) ‘

(hand_over_object ?r 70 ?a) H (open_window ?r ?w) ‘

3.6:(drive_base robl d1.3_r1.0 wl.1_r1.0)

Figure 7. Action definitions split-up into two domain files; and executed actions when the state and
actions are split up by key concepts.

6.4. Separate Repeated Blocks

There are sets of (composite and/or primitive) actions which will be planned by many different
composite actions, for example, navigation and object manipulation. We separate these actions into
different domain files, to allow them to be used by multiple composite actions. In our example (see
Figure 8), we created separate domain files for actions related to object interaction and actions that
enable the environment to be navigated. By performing this separation, the range of tasks the robot
can perform can be expanded without having to either repeatedly re-write the PDDL for navigation or
continually add actions to a single increasingly complex domain file.

.
1 Top-level domain

r? ?r 2
‘(dtscover request r q)‘ ‘ (e relquest.r.q)‘ ‘(recharge?r)‘ :(discover_request robl requestl humanl)

1
1.1:(move_to_object robl humanl)
1.1.1:(drive_base robl wl.1_rl1.0 d1.3_r1.0)

|| (identify_required_object ?r ?a ?0) H (switch_object_on ?r ?0) ‘

1.1.6:(request_f 1lift0_device 1ift0 f2 ...)
1.1.7:(drive_base robl d1.6 _1liftOloc d2.6_r2.2)
1.2:(identify _required_object robl humanl requestl)
2

2

|
‘ (open_blinds ?r ?0) “ (open_window ?r ?7w) H (pick_up_object ?r ?0) ‘
\

(hand_over_object ?r ?0 ?a) H (fill_object ?r 70 ?I) ‘

:(perform_request robl requestl)
.1:(switch_object_on plug_device lightl)
3:(recharge robl)

‘ (move_to_object ?r ?0) H (guide_to_location ?r ?a ?I) ‘

(open-door ?r ?s ?g 2d) H (request_lift ?r 21 2f ..)‘ 3.6:(drive_base robl d1.3_r1.0 wl.1_r1.0)

(request_floor ?r ?1 ?f .. H drive-base ?r ?s ?g) ‘ '

Figure 8. Action definitions split-up into three domain files. Executed actions when repeated groups of
actions are separated.

(discover_request robl requestl humanl)
.1:(move_to_object robl humanl)
1
1

1 Top-level domain

e

&:(navigate_to_loc robl r1.0 rl1.2)
.1.1:(drive_base robl wl.1_r1.0 d1.3_rl1.0)

‘ (discover_request ?r 7q) ‘ ‘ (perform_request ?r ?q) | ‘ (recharge ?r) ‘

:(request _lift 1ift0_device 1ift0 f1 ...)
:(navigate_to_loc robl rl.2 1liftOloc)
.1:(drive_base robl dl1.6_rl1.2 d1.6 _1liftOloc)
:(request _f 1lift0O_device 1lift0 f2 ...)
:(navigate_to_loc robl liftOloc r2.2)
.5.1:(drive_base robl dl1.6 _liftOloc d2.6_r2.2)
42:(identify_required_object robl humanl requestl)
:(perform_request robl requestl)
1:(switch_object_on plug_device lightl)
:(recharge robl)

.1:(navigate_to_loc robl liftOloc r2.2)
.1:(drive robl d2.6_r2.2 dl1.6 _1liftOloc)
:(request _floor 1lift0_device 1ift0 f1 ...)
:(navigate_to_loc robl 1liftOloc wl.1_r1.0)

H (ﬁdentlfy_requ:red object ?r ?a ?0) H (swifch_object_on ?r ?0) ‘

E (open_blinds ?r ?0) ‘ (open_window ?r ?w) “ (fill_object ?r 70 71) ‘

O wwN

i| (hand_over_object ?r 70 ?a) H (pick_up_object ?r ?0) ‘

N e

| (move_to_object ?r ?0) H (guide_to_[ocation ?r ?a ?l) ‘ |

(request_liff ?r 21 ?f ...) H (request_floor ?r 21 2f ...) ‘

Cumk\)i\)»—-r—ﬂr—lr—ﬂr—\»—-r—“

(navigate_to_location ?r ?s 7g) ‘

w
W N =

"Navigation domain

w w

‘ (drive-base ?r ?s 7g) ‘(open door ?r ?s ?g 7d) ‘ .
””””””””””””””””””””””””””””””” 3.3.4:(drive_base robl d1.3_r1.0 wl.1_r1.0)

Figure 9. Domain files and executed actions for when we have split-up knowledge about what floor
the robot is on. The fully hierarchical approach.

Sensors 2019, 19, 4856 16 of 32

6.5. Reducing Unused Knowledge

When the number of objects within a problem file is increased, an exponential increase in the
planning time is observed. This is due to the state explosion problem [45,46]. The fewer objects included
within the PDDL problem, the fewer possible states and therefore state transitions, the planner has
to search through. We aim to minimise the number of objects within the problem by only inserting
those relevant to the robot’s current context or are likely to soon appear within the robot’s plan. This
is achieved by splitting up more distant and loosely related objects. For our example, we split the
navigation state knowledge up based on what floor of a building the robot is currently on. If the robot
is on floor 1, it does not need to know the details (e.g., rooms and waypoints) of floor 2 until it reaches
that floor. The domain and resulting plan are shown in Figure 9.

To provide an alternative example, which uses the types of objects rather than their location,
a factory domain is described. In a smart furniture factory, a robot could be requested to construct a
table and a chair. When making a table the robot does not need to know the state of the parts and tools
required to make the chair. Thus, rather that reasoning over all objects and actions, the construction of
the chair and table can be split into two separate branches.

Further splitting up of our hierarchy could be performed (e.g., navigation separated by room),
however, as each level needs to be planned adding more levels causes unnecessary additional
computational costs. If there is no clear separation and two actions/sub-goals are greatly dependent
on the state of an object, these actions should not be split-up. Initially, designing the hierarchy may
take more time than writing a single PDDL domain file but these layers are reusable.

7. Proof of Concept in a Smart Home

We developed a proof of concept in our HomeLab (https:/ /www.imec-int.com/en/homelab)
(smart house) with a Pepper (humanoid) robot. The HomeLab is a two-story house (600 m?) equipped
with sensors and a home automation system, which communicates via DYAMAND [41]. The
components onboard the robot were developed as nodes for the Robot Operating System (ROS) [44].
The robot used in our proof of concept has very limited dexterity, that is, is unable to carry or
manipulate objects. For robots with greater dexterity, rather than just navigating the environment
and commanding IoT devices, further tasks could be included, for example, the option of making and
delivering a drink (see Section 8.2 for a simulated coffee fetching scenario).

A similar scenario to that described in Section 6.1 was setup. In this experiment the child is
located in a room on the same floor as the robot and the robot requires the room door to be opened
and the room light to be switched on before it can enter the room. This experiment shows how
IoT devices enable a robot to complete a task it would otherwise be incapable of. Photographs
alongside a description of the actions the robot is performing are shown in Figure 10 and videos have
been provided as Supplementary Material. This section describes the steps taken by our framework,
when the hierarchical structure of Figure 9 was provided as input and the robot’s goal was set to
(completed requestl).

Initially, the robot’s navigate__to_location planning branch only knew the static map (walls and
waypoints) and thus generated a plan containing two drive_base actions, see Listing 2. The full
(hierarchical) task plan was submitted by the robot’s Context Monitor to the Plan Validator in the
cloud. The cloud (i.e., the Door State Monitor and Light State Monitor) reasoned on the path in the
plan and realised the robot required the room door to be opened and the room light to be switched
on. As this state invalidated the current plan, the Plan Validator sent this information to the robot’s
Context Monitor. The Context Monitor preempted (i.e., stopped) the drive_base action although the
robot by itself reported no failures (since it had not arrived at the closed door yet).

https://www.imec-int.com/en/homelab

Sensors 2019, 19, 4856

Before entering the room, the robot
opens the door and switches on the
light. These remote actions are sent to
the relevant devices via DYAMAND.

switch on the light.

17 of 32

The robot navigates to the child, located in the care room (Listing 2).
When it receives a notification, that the door is closed and the
light is off, the navigate_to_location plan branch is replanned.
The new plan (Listing 3) contains actions to open the door and

The robot asks the child what request
they would like performing; and
the child response by clicking the
relevant button on the robot’s tablet.

(b) 1.1.1.2:(open_door remote d1_rl d1_r2 i K X .
(c) 1.2:(identify_required_object robl humanl request1)
care_room_door) and 1.1.1.3:(switch__room_ light__on

remote d1_rl d1_r2 r2_light)

As the child asked for the night light
to be switch on the robot invokes a
remote action, which gets sent to the

. plug device via DYAMAND. The light

by the bed switches on.

If the child asked for the blinds to be
opened the robot invokes a remote
action, which gets sent to the blinds
via DYAMAND. The room blinds
open.

Ll

(d) 2.1:(switch_object _on remote light1) (e) Alternative request: 2.1:(open_blinds remote blind1)

Figure 10. Real world tests. The full list of PDDL executed actions are given in Listings 3 and 4.
Doorway has been shortened to d and room to r.

:(discover_request robl requestl humanl)
:(move_to_object robl humanl)
.1:(navigate_to_location robl rooml room2)
.1.1:(drive_base robl doorwayO_rooml doorwayl_room2)
.1.2:(drive_base robl doorwayl_rooml doorwayl_room2)
.2:(identify_required_object robl humanl requestl)

[N N o
[

:(perform_request robl requestl)

Listing 2: Plan prior to the robot being informed that the care door is closed and the light is off.

Only the navigate_to_location branch of the plan was modified by this cancellation. At the start
of a new iteration of the continual planner, the sensed _obstacles State Estimator inserted the door and
light objects into the PDDL problem. As replanning was required, the Domain Enricher immediately
loaded the open_door and switch__room _ light_on action definitions.

Using the Capability Checker, the robot’s planner determined that the robot itself did not have
the capability to open doors or switch on lights. Therefore, without the assistance of IoT actuators the
robot would be unable to complete its task. In our ontology there are two devices capable of opening
the door: the IoT enabled door actuator and a human. Once a plan (i.e., Listing 3) had been generated,

Sensors 2019, 19, 4856 18 of 32

the Context Monitor retrieved the devices that can perform the remote actions from the Capability
Checker. Subsequently, it replaced the “remote” objects in the plan with an ordered list of these devices,
then sent the plan to the cloud. Capable devices are ordered by their static cost, which was manually
defined in the ontology (i.e., the human’s capabilities were set as more costly that the IoT devices’). If a
device within the plan becomes unavailable the cloud informs the robot, which would then use the
alternative device. Since it is less costly to request the IoT enabled door actuator to perform the action,
the RemoteActionExecutor asked this device to perform the open_door action. These steps are the
same for the room light but the remote action request was sent to the IoT light switch.
:(discover_request robl requestl humanl)

:(move_to_object robl humanl)

.1:(navigate_to_location robl rooml room2)

.1.1:(drive_base robl doorwayO_rooml doorwayl_room2)

.1.2:(open_door remote doorwayl_rooml doorwayl_room2 care_room_door)

.1.3:(switch_room_light_on remote doorwayl_rooml doorwayl_room2 room2_light)
.1.4:(drive_base robl doorwayl_rooml doorwayl_room2)

L N e

.2:(identify _required_object robl humanl requestl)
:(perform_request robl requestl)

O e e

Listing 3: Plan after the robot had been informed that the care door is closed and the light is off.

Once the robot entered the care room the child pressed a button on its tablet, which identified the
request they wanted performing. The perform _request action was then executed. Depending on the
child’s request this either generated a sub-plan to switch on the night light (see Listing 4) or to open
the blinds. During the experiments, both these actions were performed by remote devices.

2:(perform_request robl requestl)
2.1:(switch_object_on remote night_lightl)

Listing 4: The robot’s plan after the execution of perform_request had begun.

8. Simulated Experiments

Through simulated experiments we aim to demonstrate (i) how much representing all devices as
a single “remote” device has reduced the number of calls from the TFD/M planner to the Capability
Checker; (ii) our framework’s ability to trigger replanning when a device becomes unavailable, (iii) the
effect increasing the number of objects in the environment has on the planning time and (iv) the effect
increasing the number of layers in the PDDL hierarchy has on the planning time. All these experiments
use an environment simulated with Gazebo, this is shown in Figure 11. The State Estimators and Action
Executors used are described in Table 1 and Appendix A, respectively; the goal the goal__creator sets is
specific to each experiment. Each subsection describes the experiment set-up, followed by the results.

Floor x

roomx.2
w2

roomx.0

Figure 11. Gazebo simulated world used for the experiments. We use an extended version of the
world originally created by Speck et al. [3]. Waypoints (e.g., w1) that are used during the different
experiments have been indicated on the map. For all experiments there are also waypoints either side
of doorways.

Sensors 2019, 19, 4856 19 of 32

8.1. Exp. 1: Single “remote” Object to Represent all Devices

In this section, experimental results are presented to show how including all remote devices as
separate objects in the PDDL problem compares to representing the remote devices as a single object.
The number of calls from the TFD/M planner to the capability checking module, for a varying number
of devices, are provided in Table 2. The total number of states generated by TFD/M, during its search
for each (sub)plan, is also provided. Further details on TFD/M are provided in References [25,47].

8.1.1. Set-Up

In this experiment the robot is tasked with simply navigating to another room on the same floor
(i.e., from wl in room1.0 to room1.2). Along its way, the robot must open a door and switch on a light.
An initial plan without involving doors and lights is generated and sent to the Plan Validator, which
informs the robot that the door is closed and the light is off. This causes the robot to replan and thus
create a plan that includes opening the door and switching on the light.

The list of executed actions when there was a single “remote” object is shown in Listing 5. When
all devices were stated within the problem, the same plan was produced but instead of “remote” the
actual device name was stated in the plan. For this experiment, we simple increased the number of
devices in the ontology and, when all devices were represented, these were also inserted into the PDDL
problem file.
1:(navigate_to_location robl rooml.0 rooml.2)

1.1:(drive_base robl waypointl.l_rooml.0 doorwayl.3 _rooml.0)
1.2:(open_door remote doorwayl.3 _rooml.0 doorwayl.3 _rooml.2 doorl.3)

1.3:(switch_room_light_on remote doorwayl.3 _rooml.0 doorwayl.3 _rooml.2 1ight1.2)
1.4:(drive_base robl doorwayl.3_rooml.0 doorwayl.3_rooml.2)

Listing 5: Actions executed when a hierarchical planning is performed using a single remote device.

8.1.2. Results and Discussion

The results of this experiment are presented in Table 2. When all devices were stated in the
problem, as the number of devices is increased so did the number of calls to the capability checking
module and the number of generated states. Whereas, when a single remote object was stated no
increase was observed. For each of these experiments, the onboard Capability Checker only performed
2 HTTP requests to the cloud-based Capability Reasoner, that is, one for each of the remote actions
(the open_door and the switch_room_ light_on actions), as the Capability Checker caches the list of
capable devices.

Table 2. Comparison of adding all devices to the PDDL problem versus using a single object to
represent all remote devices. “Generated States” is the aggregated number of states TFD/M generated
during its search for the (sub)plans.

All Devices Represented Single Device Represented
Number of Devices 5 10 15 20 25 Any
Calls to capability module 365 680 1005 1520 1850 56
Generated States 749 1035 1346 1913 2241 349

8.2. Exp. 2: IoT Device Failure and Plan Quality

Our second set of simulated experiments employed a scenario in which an IoT actuator, that a
robot must navigate to before using, became unavailable. The quality of the executed plan (i.e., number
of primitive actions) and the time spent planning are discussed. All experiments were ran on a
virtual machine with 9GB of RAM and an Intel i7 2.9GHz CPU. The scenario also demonstrates the
applicability of our designed hierarchy to a different situation, that is, a smart office environment.

Sensors 2019, 19, 4856 20 of 32

Further, these experiments demonstrate that our framework is able to monitor both hierarchical and
non-hierarchical plans.

8.2.1. Set-Up

A smart office environment has two floors with identical floor plans, as shown in Figure 11. Each
floor is equipped with an IoT coffee machine, which is located at waypoint w4. The robot started on
the first floor, at location w2 and was tasked with delivering a cup of coffee to a human. Specifically,
the robot’s goal was (and (is-full cupl coffee) (has-object humanl cupl)). This task involved the
following high-level steps: (i) getting a cup from location w3 on floor 1, (ii) asking one of the machines
to fill the cup and (iii) delivering the cup to a human, located at w5 on the second floor.

We evaluated our framework on three possible situations: (i) the coffee machines always being
available, (ii) the coffee machine on the first floor becoming unavailable and (iii) the coffee machine
on the second floor becoming unavailable. The produced plans, for when neither coffee machine
malfunctions, are provided in Appendix C. For the last two situations, we disable the coffee machine
just before the robot reached it, that is, when the robot was executing the drive-base action that
would have resulted in it reaching the coffee machine. This was simulated by sending a message to
our cloud back-end, informing it about the coffee machine’s unavailability, that is, we acted as the
IoT middleware.

The experiment was ran for our hierarchical approach and for when everything is planned
upfront (referred to as “No hierarchy” in the results table). In both cases, our framework informed
the robot about the coffee machine malfunctioning and, when necessary, replanning was triggered.
Only the highest level of the hierarchy differs from the previous experiments. For this experiment,
it contains three composite actions: get_object(?robot 7object), go_fill_object(?robot ?object
7filling), give__object _to_agent(?robot 7object 7agent). These action decompose by re-using the
object domain (from Figure 9) and its subsequent layers. For the hierarchical planner, a single remote
object represents all IoT devices in the environment, that is, the lift and the two coffee machines.

For planning everything upfront, all primitive actions are contained within a single domain
file. As the planner requires the location of all the coffee machines upfront, the single remote object
cannot be used. Only the 3 remote devices required for the scenario are included within the problem.
As shown in Section 8.1, adding more devices would slow down the planning due to an increase in the
number of calls to the capability reasoning module.

8.2.2. Results and Discussion

The results, shown in Table 3, present the total planning time, planning time before the first
primitive action was executed and number of executed primitive actions. All times are given in
seconds and are the average of 5 runs. The total planning time was longer when a hierarchy was used,
than without a hierarchy. This is due to the overhead of starting multiple (i.e., 13) instances of the task
planner. Nevertheless, with a hierarchy, the robot started acting sooner because the robot, initially,
only decomposed the first branch of its plan (see Appendix C, Listing 12) and the navigation layer
only reasoned on the waypoints located on the robot’s initial floor (rather than both floors).

When neither coffee machine broke down, our hierarchical approach produced a plan of worse
quality, that is, more primitive actions were executed, than the approach without a hierarchy. This
was due to the coffee machine on floor 1 being selected, which produced a suboptimal plan. In a
different situation/environment this difference could have been even larger. We see two options for
improving this in future work. As the cloud’s Plan Validator knows what the robot’s plan is, the cost
of a device executing an action could incorporate knowledge about the current and goal states of the
robot. Alternatively, as the robot is informed about the location of both devices, it could create a plan to
use each of the devices and select the shortest one. Both these approaches require further investigation.

When the coffee machine on floor 1 became unavailable, with our hierarchy the robot replanned
the layer containing the remote device and in total executed 20 primitive actions (see Table 3). Planning

Sensors 2019, 19, 4856 21 of 32

without a hierarchy was not affected by coffee machine 1 breaking down as its plan did not contain
that device. In contrast, for planning without a hierarchy, when the coffee machine on floor 2 became
unavailable, the robot executed 32 actions as it navigated back to floor 1. These results demonstrate
that even though planning everything upfront guarantees completeness, in dynamic environments it
can be beneficial to deploy a hierarchical approach.

Table 3. Comparison of planning times and number of executed primitive actions for the fetching
coffee scenario. t is the total planning time, ¢’ planning time before the first primitive action is executed,
e is number of executed primitive actions. All times are given in seconds and are the average of 5 runs.
“No hierarchy” was not affected by coffee machine 1 breaking and “Hierarchical” was not affected by
coffee machine 2 breaking.

No Device Breaks Coffee Machine 1 Breaks Coffee Machine 2 Breaks
Hierarchy No Hierarchy Hierarchy No Hierarchy Hierarchy No Hierarchy
t 11.30 5.27 13.68 - - 8.21
t 3.68 5.27 3.59 - - 5.09
e 19 15 20 - - 32

Moreover, if the coffee machine becomes unavailable and the robot has not started to execute the
move_to_object(robotl, remote) action (i.e., is still fetching the cup), no replanning is performed
by our hierarchical method. In contrast, for planning everything upfront, replanning is still required.
Furthermore, if the coffee machine becomes available again, replanning was pointless. This is also
applicable to any state change that may occur, for example, the planned cup being used by another
agent, a door being closed, the human moving location and so forth.

8.3. Exp. 3: Comparison with Planning Everything Upfront

In order to compare the computational times of planning everything upfront and our hierarchical
method, we present the planning times for differing environment complexities. By incrementing the
number of floors in our scenario, we are able to increase the complexity of the environment at a steady
rate, that is, the total number of object rises linearly. These objects include: waypoints, doors and all
IoT devices. As an example, a floor is displayed in Figure 11.

8.3.1. Set-Up

For this experiment the robot navigated from its start location (i.e., waypoint1l.1_room1.0) to
a room on a different floor, which was chosen at random. The plans produced when the randomly
selected room is room2.2, for planning everything upfront and for hierarchical planning are shown in
Listings 6 and 7, respectively. We selected 3 random different rooms and ran each experiment 5 times;
thus, each point on the results graph is the average of 15 runs.

The planning everything upfront approach takes, as input, a single domain file containing the
actions required to navigate a multi-floor environment, that is, drive__base, request __lift, request__floor
and open_ door. The State Estimators populate the problem file with the initial state for the following
objects: a lift, the local robot, all remote devices (e.g., IoT lift and IoT doors), doors, floors, rooms and
waypoints; and the goal is set to the required room, that is, (exists (?w - waypoint) (and (at-base 7w
robl) (in-room ?w <the required room>))).

For our hierarchical approach, we opted to reuse the multi-floor navigation domain and
navigation domain (shown in Figure 9). The goal for the multi-floor navigation layer is set to the
required room, that is, (at-location robl <the required room>). This layer contains state for rooms,
floors, lifts, the local robot and a lift device. As shown in Listing 7, this will plan the use of the
navigate_to_location composite action, which uses the navigation domain. The navigation problem
file contains the objects (i.e., rooms, doors, the local robot, door devices and waypoints) and state for a

Sensors 2019, 19, 4856 22 of 32

single floor. Its goal is set to, for example, (exists (?w - waypoint) (and (at-base ?w robl) (in-room
?w <the required room>))).

:(drive_base robl waypointl.l_rooml.0 doorwayl.3_rooml.0)

:(drive_base robl doorwayl.3_rooml.0 doorwayl.3_rooml.2)

:(request _1lift 1lift0_device 1lift0 floorl floorl robl rooml.2 liftOloc)
:(drive_base robl doorwayl.3_rooml.2 doorwayl.6 _rooml.2)

:(drive_base robl doorwayl.6_rooml.2 doorwayl.6 _liftOloc)

:(request _floor 1lift0O_device 1ift0 floor2 robl liftOloc)

:(drive_base robl doorwayl.6 _liftOloc doorway2.6 _room?2.2)

N O O W N

Listing 6: Example task plan, produced when all planning is performed upfront.

:(navigate_to_location robl rooml.0 rooml.2)

.1:(drive_base robl waypointl.l _rooml.0 doorwayl.3 _rooml.0)
.2:(drive_base robl doorwayl.3 _rooml.0 doorwayl.S_room1.2)

:(request _1lift 1lift0_device 1lift0 floorl floorl robl rooml.2 1liftOloc)
:(navigate_to_location robl rooml.2 1liftOloc)

.1:(drive_base robl doorwayl.3 _rooml.2 doorwayl.6_rooml.2)
.2:(drive_base robl doorwayl.6 _rooml.2 doorwayl.6 _liftOloc)

:(request _floor 1lift0O_device 1lift0 floor2 robl liftOloc)
:(navigate_to_location robl liftOloc room2.2)

5.1:(drive_base robl doorway2.6 _liftOloc doorway2.6 _room2.2)

g wWwwwWwN R R

Listing 7: Example task plan, produced when hierarchical planning is performed.

8.3.2. Results and Discussion

As we increase the complexity of the environment there is an exponential increase in the planning
time, this is shown in Figure 12a. Figure 12b shows the number of states TFD /M generates as this
is deterministic and thus is not hardware dependent and does not vary between runs. For simpler
environments, for example, less than 48 objects (split in 3 when our hierarchy is used), planning
everything upfront performs slightly better than our hierarchical planner. This is due to the overhead
of starting multiple instances of the planner in order to produce the layered plan. As planning
everything upfront resulted in a much steeper exponential increase in time, our hierarchical approach
performs substantially better in more complex environments. Our hierarchical planner only inserted
objects on the robot’s current floor into the problem of the navigation layer, allowing the planner to
reason over less unnecessary information (and thus fewer states). This splitting up is also applicable to
many other domains, for example, a factory domain, in which the knowledge about the different items
being constructed can be split-up or a kitchen environment for which different meals (such as, making
coffee or making a cheese sandwich) can be split-up.

goo | HEE planning everything upfront

. 160000 1 EEM planning everything upfront
I hierarchical continuous planning in the now P 9 i 9 up

B hierarchical continuous planning in the now

700 4 140000

6007 120000 4

5004 100000 4

400 7 80000 -

300 + 60000

Planning time (seconds)
Generated Nodes

2004 40000 7

100 4 20000

] T T T T T y T 1] T y T T T y T
40 50 60 70 80 90 100 40 50 60 70 80 920 100

Number of objects in original aggregated problem file Number of objects in original aggregated problem file
(a) Planning time (b) Number of generated states.

Figure 12. Planning times for planning everything upfront (red line) versus using a hierarchy (green line).
For each result three random rooms were selected as goal locations and all experiments were ran 5 times.

Sensors 2019, 19, 4856 23 of 32

8.4. Exp. 4: Varying the Number of Levels in the Hierarchy

How the PDDL actions and state knowledge are split-up has a large impact on the planning
time. In comparison to planning everything upfront, our approach decreases the planning time
for large state spaces. In contrast, for small state spaces our approach increases the planning time.
Experiments presented in this section show how much of an impact adding more layers has on the
computational cost.

8.4.1. Set-Up

To show results for when deploying a hierarchy produces longer and shorter total planning times
we chose two environment complexities: (i) 70 objects split across 4 floors and (ii) 130 objects split
across 8 floors. These experiments use the scenario and each of the actions and state knowledge splits
described in Section 6, that is, the robot findings out what the child’s request is, then accomplishes that
request (which is to switch on a night light). This scenario could also be applied to fulfilling requests
in a multi-storey office environment or a smart hotel. Moreover, rather than splitting the knowledge
by floor, in a different scenario, we could have split by, for example, the objects required for different
tasks. We choose floors for our experiments as it is reasonable that the the total number of object
rises linearly when the number of floors is increased and to not overcomplicate this paper with many
different hierarchies.

For these experiments, the State Estimators populated the problem file with the initial state for
the following objects: a lift, the local robot, all remote devices (i.e., an IoT lift, all IoT doors), doors,
floors, rooms and waypoints. Both the robot and child are located on different floors. As before, all
experiments were ran 5 times. Each experiment employed a set of domain files and produced the
corresponding plan, described in Section 6 (and Appendix B). The “DF1” experiment used one domain
file, containing all actions and thus everything was planned upfront (i.e., Figure 6). For “DF2” the two
domain files and the executed actions are shown in Figure 7; the domain files and executed actions of
“DF3” and “DF4” are shown in Figures 8 and 9, respectively.

8.4.2. Results and Discussion

As shown in Table 4, for 70 objects (4 floors) the more we split-up the actions and state the longer
the total planning time. On the other hand, when our fully hierarchical approach (i.e., DF4) was ran,
the first primitive action was executed sooner than when everything was planned upfront (i.e., DF1).
When there were 130 objects (8 floors) the total planning time was shorter for our fully hierarchical
approach. This was especially true for the amount of time spent planning before the first primitive
action was executed.

Table 4. The impact increasing the number of layers has on the number of states and the planning
time, when there are 70 and 130 objects in the original aggregated PDDL problem file. t is the total
planning time in seconds, #' the planning time before 1st primitive action was executed and s is number
of generated states.

70 Objects 130 Objects
DF1 DF2 DF3 DF4 DF1 DF4 DF3 DF4

t' 10.66 6.05 7.10 6.14 7707 21.82 15.64 6.52
s 2537 1126 1034 347 13,045 5905 4684 413
t 1066 1246 1395 1493 77.07 53.89 4770 16.33

9. Conclusions and Future Work

In this paper, we presented our Hierarchical Continual Planning in the Now framework, which
aims to improve a robot’s ability to act in dynamic environments with the assistance of IoT devices.
IoT state knowledge is monitored by components in a cloud-backend and the robot is only informed

Sensors 2019, 19, 4856 24 of 32

about state relevant to its current task plan. During the planning phase, a single remote device object
represents all remote (IoT) actuators; therefore, the robot’s plan is less likely to require replanning
when a devices becomes unavailable. Further, our experiments showed that when the environment
contained 10 IoT devices, the number of calls to the external capability checking module decreased
by 92%.

World state further in the planning horizon is harder to predict and more likely to change.
Therefore, tasks are split-up into subtasks and the first subtask is planned and executed before the
subsequent one. Planning time increases exponentially as the number of objects increases [45,46]; thus,
to keep planning times tractable, only state relevant to the robot’s current context is inserted into the
planning problems. In our coffee bot scenario, these features enabled the robot to start acting after
3.68 s rather than 11.30 s. Conversely, planning everything upfront guarantees completeness and,
when no replanning is required, the plan is likely to be more optimal than when a hierarchy is used.
Nevertheless, our framework reduces the need for a robot to frequently replan and when replan is
required, only a single branch (i.e., subtask) is replanned.

We see several directions for future work. First, our approach may lead to suboptimal plans.
For example, if a robot is tasked with fetching a cup of coffee it would plan three distinct subtasks, that
is, 1. collecting a cup, 2. filling the cup using a coffee machine and 3. delivering the coffee. Which cup
is more efficient for the robot to collect may depend on the location of the coffee machine but currently
this is not taken into consideration while collecting the cup. In the future, we will investigate how
information about the subsequent composite actions can be integrated within the composite action
currently being executed.

Second, we make a worst-case assumption during planning, that is, that the world will constantly
change in heterogeneous ways and these changes will continuously cause the robot’s task plan to
become invalid. In the future we will investigate applying the “just in time” concept to our planner,
which will minimise the time between executing each branch of a plan. This entails planning a
subsequent branch while the current branch is still being executed.

Third, we intend to evaluate running a probabilistic planner (e.g., Reference [48]) to handle
uncertainty in the outcome of actions. In particular we think this could be beneficial to our lower-level
actions, such as navigation and object manipulation. Combining observations from noisy IoT and
on-board sensors could help determine the probability of the environment’s state, for example, the
robot’s or object’s position.

Fourth, our architecture could be extended to multi-robot systems requiring conflict resolutions,
that is, in which multiple robots require the same resources to complete their plans. One possible
solution would be to expand our cloud-based Plan Validator. This component receives a copy of
all robots’ plans; therefore, could search for conflicts and inform robots about restrictions they must
adhere to. Resolving conflicting states without a centralised planner is likely to result in a suboptimal
solution and if the robot cannot adhere to the provided restrictions, its planning will fail. Moreover,
a robot could unset the state required by another robot, for example, close a door the another robot
has just opened. How such challenges can be overcome by our system requires further investigation.
For instance, the Plan Validator could contain a planning component that attempts to merge the robots’
plans, then informs the robots of the modifications made to their plans.

Last, the framework could incorporate the functionality to learn about what actions/tasks have
failed and what the state of the environment was at that time. As humans tend to have daily routines,
this could include knowledge about what time of day the action was executed. This knowledge can be
processed to tune the cost of actions (e.g., increase the cost of actions likely to fail) and to improve the
state estimation.

Merging IoT sensors and actuators and robotics is a promising trend in distributed robotics.
We hope that our paper may inspire other researchers to further work in this emerging domain.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com /1424-8220/19/22 /4856 /
s1, Video S1: planning in a smart home—open blinds, Video 52: planning in a smart home—switch on light.

http://www.mdpi.com/1424-8220/19/22/4856/s1
http://www.mdpi.com/1424-8220/19/22/4856/s1

Sensors 2019, 19, 4856 25 of 32

Author Contributions: Conceptualization, H.H., K.C. and PS,; software, H.H.; writing—original draft preparation,
H.H., K.C. and PS.; writing—review and editing, K.C. and P.S.; supervision, P.S.; project administration, P.S.

Funding: Helen Harman is an SB fellow at FWO (project number: 1540217N). Part of this research was funded
via imec’s RoboCure project.

Acknowledgments: We are grateful to Jelle Nelis, Laurens Martin and Christof Mahieu for their help in using the
HomeLab and Pepper robot.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

IoT Internet-of-Things

IoRT Internet-of-Robotic-Things

OWL Web Ontology Language

SRDL Semantic Robot Description Language
PDDL Planning Domain Definition Language
FD Fast Downward

TFD/M Temporal Fast Downward with Modules
HTN Hierarchical Task Network

MDP Markov Decision Process

BDI Belief-Desire-Intention

HPN Hierarchical Planning in the Now

DYAMAND DYnamic, Adaptive MAnagement of Networks and Devices

Appendix A. Description of Actions

A description of the composite and primitive actions, used for our experiments, are provided in
this section.

Appendix A.1. Composite Action Description

The Composite Action Executors are described in Table Al.

Table A1. Description of composite actions.

Composite Description Example Goal(s) for Lower-Level
Action
discover The robot must move to the human who has a (not (is-unknown request1))
_request request and ask them what they want. Uses the
object domain file to generate a plan.
perform The goal, which is read from the robot’s knowledge = Depends on what the request is. e.g., (is-on
_request base, of its task planner instance will depend on the night_light)

request. The effect of this action is: (is-completed
?request). In our example scenarios the object
domain is used; however, a different domain could
be used for differing requests.

recharge Robot needs to navigate to the nearest waypoint (at-location robl waypointl_room1.1)
that is a charging location. Uses the multi-floor
navigation domain.

move_to Gets the location (i.e., room or waypoint) of the (at-location robl waypoint2_room?2.0) or
_object object (e.g., human) from the knowledge base. (at-location robl room1.1)

Creates an abstract plan for the robot to navigate

to the correct floor and room using the multi-floor

navigation domain.

guide_to This is similar to move_to_object but an agent (at-location robl waypoint2_room?2.0) or
_location (e.g., human) is following the robot to the location. (at-location robl room1.1)

Creates a plan for the robot to navigate to the

correct floor and room, using the multi-floor

navigation domain.

navigate Its plan will contain actions for the robot to navigate (at-base robl doorwayl.1_rooml.1) or
_to_location to from a specific waypoint to a location on the same (exists (?w - waypoint) (and (at-base ?w robl)
floor as the robot. Uses the navigation domain. (in-room ?w room1.1))

Sensors 2019, 19, 4856

26 of 32

Appendix A.2. Primitive Action Description

The Primitive Action Executors are described in Table A2.

Table A2. Description of primitive actions.

Primitive Action

Description

identify__required
_object

This ask is planned when there is an unknown PDDL object (e.g., a request), which the robot requires
another agent (i.e., human or remote device) to identify. Its Action Executor looks up what type of
object should be identified from the knowledge base and displays the relevant options to the agent.

drive__base

Calls the move_base ROS ActionLib to allow the robot to navigate the environment. The robot can
drive between two locations that are in-line or are in the same room. Based on Speck et al.’s work [3].

pick_up_object

Allows the robot to pick up an object. The Action Executor will determine the details of how to pick
up the specific object.

hand__over_object

Enables the robot to give an object (e.g., cup) to another agent (e.g., IoT coffee machine or human).

open__blinds
open_ window

For all remaining actions in this table, the robot used in our experiments is not capable of performing
them; therefore, the action is executed by the RemoteActionExecutor. In our smart home blinds and
windows are IoT enabled.

fill_ object

Fills an object (e.g., cup) with something (e.g., coffee).

switch__object_on

Used to plan the switching on of an object (e.g., a night light).

request _lift

This action can only be executed when the robot is inside the room with the entrance to the lift.
The robot used in our experiments is not capable of pressing the lift button.

request__floor

When the robot enters the lift, it request this action is preformed, to get to the correct floor.

switch__on__room
_light

This action, and the open_ door action, are added to the navigation domain when required, that
is, when a room the robot is about to drive into is dark.

open__door

Enables the robot to open (IoT enabled) doors which are blocking its path.

Appendix B. Example of the Executed Actions at Varying Hierarchical Splits

The plans produced by our framework, when provided with the PDDL files for each of the design
steps (described in Section 6), are displayed in this section. To produce these, the goal_creator
set the robot’s goal to (is-recharging robl). When all actions are contained within the a single
domain file, a derived rule is defined, which states that if the robot is at a charging location
(e.g., waypointl.1_room1.0) and all its requests are completed, then (is-recharging robl) is true.
When a hierarchy is used, a condition of the recharge action is set to (not (has-incomplete-requests));
has-incomplete-requests is a derived rule that checks all requests are completed. We chose to do this
so that when a new request is sent to the robot, if it is recharging, the recharge action is cancelled. This
causes a replanning, which results the robot creating a plan to accomplish the new request and return
to a charging location. As mentioned in Table 1, the object _state creator inserts requests into the
PDDL problem file.

Appendix B.1. No Splitting

When all action are included in a single domain file (see Figure 6) the plan in Listing 8 is produced.
A precondition of the switch_object_on is that the request has been identified as the correct type,
that is, (is-switch-on-request 7request); and one of its effects is set to (is-completed ?request).

Appendix B.2. Splitting up Key Concepts

As show in Figure 7, the main tasks the robot can perform can be abstracted, enabling the
plans of Listing 9 to be produced. When the discover_request action is executed, its Composite
Action Executor will use the “primitive domain” to decompose this action into primitive actions.
After discover_request has been executed, perform_request, then recharge, are executed by also
creating plans containing primitive actions. This split result in the robot being less likely to have to
replan, and enables the creation of a (high-level) human understandable plan.

Sensors 2019, 19, 4856 27 of 32

:(drive_base robl waypointl.l _rooml.0 doorwayl.3 _rooml. 0)
:(drive_base robl doorwayl.3 _rooml.0 doorwayl.3_rooml.2)
:(drive_base robl doorwayl.3 _rooml.2 doorwayl.6 _rooml.2)
:(request _1lift remote 1ift0 floorl floorl robl rooml.2 1liftOloc)
:(drive_base robl doorwayl.6 _rooml.2 doorwayl.6 _liftOloc)
:(request _floor remote 1ift0 floor2 floorl robl liftOloc)
:(drive_base robl doorwayl.6 _liftOloc doorway2.6 _room?2.2)

00 N O O W N

:(identify _required _object robl humanl requestl)

©

:(drive_base robl doorway2.6_room2.2 doorwayl.6 _liftOloc)
10:(switch_object_on remote night_lightl requestl)

11:(request__floor remote 1ift0 floorl floor2 robl liftOloc)
12:(drive_base robl doorwayl.6 _liftOloc doorwayl.6 _rooml.2)
13:(drive_base robl doorwayl.6_rooml.2 doorwayl.3_rooml.2)
14:(drive_base robl doorwayl.3 _rooml.2 doorwayl.3 _rooml.0)

15:(drive_base robl doorwayl.3 _rooml.0 waypointl.l_rooml.0)

Listing 8: When planning everything upfront, the planner must make an assumption on the most
likely request and plan all actions needed to fulfil that request.

1:(discover_request robl requestl humanl)

1.1:(drive_base robl waypointl.l_rooml.0 doorwayl.3 _rooml.0)
1.2:(drive_base robl doorwayl.3 _rooml.0 doorwayl.3 _rooml.2)
1.3:(drive_base robl doorwayl.3 _rooml.2 doorwayl.6_rooml.2)
1.4:(request_1lift remote 1ift0 floorl floorl robl rooml.2 1liftOloc)
1.5:(drive_base robl doorwayl.6_rooml.2 doorwayl.6 _liftOloc)
1.6:(request_floor remote 1ift0 floor2 floorl robl liftOloc)
1.7:(drive_base robl doorwayl.6 _liftO0Oloc doorway2 .6 _room?2.2)
1.8:(identify _required_object robl humanl requestl)
2:(perform_request robl requestl)

2.1:(switch_object_on remote night_lightl)

3:(recharge robl)

3.1:(drive_base robl doorway2.6_room2.2 doorwayl.6 _liftOloc)
3.2:(request _floor remote 1ift0 floorl floor2 robl liftOloc)
3.3:(drive_base robl doorwayl.6 _1lift0Oloc doorwayl .6 _rooml.2)
3.4:(drive_base robl doorwayl.6 _rooml.2 doorwayl.3 _rooml.2)
3.5:(drive_base robl doorwayl.3 _rooml.2 doorwayl.3 _rooml. 0)
3.6:(drive_base robl doorwayl.3 _rooml.0 waypointl.l_rooml.0)

Listing 9: Executed action when the state and actions are split up by key concepts.

Appendix B.3. Separate Repeated Blocks

In many domains, the robot will be required to navigate the environment. Therefore, as shown in
Figure 8, navigation-based actions can be split into a separate domain file. The example hierarchical
plan is shown in Listing 10.

Appendix B.4. Reducing Unused Knowledge

Rather that reasoning about the whole environment in detail, this information can be split-up.
As shown in Figure 9, the “multi-floor navigation domain” enables the robot to plan the high-level
steps of its navigation (i.e., request a lift to get to the correct floor and navigate to/from the lift from
either its initial location or its desired location), and the “navigation domain” performs the detailed
steps required to navigate a single floor. An example hierarchical plan is shown in Listing 11.

Sensors 2019, 19, 4856 28 of 32

:(discover_request robl requestl humanl)

:(move_to_object robl humanl)

.1:(drive_base robl waypointl.1l_rooml.0 doorwayl.3 _rooml.0)
2:(drive_base robl doorwayl.3 _rooml.0 doorwayl.3 _rooml.2)
:(drive_base robl doorwayl.3 _rooml.2 doorwayl.6_rooml.2)
:(request _lift remote 1ift0 floorl floorl robl rooml.2 1liftOloc)
:(drive_base robl doorwayl.6_rooml.2 doorwayl.6 _liftOloc)

o O W

:(request _floor remote 1lift0 floor2 floorl robl liftOloc)

e I I e

.7:(drive_base robl doorwayl.6 _liftOloc doorway2.6 _room2.2)
.2:(identify _required_object robl humanl requestl)
:(perform_request robl requestl)

.1:(switch_object _on remote night_lightl)

:(recharge robl)

.1:(drive_base robl doorway2.6 _room2.2 doorwayl.6 _liftOloc)
:(request _floor remote 1lift0 floorl floor2 robl liftOloc)
:(drive_base robl doorwayl.6 _liftOloc doorwayl.6 _rooml.2)
:(drive_base robl doorwayl.6 _rooml.2 doorwayl.S_rooml.Q)
:(drive_base robl doorwayl.3_rooml.2 doorwayl.3_rooml.0)

W W W wWwwWwwwNNNRERrRREPE R RERRR R BRPR &

o O W N

:(drive_base robl doorwayl.3 _rooml.0 waypointl.l_rooml.0)

Listing 10: Executed action when repeated groups of actions are separated.

:(discover_request robl requestl humanl)

:(move_to_object robl humanl)

.1:(navigate_to_location robl rooml.0 rooml.2)

1.1:(drive_base robl waypointl.1l_rooml.0 doorwayl.3_rl.0)
.2:(drive_base robl doorwayl.3_rooml.0 doorwayl.3_rooml.2)
.3:(drive_base robl doorwayl.3_rooml.2 doorwayl.6_rooml.2)
:(request_lift remote 1ift0 floorl floorl robl rooml.2 liftOloc)
:(navigate_to_location robl rooml.2 liftOloc)

.1:(drive_base robl doorwayl.6_rooml.2 doorwayl.6 _liftOloc)
:(request _floor remote 1lift0 floor2 floorl robl 1liftOloc)

g w W N R

:(navigate_to_location robl liftOloc room2.2)

L e T = T =S ey =

.5.1:(drive_base robl doorwayl.6 _liftOloc doorway2.6 _room?2.2)
.2:(identify _required_object robl humanl requestl)
:(perform_request robl requestl)

.1:(switch_object _on remote night_lightl)

:(recharge robl)

.1:(navigate_to_location robl liftOloc room2.2)
.1:(drive_base robl doorway2.6 _room2.2 doorwayl.G_liftOloc)
:(request _floor remote 1ift0 floorl floor2 robl liftOloc)
:(navigate_to_location robl 1liftOloc waypointl.l_rooml.o)
.1:(drive_base robl doorwayl.6 _liftOloc doorwayl.6 _rooml.2)
:(drive_base robl doorwayl.6_rooml.2 doorwayl.3_rooml.2)

W W W wWwwWwwwwwNnNERE R R R R R B B B B B B 2

W W wwwN =

2
.3:(drive_base robl doorwayl.3_rooml.2 doorwayl.3_rooml.0)
4:(drive_base robl doorwayl.3 _rooml.0 waypointl.l_rooml.0)

Listing 11: Executed action when distant objects are split-up. The fully hierarchical approach.

Appendix C. Plans Produced during the Simulated Coffee Fetching Experiment (Exp. 2)

In the experiments described in Section 8.2, a robot is tasked with fetching a coffee for a human.
The plans produced when neither coffee machine malfunctions are presented in this appendix. The
actions planned when the first primitive action was executed and all executed actions, when our
hierarchy was used, are provided in Listings 12 and 13, respectively. When everything is planned
upfront the plan of Listing 14 is produced.

Sensors 2019, 19, 4856 29 of 32

get_object robl cupl)

move_to_object robl cupl)

1:(drive_base robl waypointl.2_rooml.2 waypointl.3 _rooml.2)
pick_up_object robl cupl)

et
(
1:(navigate_to_location robl rooml.2 waypointl.3 _rooml.2)
1.
(
o_fill_object robl cupl coffee)

1:(
1.1:
1.1.
1.1.
1.2:
2:(g
3:(give_object __to_agent robl humanl)

Listing 12: Action planned before the first primitive (drive__base) action was executed. This plan is
from the coffee bot experiments, for when hierarchical planning is performed.

:(get_object robl cupl)

.1:(move_to_object robl cupl)

.1.1:(navigate_to_location robl rooml.2 waypointl.3 _rooml.2)
.1.1.1:(drive_base robl waypointl.2_rooml.2 waypointl.3_rooml.2)
.2:(pick_up_object robl cupl)

:(go_fill_object robl cupl coffee)

[y

:(move_to_object robl remote)

.1:(navigate_to_location robl waypointl.3 _rooml.2 waypointl.3 _rooml.1)
.1.1:(drive_base robl waypointl.3 _rooml.2 doorwayl.S_rooml.2)
.1.2:(drive_base robl doorwayl.5_rooml.2 doorwayl.5_rooml.1)
.1.2:(drive_base robl doorwayl.5_rooml.l1 waypointl.4_rooml.1)
:(hand_over_object robl cupl remote)

:(fill_object remote cupl coffee)

:(pick_up_object robl cupl)

give_object _to_agent robl humanl)

:(move_to_object robl humanl)

.1:(navigate_to_location robl rooml.0 rooml.2)

.1:(drive_base robl waypointl.4_rooml.1 doorwayl.5_rooml.1)
.2:(drive_base robl doorwayl.5_rooml.1 doorwayl.5_rooml.2)
:(request _lift remote 1ift0 floorl floorl robl rooml.2 1liftOloc)
:(navigate_to_location robl rooml.2 liftOloc)

.1:(drive_base robl doorwayl.5_rooml.2 doorwayl.6_rooml.2)
.2:(drive_base robl doorwayl.6 _rooml.2 doorwayl.G_liftOloc)

¢ navigate_to_location robl 1liftOloc waypoint2 .5 _room2.1)
.1:(drive_base robl doorway2.6 _liftOloc doorway2.6 _room?2.2)
.1:(drive_base robl doorway2.6_room2.2 doorway2.5_room2.2)
.1:(drive_base robl doorway2.5_room2.2 doorway2.5_room2.1)
.1:(drive_base robl doorway2.5_room2.1 waypoint2.5_room2.1)

W W wWwwwwwowowowowowowowowowNnmNDNDNDNDNDNNDNDNNDRERRRBR-

N B B R R P P B RBRRRFRRBRBRRRERDSPDE ONDR R B &

1
1
2
3
3
3
.4:(request _floor remote 1lift0 floor2 robl 1liftOloc)
5
5
5
5
5
(

hand_over_object robl cupl humanl)

Listing 13: Actions executed, for the coffee bot scenario, when hierarchical planning is performed.

:(drive_base robl waypointl.2_rooml.2 waypointl.3 _rooml.2)
:(pick_up_object robl cupl)

:(drive_base robl waypointl.3 _rooml.2 doorwayl.6 _rooml. 2)
:(request _1lift 1lift0_device 1ift0 floorl floorl robl liftOloc)
:(drive_base robl doorwayl.6 _rooml.2 doorwayl.6 _liftOloc)
:(request _floor 1lift0O_device 1lift0 floor2 robl liftOloc)
:(drive_base robl doorway2.6 _liftOloc doorway2.6 _room?2.2)

W N O O WN

:(drive_base robl doorway2.6_room2.2 doorway2.5_room2.2)

©

:(drive_base robl doorway2.5_room2.2 doorway2.6_room2.1)
10:(drive_base robl doorway2.6 _room2.1 waypoint2.5_room2.l)
11:(hand_over_object robl cupl coffee_machine2 waypoint2.5_room2.1)
12:(fill_object coffee_machine2 cupl coffee)

13:(pick_up_object robl cupl coffee_machine2 waypoint2.5_room2.1)
14:(drive_base robl doorway2.5_room2.1 waypoint2.5_room?2.1)
15:(hand_over_object robl cupl humanl)

Listing 14: Actions executed, for the coffee bot scenario, when all planning is performed upfront.

Sensors 2019, 19, 4856 30 of 32

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Cashmore, M.; Magazzeni, D. ICRA 2017 Tutorial on Al Planning for Robotics. 2017. Available online:
http:/ /kcl-planning.github.io/ROSPlan/ /demos/conference_pages/tutorialICRA2017.html (accessed on
7 November 2019).

Knight, S.; Rabideau, G.; Chien, S.; Engelhardt, B.; Sherwood, R. Casper: Space Exploration Through
Continuous Planning. IEEE Intell. Syst. 2001, 16, 70-75. [CrossRef]

Speck, D.; Dornhege, C.; Burgard, W. Shakey 2016—How Much Does it Take to Redo Shakey the Robot?
IEEE Robot. Autom. Lett. 2017, 2, 1203-1209. [CrossRef]

Dornhege, C.; Hertle, A. Integrated Symbolic Planning in the Tidyup-Robot Project. In Proceedings of the
AAAI Spring Symposium: Designing Intelligent Robots, Palo Alto, CA, USA, 25-27 March 2013.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder, B.; Carreraa, A.; Palomeras, N.; Hurtés, N.;
Carrerasa, M. ROSPlan: Planning in the Robot Operating System. In Proceedings of the Twenty-Fifth
International Conference on International Conference on Automated Planning and Scheduling, Jerusalem,
Israel, 7-11 June 2015; pp. 333-341.

Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A Survey. Comput. Netw. 2010, 54, 2787-2805.
[CrossRef]

Vermesan, O.; Broring, A.; Tragos, E.; Serrano, M.; Bacciu, D.; Chessa, S.; Gallicchio, C.; Micheli, A.;
Dragone, M.; Saffiotti, A.; et al. Internet of Robotic Things: Converging Sensing/ Actuating, Hypoconnectivity,
Artificial Intelligence and IoT Platforms. In Cognitive Hyperconnected Digital Transformation: Internet of Things
Intelligence Evolution; River Publishers: Gistrup, Denmark, 2017; pp. 97-155.

Harman, H.; Chintamani, K.; Simoens, P. Architecture for Incorporating Internet-of-Things Sensors and
Actuators into Robot Task Planning in Dynamic Environments. In Proceedings of the IEEE International
Symposium on Robotics and Intelligent Sensors (IRIS), Ottawa, ON, Canada, 5-7 October 2017; pp. 13-18.
[CrossRef]

Simoens, P.; Dragone, M.; Saffiotti, A. The Internet of Robotic Things: A Review of Concept, Added Value
and Applications. Int. . Adv. Robot. Syst. 2018, 15. [CrossRef]

Papadakis, P; Lohr, C.; Lujak, M.; Karami, A.; Kanellos, I; Lozenguez, G.; Fleury, A. System Design for
Coordinated Multi-Robot Assistance Deployment in Smart Spaces. In Proceedings of the Second IEEE
International Conference on Robotic Computing, Laguna Hills, CA, USA, 31 January—2 February 2018;
Pp. 324-329. [CrossRef]

Kovacs, D.L. A Multi-agent Extension of PDDL3.1. In Proceedings of the Third ICAPS Workshop on the
International Planning Competition (IPC), Sao Paulo, Brazil, 25-29 June 2012; pp. 19-27.

Brenner, M.; Nebel, B. Continual Planning and Acting in Dynamic Multiagent Environments. Auton. Agents
Multi-Agent Syst. 2009, 19, 297-331. [CrossRef]

Bidot, J.; Biundo, S. Artificial Intelligence Planning for Ambient Environments. In Next Generation Intelligent
Environments; Springer: New York, NY, USA, 2011; pp. 195-225._6. [CrossRef]

Saffiotti, A.; Broxvall, M.; Gritti, M.; LeBlanc, K.; Lundh, R.; Rashid, J.; Seo, B.S.; Cho, Y.J. The PEIS-Ecology
Project: Vision and Results. In Proceedings of the IEEE/RS] International Conference on Intelligent Robots
and Systems, Nice, France, 22-26 September 2008; pp. 2329-2335. [CrossRef]

Lundh, R.; Karlsson, L.; Saffiotti, A. Autonomous Functional Configuration of a Network Robot System.
Robot. Auton. Syst. 2008, 56, 819-830. [CrossRef]

Broxvall, M.; Gritti, M.; Saffiotti, A.; Seo, B.S.; Cho, Y.J. PEIS Ecology: Integrating Robots into Smart
Environments. In Proceedings of the IEEE International Conference on Robotics and Automation, Orlando,
FL, USA, 15-19 May 2006; pp. 212-218. [CrossRef]

Buehler, J.; Pagnucco, M. A Framework for Task Planning in Heterogeneous Multi Robot Systems Based
on Robot Capabilities. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,
Québec City, QC, Canada, 27-31 July 2014; pp. 2527-2533.

Seydoux, N.; Drira, K.; Hernandez, N.; Monteil, T. IoT-O, a Core-Domain IoT Ontology to Represent
Connected Devices Networks. In Knowledge Engineering and Knowledge Management; Blomqvist, E., Ciancarini, P,
Poggi, F., Vitali, E, Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 561-576. [CrossRef]

http://kcl-planning.github.io/ROSPlan//demos/conference_pages/tutorialICRA2017.html
http://dx.doi.org/10.1109/MIS.2001.956084
http://dx.doi.org/10.1109/LRA.2017.2665694
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1109/IRIS.2017.8250091
http://dx.doi.org/10.1177/1729881418759424
http://dx.doi.org/10.1109/IRC.2018.00068
http://dx.doi.org/10.1007/s10458-009-9081-1
http://dx.doi.org/10.1007/978-1-4614-1299-1_6
http://dx.doi.org/10.1109/IROS.2008.4650962
http://dx.doi.org/10.1016/j.robot.2008.06.006
http://dx.doi.org/10.1109/ROBOT.2006.1641186
http://dx.doi.org/10.1007/978-3-319-49004-5_36

Sensors 2019, 19, 4856 31 of 32

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Fiorini, S.R.; Bermejo-Alonso, J.; Gongalves, P.; de Freitas, E.P.; Alarcos, A.O.; Olszewska,].I; Prestes,
E.; Schlenoff, C.; Ragavan, S.V,; Redfield, S.; et al. A Suite of Ontologies for Robotics and Automation
[Industrial Activities]. IEEE Robot. Autom. Mag. 2017, 24, 8-11. [CrossRef]

Kunze, L.; Roehm, T.; Beetz, M. Towards Semantic Robot Description Languages. In Proceedings of the IEEE
International Conference on Robotics and Automation, Shanghai, China, 9-13 May 2011; pp. 5589-5595.
[CrossRef]

Riazuelo, L.; Tenorth, M.; Di Marco, D.; Salas, M.; Gélvez-Lépez, D.; Mosenlechner, L.; Kunze, L.; Beetz, M.;
Tardés,].D.; Montano, L.; et al. RoboEarth Semantic Mapping: A Cloud Enabled Knowledge-based
Approach. IEEE Trans. Autom. Sci. Eng. 2015, 12, 432—443. [CrossRef]

Galindo, C.; Fernandez-Madrigal,].A.; Gonzalez,].; Saffiotti, A. Robot Task Planning Using Semantic Maps.
Robot. Auton. Syst. 2008, 56, 955-966. [CrossRef]

Kockemann, U.; Alirezaie, M.; Karlsson, L.; Loutfi, A. Integrating Ontologies for Context-based
Constraint-based Planning. In Proceedings of the Tenth International Workshop on Modelling and Reasoning
in Context (IJCAI-MRC), Stockholm, Sweden, 13 July 2018; pp. 22-29.

Helmert, M. The Fast Downward Planning System. J. Artif. Intell. Res. 2006, 26, 191-246. jair.1705. [CrossRef]
Dornhege, C.; Eyerich, P; Keller, T.; Trtig, S.; Brenner, M., Nebel, B. Semantic Attachments
for Domain-independent Planning Systems. In Proceedings of the Nineteenth International
Conference on International Conference on Automated Planning and Scheduling, Thessaloniki, Greece,
19-23 September 2009; pp. 114-121.

Lallement, R.; De Silva, L.; Alami, R. HATP: An HTN Planner for Robotics. In Proceedings of the Second
ICAPS Workshop on Planning and Robotics (PlanRob), Portsmouth, NH, USA, 22-23 June 2014.

Myers, K.; Smith, S.F; Hildum, D.W,; Jarvis, P.A.; de Lacaze, R. Integrating Planning and Scheduling
Through Adaptation of Resource Intensity Estimates. In Proceedings of the Sixth European Conference on
Planning, Toledo, Spain, 12-14 September 2014.

Sukkerd, R.; Cdmara, J.; Garlan, D.; Simmons, R. Multiscale Time Abstractions for Long-range Planning
Under Uncertainty. In Proceedings of the Second International Workshop on Software Engineering for
Smart Cyber-Physical Systems, Austin, TX, USA, 16 May 2016, ACM: New York, NY, USA, 2016; pp. 15-21.
[CrossRef]

Kaelbling, L.P.; Lozano-Pérez, T. Hierarchical Task and Motion Planning in the Now. In Proceedings of the
IEEE International Conference on Robotics and Automation, Shanghai, China, 9-13 May 2011; pp. 1470-1477.
[CrossRef]

Kaelbling, L.P.; Lozano-Pérez, T. Implicit Belief-space Pre-images for Hierarchical Planning and Execution.
In Proceedings of the IEEE International Conference on Robotics and Automation, Stockholm, Sweden,
16-21 May 2016; pp. 5455-5462. [CrossRef]

Ramoly, N.; Bouzeghoub, A.; Finance, B. Context-aware Planning by Refinement for Personal Robots in
Smart Homes. In Proceedings of the Forty-Seventh International Symposium on Robotics (ISR), Munich,
Germany, 21-22 June 2016; pp. 1-8.

Martinez, M.; Fernandez, F.; Borrajo, D. Planning and Execution Through Variable Resolution Planning.
Robot. Auton. Syst. 2016, 83, 214-230. [CrossRef]

Rao, A.S.; Georgeff, M.P. BDI Agents: From Theory to Practice. In Proceedings of the First International
Conference on Multiagent Systems, San Francisco, CA, USA, 12-14 June 1995; Volume 95, pp. 312-319.
Mora, M.C.; Lopes,].G.; Viccariz, R.M.; Coelho, H. BDI Models and Systems: Reducing the Gap. In Intelligent
Agents V: Agents Theories, Architectures, and Languages; Miiller,].P., Rao, A.S., Singh, M.P., Eds.; Springer:
Berlin/Heidelberg, Germany, 1999; pp. 11-27. [CrossRef]

Pokahr, A.; Braubach, L.; Lamersdorf, W. A Goal Deliberation Strategy for BDI Agent Systems. In Multiagent
System Technologies; Eymann, T., Kliigl, F., Lamersdorf, W., Klusch, M., Huhns, M.N., Eds.; Springer:
Berlin/Heidelberg, Germany, 2005; pp. 82-93. [CrossRef]

Meneguzzi, F; De Silva, L. Planning in BDI Agents: A Survey of the Integration of Planning Algorithms and
Agent Reasoning. Knowl. Eng. Rev. 2015, 30, 1-44. [CrossRef]

Georgievski, I; Aiello, M. HTN Planning: Overview, Comparison, and Beyond. Artif. Intell. 2015, 222,
124-156. [CrossRef]

Cardoso, R.C.; Bordini, R.H. A Multi-agent Extension of a Hierarchical Task Network Planning Formalism.
Adv. Distrib. Comput. Artif. Intell.]. (ADCAI]J) 2017, 6. [CrossRef]

http://dx.doi.org/10.1109/MRA.2016.2645444
http://dx.doi.org/10.1109/ICRA.2011.5980170
http://dx.doi.org/10.1109/TASE.2014.2377791
http://dx.doi.org/10.1016/j.robot.2008.08.007
http://dx.doi.org/10.1613/jair.1705
http://dx.doi.org/10.1145/2897035.2897044
http://dx.doi.org/10.1109/ICRA.2011.5980391
http://dx.doi.org/10.1109/ICRA.2016.7487758
http://dx.doi.org/10.1016/j.robot.2016.04.009
http://dx.doi.org/10.1007/3-540-49057-4_2
http://dx.doi.org/10.1007/11550648_8
http://dx.doi.org/10.1017/S0269888913000337
http://dx.doi.org/10.1016/j.artint.2015.02.002
http://dx.doi.org/10.14201/ADCAIJ201762517

Sensors 2019, 19, 4856 32 of 32

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Nau, D.S,; Ay, T.C,; lighami, O.; Kuter, U.; Murdock,].W.; Wu, D.; Yaman, E. SHOP2: An HTN Planning
System. |. Artif. Intell. Res. 2003, 20, 379-404. [CrossRef]

Holler, D.; Bercher, P.; Behnke, G.; Biundo, S. A Generic Method to Guide HTN Progression Search with
Classical Heuristics. In Proceedings of the Twenty-Eighth International Conference on Automated Planning
and Scheduling, Delft, The Netherlands, 24-29 June 2018.

Vandaele, H.; Nelis, J.; Verbelen, T.; Develder, C. Remote Management of a Large Set of Heterogeneous
Devices Using Existing IoT Interoperability Platforms. In Internet of Things: IoT Infrastructures; Mandler, B.,
Marquez-Barja, J., Mitre Campista, M.E., Cagariovéa, D., Chaouchi, H., Zeadally, S., Badra, M., Giordano, S.,
Fazio, M., Somov, A., Vieriu, R.L., Eds.; Springer International Publishing: Cham, Switzerland, 2016;
pp. 450-461. [CrossRef]

Chamberlain, W.; Leitner, J.; Drummond, T.; Corke, P. A Distributed Robotic Vision Service. In Proceedings
of the IEEE International Conference on Robotics and Automation, Fort Worth, TX, USA, 21-24 August 2016;
Pp. 2494-2499. [CrossRef]

Sprute, D.; Portner, A.; Rasch, R.; Battermann, S.; Koénig, M. Ambient Assisted Robot Object Search.
In Enhanced Quality of Life and Smart Living; Mokhtari, M., Abdulrazak, B., Aloulou, H., Eds.; Springer
International Publishing: Cham, Switzerland, 2017; pp. 112-123. [CrossRef]

Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source
Robot Operating System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan,
17 May 2009; Volume 3, p. 5.

Buehler, J.; Pagnucco, M. Planning and Execution of Robot Tasks Based on a Platform-independent Model
of Robot Capabilities. In Proceedings of the Twenty-first European Conference on Artificial Intelligence,
Prague, Czech Republic, 17-22 August 2014; IOS Press: Amsterdam, The Netherlands, 2014; pp. 171-176.
[CrossRef]

Hornung, A.; Bottcher, S.; Schlagenhauf, J.; Dornhege, C.; Hertle, A.; Bennewitz, M. Mobile Manipulation
in Cluttered Environments with Humanoids: Integrated Perception, Task Planning, and Action Execution.
In Proceedings of the IEEE-RAS International Conference on Humanoid Robots, Madrid, Spain, 18-20
November 2014; pp. 773-778. [CrossRef]

Eyerich, P; Mattmiiller, R.; Roger, G. Using the Context-enhanced Additive Heuristic for Temporal and
Numeric Planning. In Proceedings of the Nineteenth International Conference on International Conference
on Automated Planning and Scheduling, Thessaloniki, Greece, 19-23 September 2009; pp. 130-137.

Ye, N.; Somani, A.; Hsu, D.; Lee, W.S. DESPOT: Online POMDP Planning with Regularization. |. Artif. Intell.
Res. 2017, 58, 231-266. [CrossRef]

® © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1613/jair.1141
http://dx.doi.org/10.1007/978-3-319-47075-7_49
http://dx.doi.org/10.1109/ICRA.2016.7487403
http://dx.doi.org/10.1007/978-3-319-66188-9_10
http://dx.doi.org/10.3233/978-1-61499-419-0-171
http://dx.doi.org/10.1109/HUMANOIDS.2014.7041451
http://dx.doi.org/10.1613/jair.5328
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Planning in Smart Environments
	Capability Reasoning
	Planners with External Reasoners
	Interleaving Planning and Execution

	Background: Hierarchical Planning in the Now
	Architecture Overview
	Incorporating IoT into Continual Planning
	Generating a Planning Problem
	State Estimation
	Defining Actions and Devices

	Capability Checking
	Capability Checking Module
	Ontology-Based Reasoning

	Context Monitoring
	Robot's Onboard Context Monitor
	Plan Validator and IoT Context Monitor

	Plan Execution
	Primitive Action Executors
	Composite Action Executor

	Designing the Hierarchy for Smart Environments
	Example Scenario
	Baseline: All Actions and State within a Single Level
	Splitting up Key Concepts
	Separate Repeated Blocks
	Reducing Unused Knowledge

	Proof of Concept in a Smart Home
	Simulated Experiments
	Exp. 1: Single ``remote'' Object to Represent all Devices
	Set-Up
	Results and Discussion

	Exp. 2: IoT Device Failure and Plan Quality
	Set-Up
	Results and Discussion

	Exp. 3: Comparison with Planning Everything Upfront
	Set-Up
	Results and Discussion

	Exp. 4: Varying the Number of Levels in the Hierarchy
	Set-Up
	Results and Discussion

	Conclusions and Future Work
	Description of Actions
	Composite Action Description
	Primitive Action Description

	Example of the Executed Actions at Varying Hierarchical Splits
	No Splitting
	Splitting up Key Concepts
	Separate Repeated Blocks
	Reducing Unused Knowledge

	Plans Produced during the Simulated Coffee Fetching Experiment (Exp. 2)
	References

