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Abstract: Multi-sensor data fusion technology in an important tool in building decision-making
applications. Modified Dempster–Shafer (DS) evidence theory can handle conflicting sensor inputs
and can be applied without any prior information. As a result, DS-based information fusion is
very popular in decision-making applications, but original DS theory produces counterintuitive
results when combining highly conflicting evidences from multiple sensors. An effective algorithm
offering fusion of highly conflicting information in spatial domain is not widely reported in the
literature. In this paper, a successful fusion algorithm is proposed which addresses these limitations
of the original Dempster–Shafer (DS) framework. A novel entropy function is proposed based on
Shannon entropy, which is better at capturing uncertainties compared to Shannon and Deng entropy.
An 8-step algorithm has been developed which can eliminate the inherent paradoxes of classical DS
theory. Multiple examples are presented to show that the proposed method is effective in handling
conflicting information in spatial domain. Simulation results showed that the proposed algorithm has
competitive convergence rate and accuracy compared to other methods presented in the literature.

Keywords: Dempster–Shafer evidence theory (DST); uncertainty measure; novel belief entropy;
multi-sensor data fusion; decision-level sensor fusion

1. Introduction

Multi-sensor fusion means the combination of information from multiple sensors (homogeneous
or heterogeneous) in a meaningful way so that we can overcome any limitations inherent to a single
sensor or information source. Based on the identified strengths and weaknesses of previous work, a
principled definition of information fusion is proposed in Reference [1]: “Information fusion is the
study of efficient methods for automatically or semi-automatically transforming information from
different sources and different points in time into a representation that provides effective support for
human or automated decision making.” A multi-sensor system has two distinct advantages over a
single sensor system when used with a proper fusion algorithm:

• A single sensor may provide faulty, erroneous results, and there is no way to modify that other
than by changing the sensor. A multi-sensor system provides results with diverse accuracy.
With the help of a proper fusion algorithm, faulty sensors can be easily detected.

• A multi-sensor system receives information with wide variety and characteristics. Thus, it helps
to create a more robust system with less interference.

Now, to combine inputs from different sensors at the decision level to achieve correct object
classification, we need a robust decision-level sensor-fusion algorithm. As shown in Figure 1 [2], sensor
fusion can be represented at three different levels. The signal level can be explained if raw pixels
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from multiple cameras are combined. Feature-level sensor fusion can be explained by the following.
Hand-coded features (area or moment of certain object) are extracted from images. Then, features are
fused using some clustering algorithm. The final decision is made using the output of the clustering
algorithm. At the decision level, a decision is already made by using a supervised/unsupervised
algorithm. Then, decisions from multiple sensors are fused using Bayes or another information fusion
algorithm. At the decision level, a crucial issue in multi-source information fusion is how to represent
and determine the imprecise, fuzzy, ambiguous, inconsistent, and even incomplete information [3].
As a tool to manipulate an uncertain environment, Dempster–Shafer (DS) evidence theory is an
established system for uncertainty management [4,5]. The limitations of the original DS combination
rule and works to eliminate them are discussed in Section 4.
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Figure 1. Data fusion at three different levels: (a) Signal-level fusion, (b) feature-level fusion, and
(c) decision-level fusion.

2. Dempster–Shafer Evidence-Based Combination Rule

2.1. Frame of Discernment (FOD)

The frame of discernment contains M mutually exclusive and exhaustive events (also represented
by X in this research).

X = Θ = {θ1, θ2, ...., θM} (1)

The representation of uncertainties in the DS theory is similar to that in conventional probability
theory and involves assigning probabilities to the space Θ. However, the DS theory has one significant
new feature: it allows the probability to be assigned to subsets of Θ as well as the individual element
θi. Accordingly, we can derive the power set 2Θ of DS theory:

2Θ = {φ, {θ1}, {θ2}, ...., {θ1, θM}, ...., Θ} (2)

where φ is an empty set. It is clearly seen in Equation (2) that the power set 2Θ has 2M propositions.
Any subset except singleton of possible values means their union. For example, {θ1, θ2, θ3} ≡ {θ1 ∪
θ2 ∪ θ3}. Complete probability assignment to a power set is called basic probability assignment (BPA).

2.2. Basic Probability Assignment (BPA)/Mass Function

Evidences in DS theory are acquired by multi-sensor information. Mass function (mass) is a
function, m : 2Θ → [0, 1] that satisfies Equations (3) and (4):

m(φ) = 0 (3)
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∑{m(θ)∀θ ∈ 2Θ} (4)

m is called basic probability assignment. Elements of power set having m(θ) > 0 are called focal
elements. This can be explained with the help of a simple example. Let the three objects to be detected
be, Θ = {a, b, c}. Powerset 2Θ = 23 = {φ, a, b, c, {a, b}, {a, c}, {b, c}, Θ}. From a sensor or by an
expert, the following mass values are assigned, m(a) = 0.2, m(b) = 0.3, m(a, b) = 0.4, m(a, b, c) = 0.1.
The four subsets are called focal elements.

2.3. Dempster–Shafer Rule of Combination

The purpose of data fusion is to summarize and simplify information rationally, obtained from
independent and multiple sources. DS combination rule emphasizes the agreement between multiple
sources and ignores all the conflicting evidences through normalization. Any two mass functions B
and C over the same FOD with at least one focal element in common can be combined into a new
mass function using DS combination rule. The combination of two mass functions can also be said
to take the orthogonal sum ⊕. The combination of two belief functions, the DS combination rule for
combining two evidences m1 and m2, is defined as follows:

m12(A) =
∑B∩C{m1(B).m2(C)}

1− K
(5)

when A 6= φ and m(φ) = 0.

K = ∑
B∩C = φ

{m1(B).m2(C)} (6)

where K is the degree of conflict in two sources of evidences. The denominator (1−K) is a normalization
factor, which helps aggregation by completely ignoring the conflicting evidence and is calculated
by adding up the products of BPAs of all sets where intersection is null. DS combination rule in
Equation (5) conforms to both commutative law and associate law.

m1 ⊕m2 = m2 ⊕m1

(m1 ⊕m2)⊕m3 = m1 ⊕ (m2 ⊕m3)

2.4. Belief and Plausibility Function

Given a basic assignment m, we can define a belief function Bel : m : 2Θ → [0, 1], such that for
any A ⊂ Θ:

Bel(A) = ∑
B⊆A
{m(B)} (7)

Bel (A) measures the belief that the element is a member of A. m(A) measures the amount of belief that
one commits exactly to A alone; Bel (A) measures the total belief that the special element is in A. Based
on the same premise, we have the following:

Pl(A) = 1− Bel(Ā) (8)

Pl(A) measures the degree to which one fails to doubt A. Pl(A) measures the total belief mass that
can move into A, whereas Bel(A) measures the total belief mass that is constrained to A.

Example 1. Given, m(A) = 0.48, m(B) = 0.24, m(C) = 0.08, and m(Θ) = 0.2,
Bel (A,B) = m(A) + m(B) + m(A,B) = 0.48 + 0.24 = 0.72
Pl (A,B) = m(A) + m(B) + m(A,B) + m(A,C) + m(B,C) + m(A,B,C) = 0.48 + 0.24 +0.2 = 0.92.

Similarly, Bel and Pl values can be calculated for all the BPA, which is shown in Table 1.
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Table 1. Bel and Pl values for Example 1.

A B C A,B A,C B,C A,B,C

Bel(.) 0.48 0.24 0.08 0.72 0.56 0.32 1.0
Pl(.) 0.68 0.44 0.28 0.92 0.76 0.52 1.0

3. Paradoxes (Source of Conflicts) in DS Combination Rule

Dempster–Shafer theory, introduced and developed by Dempster and Shafer [6–8], has many
merits by contrast to Bayesian probability theory [9]. However, to use DS sensor fusion algorithm
for robust application, we have to overcome the fusion paradoxes. Based on the application in a
multi-sensor system, this theory also has its shortcomings [10]. The different levels of performance of
sensors, cluster, and interference of a complex environment may lead to conflicts among evidences.
When evidences are highly conflicting, the fusing results obtained by the DS combination method are
normally contrary to common sense. When the conflicting factor K is close to 1, this rule cannot obtain
reasonable fusing results as the denominator is approximately 0. These counterintuitive phenomena
of the DS theory are called paradoxes. According to Reference [11], there are mainly three types
of paradoxes.

3.1. Completely Conflicting Paradox:

In this situation, there are two sensors and one sensor output completely contradicts the other
sensor output. The following example depicts the situation:

Example 2. In the multi-sensor system, assume that there are four evidences in the frame, that Θ = {A, B, C},
and that proposition A is true.
Sensor 1: m1(A) = 1, m1(B) = 0, m1(C) = 0,
Sensor 2: m2(A) = 0, m2(B) = 1, m2(C) = 0,

Here, the two sensors are completely conflicting each other. The conflicting factor in Equation (6)
is K = 1, which reports that evidences from sensor 1 and sensor 2 are completely conflicting. Under such
circumstances, the DS combination rule cannot be applied.

3.2. “One Ballot Veto” Paradox

For a multi-sensor system (more than two sensors), one sensor completely contradicts all other
sensor outputs. The following example depicts the situation:

Example 3. In the multi-sensor system, assume that there are four evidences in the frame, that Θ = {A, B, C},
and that proposition A is true.
Sensor 1: m1(A) = 0.7, m1(B) = 0.2, m1(C) = 0.1,
Sensor 2: m2(A) = 0, m2(B) = 0.9, m2(C) = 0.1,
Sensor 3: m3(A) = 0.75, m3(B) = 0.15, m3(C) = 0.1,
Sensor 4: m4(A) = 0.8, m4(B) = 0.1, m4(C) = 0.1,

Clearly, sensor 2 is faulty and contradicts the results of the other 3 sensors. Applying
DS combination rule, we get K = 0.9, m1234(A) = 0/0.1 = 0, m1234(B) = 0.097/.1 = 0.97, and
m1234(C) = 0.003/0.1 = 0.03. The fusing results are contrary to the assumed proposition that A is
true. A high value of K proposes high contradiction among sensors. This counterintuitive result
is caused by the erroneous sensor 2 values. Interestingly, DS combination rule completely omits a
proposition even if a single sensor outputs zero evidence.



Sensors 2019, 19, 4810 5 of 14

3.3. “Total Trust” Paradox

Here, one sensor highly contradicts the other sensor but both of them have a common focal
element with low evidence. The following example depicts the situation:

Example 4. In the multi-sensor system, assume that there are two evidences in the frame and that
Θ = {A, B, C}.
Sensor 1: m1(A) = 0.95, m1(B) = 0.05, m1(C) = 0,
Sensor 2: m2(A) = 0.0, m2(B) = 0.1, m2(C) = 0.9,

Applying DS combination rule, we get m12(A) = 0, m12(B) = 1, and m12(C) = 0, K = 0.99. Here,
common sense suggests that either m(A) or m(C) is correct, but the wrong proposition B is identified
to be true with total confidence even though senor 1 and 2 nearly negates this idea.

4. Eliminating the Paradoxes of DS Combination Rule

Existing modified methods are divided mainly into three categories:

4.1. Modification of DS Combination Rule

Smet’s rule [12] is essentially the Dempster rule applied in Smet’s Transferable Belief Model.
Smet believed that conflict is caused by incompleteness of frame of discernment Θ and moved mass of
conflict directly to φ as an unknown proposition. This model is a slightly different formulation of DS
theory, but the ideas are essentially the same. In Yager’s rule [13], the mass associated with conflict is
directly given to universal set Θ. Yager’s rule provides the same results when conflict is zero. Although
these two methods solve the conflict situation theoretically, the uncertainty of the system still exists.
Bicheng et al. [14] modified Yager’s rule and conflicting probability of the evidences are distributed
to every proposition based on average support. Inagaki [15] defined a continuous parameter class
of combination operations, which subsumes both DS and Yager’s rule. Depending on conflict of
information, his combination rule changed between DS and Yager combination rule. However, based
on experience, if an engineer applied a weighting factor to one of the sensors credibility, this rule
cannot be applied. Zhang [16] pointed out that DS rule fails to take into account the focal element
intersection. He presented the “two frame” representation of DS theory, where he measures focal
element intersections based on cardinality. Li [17] used the interaction between focal elements and
proposed two weighted redistribution methods, which consider the associative relationship among
the evidences collected from multi-sources. His argument was that, if a body of evidence is greatly
supported by others, this piece of evidence should be more important and has great effect on the final
combination results. On the contrary, if a body of evidence is highly conflicting with others, this piece
of evidence should be less important and has little effect on the final combination results. However, all
these methods sometimes violate the theoretical properties of DS combination rule like commutativity
and associativity.

4.2. Revision of Original Evidence before Combination

Commutative and associative properties of DS rule are important for multi-sensor information
fusion, which may get lost when the original rule is tampered with. As a result, the propositions are
modified so that conflict among the evidences are resolved before applying them in DS combination
rule. Chen et al. [18] used triangular functions to set a fuzzy model for each sensor. Assuming
each sensor output is gaussian, BPA was determined from the sensor outputs using the fuzzy model.
Then, the raw BPA was weighted using the credibility of each BPA before fusing. Sun [19] also used
fuzzy membership function to convert sensor values to fuzzy values. Support degree was calculated
using an error distance function. If sensor output is not gaussian, then fuzzy set methods cannot be
applied. Instead of distance function, an entropy function (Deng entropy [9]) was used to calculate
the credibility of evidence in Reference [20]. This was inspired by Murphy’s method [21], which used
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an average of BPAs. Murphy’s method had a fast convergence rate but failed to consider the relation
between focal elements. Jiang [22] used an entropy function to measure the weight of the evidence to
modify them before applying to DS rule. Xiao [23] used almost the same procedure as Jiang but with a
different distance function to measure the credibility. Murphy’s method is the simplest to implement,
and most of the methods within this type are inspired by his method.

4.3. Hybrid Technique Combining Both Modification of DS Rule and Original Evidence

Through the comparison between two kinds of conflict resolutions, it is easy to see the underlying
logic of two methods. Method 1 cancels the normalization step in DS theory and redistributes the
conflict with different measure. Method 2 considers the essential differences between propositions
of each sensor in multi-sensor systems and solves the conflict by modifying the original evidence.
If methods 1 and 2 are combined, then the inherent paradoxes of DS rule are solved. Building on
this idea, Lin et al. [24] and Ye Fang et al. [11] published several new improvements of original DS
combination rule. They improved the fusion results, but the results were often too complicated and
overengineered to apply for real-time use. These methods also lose commutative and associative
properties of DS rule.

How to accurately measure the conflicting evidences under DS framework is still an open
issue. Keeping the commutative and associative properties of the original DS combination rule
and eliminating the paradoxes are critical for multi-sensor fusion. There is still room for improvement
to properly measure the conflicts between evidences and to obtain appropriate weights for each
evidence. Based on this, an improved combination method is proposed which follows “revision of
original evidence before combination” method. A novel entropy function is proposed which can better
capture the conflicts between evidences. Reward and penalty are imposed on evidences based on how
they agree or disagree with each other. The amount of reward or penalty is determined by the entropy
function. Then, the modified weight value (reward or penalty) is applied in adjusting the body of the
evidences before using the Dempster’s combination rule (n− 1) times, when there are n number of
evidences (sensors). The simulation experiments illustrate that the proposed method is reasonable and
efficient in coping with the conflicting evidences.

5. Entropy in Information Theory under DS Framework

Information is a measure of the compactness of a distribution; logically, if a probability distribution
is spread evenly across many states, then its information content is low, and conversely, if a probability
distribution is highly peaked on a few states, then its information content is high [25]. Information
is a function of distribution. Entropy measures the compactness of a distribution of information.
Entropy is zero when BPA is assigned to a single element, thus creating the most informative
distribution. When BPA is uniformly distributed, entropy is at maximum and agrees with the idea of
least informative distribution.

In information theory, Shannon entropy [26] is often used to measure the “amount of information”
in a variable.

ESh = −
n

∑
i = 1

pi.log2(pi) (9)

where n is the amount of basic states in a state space and pi is the probability of state i. It is clear that
the quantity of entropy is always associated with the amount of states in a system. In the framework
of DS evidence theory, the uncertain information is represented by both mass functions and the FOD.
Deng entropy [9] considers both.

EDeng = −∑ m(A).log2
m(A)

(2|A| − 1)
(10)
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where |A| denotes the cardinality of the focal element A. Other works related to entropy under DS
framework can be found in the literature [27]. Based on Shannon and Deng entropy, we propose a new
belief entropy, which considers Bel and Pl of mass function, cardinality of focal elements, and number
of elements in FOD. The goal of the proposed entropy is to capture the uncertainty of information
under DS framework, which are omitted by Shannon and Deng entropy.

Proposed Entropy, Ep = −∑
Bel(A) + Pl(A)

2
. log2(

Bel(A) + Pl(A)

2.(2|A| − 1)
. exp( |A|−1

|X| )
) (11)

where |X| denotes the cardinality of X, which represents the number of element in FOD.

The exponential factor exp( |A|−1
|X| ) in the new belief entropy represents the uncertain information

in the number of elements of FOD that has been ignored by Deng entropy. This probability interval
considers the lower and upper bounds of evidence that are Bel and Pl, respectively. The new belief
entropy which considers Deng entropy and the interval probability can better measure the uncertainty
of BPA.

Properties of Proposed Entropy Function

Property 1. Mathematically, the value range of the new belief entropy is (0,+∞). According to DS evidence
theory, a focal element A consists of at least one element and the limit of its element number is the scale of FOD.
FOD consists of at least one element, and there is no maximum limit; thus, the ranges of |A| and |X| are the
same, denoted as [1,+∞). The range of a mass function m(A) is (0, 1]. Depending on the value of |A|, the
believe (Bel) and plausibility (Pl) ranges could be between (0,+∞]. In the proposed entropy equation, where
|A| ∈ [1,+∞) and |X| ∈ [1,+∞), Bel(A) ∈ (0,+∞] and Pl(A) ∈ (0,+∞]. Thus, the range of the proposed
entropy can be denoted (0,+∞).

Property 2. New belief entropy can degenerate to the Shannon entropy when the mass function is Bayesian. If
the mass function m(A) is Bayesian, then BPA is assigned only on single element subset and |A| = 1. In this
case, the new belief entropy can degenerate to the following equation, which is exactly equal to Shannon entropy:

= −∑
mi + mi

2
.log2((

mi + mi

2.(21 − 1)
). exp(1−1)/|X|) = −∑ m(A).log2(m(A))

Property 3. Non-negativity. We know that 0 < (Bel(mi) + Pl(mi))/2 < 1. As a result, entropy (m) > 0.
Only if m(A) = 1 and only if A is Bayesian, then Entropy (m) = 0. Thus, new entropy satisfies the
non-negativity property.

Property 4. Consistency with DS theory framework. The new entropy is consistent with the DS theory
framework. Thus, it satisfies the consistency with DS theory framework properties.

Property 5. Probability consistency. If m is Bayesian, then m(A) = Bel(A) = Pl(A) for all A ∈ X. Thus,
new entropy satisfies the probability consistency property.

The following example shows the properties of proposed entropy and how it is better at capturing
uncertainties compared to Shannon and Deng entropy.

Example 5. Given a frame of discernment Θ = {a, b, c} for a mass function m(a) = m(b) = m(c) = 1/3.
ESh = −( 1

3 log2
1
3 + 1

3 log2
1
3 + 1

3 log2
1
3 ) = 1.585

EDeng = ( 1
3 log2

1/3
21−1 + 1

3 log2
1/3

21−1 + 1
3 log2

1/3
21−1 = 1.585

EP = −( (1/3+1/3)
2 log2

(1/3+1/3)
2.(21−1) . exp( 1−1

3 ) + (1/3+1/3)
2 log2

(1/3+1/3)
2.(21−1) . exp( 1−1

3 ) +

(1/3+1/3)
2 log2

(1/3+1/3)
2.(21−1) . exp( 1−1

3 )) = 1.585
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This showed that the result of the proposed entropy is identical to Shannon entropy and Deng
entropy when the belief is only assigned on single elements (or Bayesian).

Example 6. Given a frame of discernment Θ = {a, b, c}, mass function
m(a) = m(b) = m(c) = m(a, b) = m(a, c) = m(b, c) = m(a, b, c) = 1/7. Bel and Pl
values can be calculated for all the BPA, which is shown in Table 2.

Table 2. Bel and Pl values for Example 6.

a b c a,b a,c b,c a,b,c

Bel(.) 1/7 1/7 1/7 3/7 3/7 3/7 1.0
Pl(.) 4/7 4/7 4/7 6/7 6/7 6/7 1.0

Shannon and Deng entropy is calculated to compare with the values from proposed entropy.

ESh = −( 1
7 log2

1
7 + 1

7 log2
1
7 + 1

7 log2
1
7 + 1

7 log2
1
7 + 1

7 log2
1
7 + 1

7 log2
1
7 + 1

7 log2
1
7 ) = 2.8074

EDeng = −( 1
7 log2

1
7 + 1

7 log2
1
7 + 1

7 log2
1
7 + 1

7 log2
1

3∗7 + 1
7 log2

1
3∗7 + 1

7 log2
1

3∗7 + 1
7 log2

1
7∗7 ) = 3.887

EP = −( 5
2∗7 log2

5
2∗7 + 5

2∗7 log2
5

2∗7 + 5
2∗7 log2

5
2∗7 + 9

2∗7 log2(
9

2∗3∗7 . exp(1/3)) + 9
2∗7 log2(

9
2∗3∗7 . exp(1/3))+

9
2∗7 log2(

9
2∗3∗7 . exp(1/3)) + log2(

1
7 . exp(2/3))) = 6.79

Shannon entropy only considers mass function value and has the lowest entropy. Deng entropy
considers both mass function value and cardinality on focal elements. It calculates higher entropy
than Shannon. Proposed entropy considers mass function value (central value of probability interval),
cardinality of both focal elements, and FOD. It results in the highest entropy value compared to
Shannon and Deng. If a FOD consists of 7 elements compared to say 3 elements, intuitively it can be
said that the 7-element FOD should have higher entropy because it is less compact. Also, because
the proposed entropy considers central value of probability interval (Bel+Pl)

2 , it is capturing more
uncertainty compared to only mass function. As a result, the proposed entropy function abides by the
DS framework and is superior in capturing uncertainty compared to Shannon and Deng entropy.

6. Proposed Steps to Eliminate Paradoxes

With increasing use of sensors application in real-time decision making, we need an algorithm
which can fuse sensor outputs both in the space domain and the time domain. The goal of the proposed
method is to eliminate the paradoxes of the original DS combination rule and work as a decision-level
sensor fusion algorithm in both the space and time domains. We are adopting “revision of original
evidence before combination” because we do not want to lose the associative and commutative
properties of the original DS rule. The proposed method is a distance-based method. It calculates
the relative distances between the sensor evidences (classification output). Then, based on average
distance, it classifies which sensor output is credible and which sensor output is incredible. Then, it
penalizes the incredible sensor output using the novel entropy function so that the incredible sensor
has less effect on the fused output. It also rewards the credible sensor input so that the credible
sensor carries more weight towards the fused output. At the end, modified evidence is fused using
the original DS sensor fusion equation. The following example is used to showcase the steps and to
compare the final fused results with works from open literature.

Example 7. In a multisensor-based target recognition system, assume there are three types of targets to be
recognized: {A, B, C}. Suppose there are five sensors. They could be any type of sensors. After data acquisition
at a specific moment by five sensors, data are processed and classification IDs are generated. Generated IDs from
five sensors are listed as BPAs:
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Sensor 1: m1 : m1(A) = 0.41, m1(B) = 0.29, m1(C) = 0.30
Sensor 2: m2 : m2(A) = 0.00, m2(B) = 0.90, m2(C) = 0.10
Sensor 3: m3 : m3(A) = 0.58, m3(B) = 0.07, m3(A, C) = 0.35
Sensor 4: m4 : m4(A) = 0.55, m4(B) = 0.10, m4(A, C) = 0.35
Sensor 5: m5 : m5(A) = 0.60, m5(B) = 0.10, m5(A, C) = 0.30

This is a classic example of the “one ballot veto” paradox. Bel and Pl values can be calculated for
all the BPA, which is shown in Table 3.

Step 1: Build a multi-sensor information matrix. Assume, for a multi-sensor system, there are N
evidences (sensors) in the frame Θ = {H1, H2, ....., HM} (objects to be detected).


m1(H1) m1(H2) . . . m1(HM)

m2(H1) m2(H2) . . . m2(HM)
...

...
. . .

...
mN(H1) mN(H2) . . . mN(HM)

 =


0.41 0.29 0.3 0

0 0.9 0.1 0
0.58 0.07 0 0.35
0.55 0.1 0 0.35
0.6 0.1 0 0.3

 (12)

Step 2: Measure the relative distance between evidences. Several distance function can be used to
measure the relative distance. They all have their own advantages and disadvantages regarding
runtime and accuracy. We have used Jousselme’s distance [28] function. Jousselme’s distance function
uses cardinality in measuring distance which is an important metric when multiple elements are present
in one BPA under DS framework. The effect of different distance functions (Euclidean, Jousselme,
Minkowsky, Manhttan, Jffreys, and Camberra distance function) on simulation time and information
fusion can be found in the literature [29]. Assuming that there are two mass functions indicated by mi
and mj on the discriminant frame Θ, the Jousselme distance between mi and mj is defined as follows:

DM(mi, mj) =

√
1
2

.(mi −mj).D.(mi −mj)
T (13)

where D = |A∩B|
|A∪B| and |.| represents cardinality.

Step 3: Calculate sum of evidence distance for each sensor.

di =
N

∑
j=1 & j 6=i

DM(mi, mj) =


1.5449
2.9284
1.2311
1.1761
1.1944

 (14)

Step 4: Calculate global average of evidence distance.

d̄ =
∑N

i=1 di

N
= 1.615 (15)

Step 5: Calculate belief entropy for each sensor by using Equation (11), and normalize.
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Table 3. Bel and Pl values for Example 7.

m(A) m(B) m(C) m(A,C)

m1 Bel = 0.42, Pl = 0.41 Bel = 0.29, Pl = 0.29 Bel = 0.3, Pl = 0.3 Bel = 0, Pl = 0
m2 Bel = 0, Pl = 0 Bel = 0.9, Pl = 0.9 Bel = 0.1, Pl = 0.1 Bel = 0, Pl = 0
m3 Bel = 0.93, Pl = 0.93 Bel = 0.07, Pl = 0.07 Bel = 0, Pl = 0.35 Bel = 0.93, Pl = 0.93
m4 Bel = 0.9, Pl = 0.9 Bel = 0.1, Pl = 0.1 Bel = 0, Pl = 0.35 Bel = 0.9, Pl = 0.9
m5 Bel = 0.9, Pl = 0.9 Bel = 0.1, Pl = 0.1 Bel = 0, Pl = 0.3 Bel = 0.9, Pl = 0.9

It is interesting to note that, although m3, m4, and m5 have zero m(C) values, it has nonzero Pl
values. As a result, it will consider nonzero Pl values of m(C) when calculating entropy.
EP(m1) = 1.5664, EP(m2) = 0.469, EP(m3) = 1.3861, EP(m4) = 1.513, EP(m5) = 1.483.
Normalize the entropy:

EP(mi) =
Ep(mi)

∑ Ep(mi)
(16)

Step 6: The evidence set is divided into two parts: the credible evidence and the incredible evidence.
From Equations (14) and (15):

I f di ≤ d̄, mi is credible evidence

I f di > d̄, mi is incredible evidence
(17)

The intuition is that, if an evidence has higher distance than average distance (which is calculated
using all the evidences), then probably that evidence is faulty and should be penalized (incredible
evidence). If an evidence distance is lower than average, then that evidence is in harmony with other
evidence and should be rewarded (credible evidence). Lower entropy means lower uncertainty, and
that evidence should be rewarded more for credible evidence. The opposite is true for incredible
evidence. Therefore, we needed a function which has large slope as it goes near to zero. Natural log
function fits the bill. As a result, the following reward and penalty function is proposed:

For credible evidence, Reward f unction = −ln(EP(m))

For incredible evidence, Penalty f unction = −ln(1− EP(m))
(18)

Using Equations (16)–(18), calculate reward and penalty value for each evidence.
Reward1 = 1.4103, Penalty2 = 0.0759, Reward3 = 1.5326, Reward4 = 1.445, Reward5 = 1.4647.

Normalize reward and penalty values to get evidence weights. w1 = 0.2379, w2 = 0.0128, w3 =

0.2585, w4 = 0.2437, w5 = 0.2471. Obviously, we can observe that there is a high conflict between the
evidence m2 and other evidences. Therefore, m2 is defined as an incredible evidence and has very low
weight. Other evidences are supported by each other, so their weights are higher than m2.

Step 7: Modify the original evidences.

m(A) =
N

∑
i=1

mi(A).wi (19)

The resulting modified evidences are m(A) = 0.5298, m(B) = 0.1477, m(C) = 0.0726 and
m(A,C) = 0.2499.

Step 8: Combine modified evidence for (n− 1) times (for this example, 4 times) with DS combination
rule by using Equations (5) and (6). How to apply the fusion rule is important. For this example,
if evidences m1 and m2 are fused with modified evidence, then m12(A) = 0.8125, m12(B) =

0.0325, m12(C) = 0.062 and m12(A, C) = 0.093. Now, to get m123, if m12 values are fused with
m12 values using Equations (5) and (6), that would be wrong. To get m123, m12 values should be fused
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with the original modified evidence from step 7. It is also evident that, for single elements, if that
element has higher value after step 7, it will have highest value after fusing (n− 1) times. The higher
the value after step 7, the higher the value after fusion.

Table 4 compares the results of the proposed algorithm with other combination methods from
open literature for Example 7.

Table 4. Evidence combination results based on different combination methods for Example 7.

Combination Rule m1, m2 m1, m2, m3 m1, m2, m3, m4 m1, m2, m3, m4, m5

Dempster [8]
m(A) = 0,

m(B) = 0.8969,
m(C) = 0.1031

m(A) = 0,
m(B) = 0.8969,
m(C) = 0.1031

m(A) = 0,
m(B) = 0.8969,
m(C) = 0.1031

m(A) = 0,
m(B) = 0.8969,
m(C) = 0.1031

Murphy [21]

m(A) = 0.0964,
m(B) = 0.8119,
m(C) = 0.0917,

m(AC) = 0

m(A) = 0.4619,
m(B) = 0.4497,
m(C) = 0.0794,

m(AC) = 0.0090

m(A) = 0.8362,
m(B) = 0.1147,
m(C) = 0.0410,

m(AC) = 0.0081

m(A) = 0.9620,
m(B) = 0.0210,
m(C) = 0.0138,

m(AC) = 0.0032

Deng [30]

m(A) = 0.0964,
m(B) = 0.8119,
m(C) = 0.0917,

m(AC) = 0

m(A) = 0.4974,
m(B) = 0.4054,
m(C) = 0.0888,

m(AC) = 0.0084

m(A) = 0.9089,
m(B) = 0.0444,
m(C) = 0.0379,

m(AC) = 0.0089

m(A) = 0.9820,
m(B) = 0.0039,
m(C) = 0.0107,

m(AC) = 0.0034

Han [31]

m(A) = 0.0964,
m(B) = 0.8119,
m(C) = 0.0917,

m(AC) = 0

m(A) = 0.5188,
m(B) = 0.3802,
m(C) = 0.0926,

m(AC) = 0.0084

m(A) = 0.9246,
m(B) = 0.0300,
m(C) = 0.0362,

m(AC) = 0.0092

m(A) = 0.9844,
m(B) = 0.0023,
m(C) = 0.0099,

m(AC) = 0.0034

Wang [32]
recalculated

m(A) = 0.0964,
m(B) = 0.8119,
m(C) = 0.0917,

m(AC) = 0

m(A) = 0.6495,
m(B) = 0.2367,
m(C) = 0.1065,

m(AC) = 0.0079

m(A) = 0.9577,
m(B) = 0.0129,
m(C) = 0.0200,

m(AC) = 0.0094

m(A) = 0.9867,
m(B) = 0.0008,
m(C) = 0.0087,

m(AC) = 0.0035

Jiang [20]

m(A) = 0.0964,
m(B) = 0.8119,
m(C) = 0.0917,

m(AC) = 0

m(A) = 0.7614,
m(B) = 0.1295,
m(C) = 0.0961,

m(AC) = 0.0130

m(A) = 0.9379,
m(B) = 0.0173,
m(C) = 0.0361,

m(AC) = 0.0087

m(A) = 0.9837,
m(B) = 0.0021,
m(C) = 0.0110,

m(AC) = 0.0032

Proposed

m(A) = 0.00573,
m(B) = 0.96906,
m(C) = 0.02522,

m(AC) = 0

m(A) = 0.7207,
m(B) = 0.1541,
m(C) = 0.1178,
m(AC) = 0.007

m(A) = 0.9638,
m(B) = 0.0019,
m(C) = 0.0224,

m(AC) = 0.0117

m(A) = 0.9877,
m(B) = 0.0002,
m(C) = 0.0087,

m(AC) = 0.0034

As seen from Table 4, when evidences are in high conflict, classical Dempster’s combination
rule produces counterintuitive results that are not correct. With increases in number of sensors,
Murphy’s simple averaging, Deng’s weighted averaging, and Han’s novel weight averaging,
Wang’s weighted evidence and Jiang’s uncertainty measure give reasonable results, although
their final combination results are slightly inferior to the outcomes of our proposed approach.
Wang et al. [32] showed in his paper that the modified evidences before the fusion steps are
m(A) = 0.5048, m(B) = 0.184, m(C) = 0.068, and m(AC) = 0.243. Now, the modified evidence for
m(A) is lower than our proposed method as stated in step 7. Also as explained in step 8, it is unlikely
that, after fusing these evidences (n− 1) times (4 for this example) using original DS combination
rule, the fused m12345(A) will be higher than our proposed method. Using the evidences presented in
Wang’s work, the recalculated fused evidences are presented in Table 4. The proposed method also
has the highest convergence rate (rate of m(A) value goes towards 1) after sensor 3. It is reasonable to
say that the proposed method overcomes the paradoxes of classical DS rule and produces competitive
fusion results compared to that of combination rule available in open literature. Figure 2 shows how
fused evidence of m(A) changes with the addition of new sensors and compares multiple methods
from the literature. As m(A) is the correct evidence, how it is changing with the inclusion of new
sensor evidence is important for justification of the fused result. The proposed method penalizes
m(A) when only two sensors are used. As a result, m(A) starts with lower evidence for the proposed
method compared to other methods (number of sensors = 2). However, with the inclusion of correct
evidences from sensors 3 and 4, m(A) converges towards 1 quickly for the proposed method compared
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to other methods. As m(A) evidence converges towards 1, the convergence rate becomes slow for all
the methods. A zoomed-in view shows that the proposed method has higher m(A) evidence after
fusing 5 sensor evidences compared to other methods from the literature.

Figure 2. Comparison of convergence of evidence m(A) for Example 7.

It can be seen from Example 7 that this method is applicable for any multi-sensor system because
fusion occurs after classification ID is created from sensor output. As an example, let us assume
multiple cameras are used for object classification. Camera output (video/image) will go through a
classifier (example: neural network) for object ID classification. After classification, the output may
have similar syntax to Example 7. Then, the proposed method can be applied to find out which sensor
is providing erroneous data and to fuse them accordingly.

7. Conclusions

In this paper, an eight-step algorithm under DS framework is introduced as an innovative
methodology that can be used to better capture uncertainties related to decision-level multi-sensor
fusion. A novel entropy function is proposed based on Shannon entropy which takes into account
the central value of probability interval and cardinality of both focal elements and FOD. As a result,
it is better at capturing uncertainties under DS framework compared to Shannon and Deng entropy.
The proposed algorithm calculates distances between multiple evidences (sensors). Based on evidence
distance, it rewards the evidences which agree with one another and penalizes the evidences which
disagree. The proposed entropy function is used to calculate the weights of the evidences. Conflicting
evidences are modified before using them for spatial domain fusion. Classical DS combination rule
is used for decision-level sensor fusion; as a result, associative and commutative properties are kept.
The proposed method is able to suppress the paradoxes of classical DS combination rule. Detailed
examples showed that the proposed method produces competitive convergence rate and fusion
accuracy in terms of combining the conflicting evidences in the spatial domain compared to other
methods available in the literature.
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