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Abstract: Image sensors are widely used for detecting cracks on concrete surfaces to help proactive and
timely management of concrete structures. However, it is a challenging task to reliably detect cracks
on damaged surfaces in the real world due to noise and undesired artifacts. In this paper, we propose
an autonomous crack detection algorithm based on convolutional neural network (CNN) to solve the
problem. To this aim, the proposed algorithm uses a two-branched CNN architecture, consisting
of sub-networks named a crack-component-aware (CCA) network and a crack-region-aware (CRA)
network. The CCA network is to learn gradient component regarding cracks, and the CRA network is
to learn a region-of-interest by distinguishing critical cracks and noise such as scratches. Specifically,
the two sub-networks are built on convolution-deconvolution CNN architectures, but also they
are comprised of different functional components to achieve their own goals efficiently. The two
sub-networks are trained in an end-to-end to jointly optimize parameters and produce the final
output of localizing important cracks. Various crack image samples and learning methods are used
for efficiently training the proposed network. In the experimental results, the proposed algorithm
provides better performance in the crack detection than the conventional algorithms.

Keywords: deep learning; crack detection; convolutional neural network; edge detection;
fire-damaged concrete; image processing

1. Introduction

Crack information can help timely and proactive management of concrete structures, and image
sensors are economically useful to detect the cracks on concrete surface as compared to other
sensors [1–4]. However, the conventional process of the visual inspection is too time-consuming
since it needs manual tracing of cracks on the surface image. Crack detection algorithms can perform
quantitative analysis on the strengths or lengths of edges to estimate a degree of safety. In practice,
such autonomous crack assessment is effectively used for safety diagnosis of concrete structures such
as bridges [1], nuclear plants [2], pavements [3], and tunnels [4] through image sensors.

The main challenge in crack detection is to identify only the important cracks whose widths and
lengths are greater than some thresholds, specified by a safety instruction [5]. Earlier crack detection
algorithms use edge detection and morphological image processing algorithms such as Canny detector,
Sobel mask, and Laplacian of Gaussian (LoG) [6–8]. However, many noises or other tiny pores and
scratches on the surfaces make cracks difficult to be detected in the real world. The task is even
more challenging when the surfaces of concretes are damaged by various factors [9–14]. For instance,
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Figure 1 shows parts of fire-damaged concretes. The detection accuracy is significantly degraded by
combustion as compared to the cracks pointed by domain experts. Many image processing algorithms
are actually sensitive to such noise and undesired artifacts by damages.
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Figure 1. (a) The original concrete surface, (b) the crack map manually traced by an expert, (c) edge
detection by Sobel mask, and (d) by Holistic Edge Detection (HED) [9].

Recently, Convolutional Neural Network (CNN) has been actively applied to various image
processing and understanding problems such as edge detection [9], saliency detection [10], semantic
segmentation and recognition [11]. The CNN uses automatic hierarchical feature learning in an
end-to-end manner to allow for understanding different contexts in an image. Holistic Edge Detection
(HED) [9] develops a CNN-based edge detection system, combining multi-scale and multi-level
visual responses in convolution layers. Deep Contour-Aware Network (DCAN) [11] proposes to use
multi-level contextual features to accurately detect contours and separate clustered objects. In [10],
Pixel-wise Contextual Attention Network (PiCANet) is proposed to detect important or salient regions
in an image.

In this paper, we propose an autonomous and reliable crack detection algorithm using CNN,
extended from the preliminary work [12]. Even though a domain expert can easily identify critical
cracks that can have significant impact on the safety evaluation of a concrete surface, it is a much
more difficult task for an autonomous system due to undesired artifacts on the damaged concrete
surfaces [15–17]. To solve the problem, the proposed algorithm is designed for localizing important
cracks based on the recent advances in deep learning research. Our previous work focuses on
safety evaluation of fire-damaged concretes by showing the correlation between the lengths of cracks,
durations, and temperatures and structural performance. However, in this work, we rather show
more thorough ideas on autonomous crack detection using deep learning. Experimental results
conducted with various crack datasets show the proposed algorithm provides more accurate and
reliable performance in crack detection compared to previous works.

Our contribution in this paper is as follows. We use a two-branched CNN architecture to efficiently
distinguish the relevant crack and the other components such as noise and edge-like image components
on the concrete surfaces. The intuition behind the proposed model is to use noise-suppression and
region detection, inspired by old wisdom on conventional edge detection methods and multi-channel
network architecture [18,19]. Specifically, a branch of the proposed network is to detect edge or
contours that are considered as the most prominent components in cracks, and the other branch is to
identify a region-of-interest as in semantic segmentation. The features learned from the two different
networks are combined for identifying the important cracks. Data acquisition and training strategy
are important to overcome an over-fitting problem in deep learning and appropriately validate the
performance. Therefore, to facilitate learning, we conduct fire experiments for ourselves to obtain
more crack image samples in the real world. It is noted that the fire-damaged concretes show many
detailed cracks with combustion, so the reliable crack detection algorithm is mattered. Furthermore,
the proposed algorithm uses skip connections made with convolution and deconvolution operations
that can transfer the crack features trained in the lower layers to the higher layers on top of the U-net
architecture [20].
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The rest of the paper is organized as follows. In Section 2, we review the previous studies.
In Section 3, we explain the proposed method. In Section 4, we show the proposed training strategy
and data acquisition. Experimental results are shown in Section 5. We conclude with remarks in
Section 6.

2. Related Works

2.1. Previous Studies in Crack Detection

Earlier crack detection algorithms use edge detection and morphological image processing
algorithms. Youm et al. develop a crack detection algorithm, comparing the differences of intensities
in neighboring pixels to the pre-defined thresholds to determine a region-of-interest [7]. Similarly,
the crack regions are separated with fuzzy c-means clustering and segmentation algorithms [6].
Conventional edge detection algorithms such as canny detector, Sobel mask, and Laplacian of Gaussian
(LoG) weighted Haar-like features, and the Hessian matrix-based operations are used [8,21]. They offer
post-processing such as delate operator because the detection algorithms using pixel intensities and
gradients are often vulnerable to luminance change, low-contrast images, and complex backgrounds.
Cho et al. propose an edge-based crack detection method using crack width transform [22]. Liang et al.
propose crack extraction and identification method based on machine vision [23].

Machine learning has been widely used for the crack detection, consisting of two steps, i.e., feature
extraction and decision. Various hand-crafted features considering edge components of the cracks are
proposed. Li et al. use a local binary pattern (LBP) to express key attributes of lengths and widths
of the cracks [24]. Zalama et al. use visual features based on Gabor filters for describing anisotropic
components of cracks [25]. The feature vectors are trained with support vector machine and neural
network to determine the regions of cracks.

There have been several crack detection studies using CNN. The CNN automatically extracts
the features from the raw images regardless of professional knowledge on a target structure. In [3,4],
the CNN-based crack detectors can perform the safety diagnosis even though geometry information of
target concrete structures is unknown. In [12], damaged areas in concrete structures are localized to
evaluate a degree of safety. In [2], a CNN-based crack detection algorithm and a fusion method using
naive Bayesian algorithm are proposed to identify crack components in nuclear power plants. In [13]
a deep learning-based segmentation algorithm is proposed to identify cracks in a tunnel. In [3,14–17]
the CNN has been used for crack detection by the supervision of block-based classification. The works
classify image blocks of concrete surfaces into crack or non-crack regions using the softmax layer.
The networks produce the predicted scores, which are represented as pixel intensities between 0
and 255, e.g., a brighter pixel is more likely to be a crack region [26]. These tasks can be achieved with
minimizing cross-entropy loss in the training [27]. The classification performance of the CNN increases
more as the layers are deeper [16]. Accordingly, efficient training methods such as pre-training, transfer
learning, batch normalization [28], and drop-out [29] are applied to increase the depths in concrete
images [17]. However, such classification approaches may determine the entire region of a block to
cracks even though some parts of the blocks are a non-crack region. The classification can be conducted
with various sizes of block patches to identify more accurate crack regions. Though the learned features
are more robust to noise in the real world data, the previous works have not carefully considered
attributes of cracks in the detection.

2.2. Convolution and Deconvolution Architecture in CNN

The CNN has cascaded convolution layers and pooling layers, ending with fully connected layers.
The neuron units in convolution layers are connected to local patches consisting of feature maps and
convolve the neurons in the previous layers. The convolution and deconvolution architecture, which is
an advanced CNN structure developed for various image processing techniques [9,20,30,31] has the
symmetric structures of convolution and deconvolution layers in both ends. In theory, the extracted



Sensors 2019, 19, 4796 4 of 18

features from the convolution layers play roles in summarizing the inputs into low-dimensional
vectors [32]. The vectors can be reconstructed by deconvolution layers to restore the original size.

U-net is one of the representative convolution and deconvolution architectures originally proposed
for the segmentation task of a biomedical image [20]. U-net has a symmetrical u-shaped structure of
convolution layers and deconvolution layers as shown in Figure 2. There are variant forms of the U-net,
which are applied to edge detection, segmentation, and saliency detection. Holistic Edge Detection
(HED) [9] uses various multi-scale U-net architectures to detect fine edges. The U-net is applied to the
segmentation and saliency map detection to identify a perceptually important region in an image [10].
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Figure 2. U-net structure [20].

It is emphasized that our work differs from previous works. Our work is different to the
recent CNN-based edge or contour detection algorithms [9,11,20] as the proposed technique has
noise-suppression or region detection networks to localize only the critical cracks. Furthermore, our
work is distinguished from the recent crack detection algorithms using deep learning [2,3,14–17,33] as
it generates a pixel-wise crack map from the combination of two different sub-networks, i.e., one for
detecting the crack components and the other for detecting the crack regions. The previous works
focus on supervised learning for a classification problem in crack detection.

3. Proposed Crack Detection Network

3.1. Motivation

For an efficient crack detection, a trade-off between noise suppression and localization needs to be
considered. In other words, the detector may be able to find the precise location of the crack, but the
effects of noise increase and vice versa. The problem is challenging especially in crack images as they are
captured in the wild and suffer from noise. To solve the problem, we propose a two-branched network
architecture as shown in Figure 3, consisting of sub-networks named a crack-component-aware (CCA)
network and a crack-region-aware (CRA) network. In one hand, the CCA network is to find a low-level
image feature regarding the crack, e.g., the representation of the anisotropy property of the crack as
the crack has many edge-like image features. On the other hand, the CRA network is to approximate
the region-of-interests by distinguishing crack and non-crack regions. In the CRA network, a higher
weight is assigned to a region closer to the crack and vice versa. By combining the outputs of the two
sub-networks, the proposed network can suppress small noise in non-crack regions that have been
detected in the CCA network to improve the accuracy.
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3.2. Architecture Description

3.2.1. Crack-Component-Aware Network

The CCA network consists of seven convolution layers and three deconvolution layers as shown
in Table 1. We connect the convolution layer to the deconvolution layer to effectively deliver the trained
features in the lower layers to the higher layers, motivated by the symmetric U-net structure [20]
and the skip connection. The skip connection is known to improve overall performance with slight
increments of computational complexity [19].

Table 1. Implementation details of the crack-component-aware network.

Layer Kernel Size Stride Feature Map

Conv1_1
3 1 512 × 512 × 64Conv1_2

Pool1 2 2 256 × 256 × 64

Conv2_1
3 1 256 × 256 × 128Conv2_2

Pool2 2 2 128 × 128 × 128

Conv3_1
3 1 128 × 128 × 256Conv3_2

Conv3_3

Pool3 2 2 64 × 64 × 256
Deconv1 4 2 128 × 128 × 128

Deconv2 4 2 256 × 256 × 64
Deconv3 4 2 512 × 512 × 32
1×1 Conv 1 1 512 × 512 × 1

Cross-entropy 1 1 512 × 512 × 1

Motivated by the work in our algorithm, the architecture is designed to combine the output
feature map of a convolution layer with that of the corresponding deconvolution layer at the symmetric
position. The skip connection is made using internal convolution and deconvolution operations in our
algorithm. To be specific, as zoomed in Figure 3, we apply a convolutions layer using kernel size 2
and stride 2 for the internal convolution operation in the skip connection, so we have the half size
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of feature map as Cf ×
W f
2 ×

H f
2 . For the deconvolution operation in the skip connection, we use a

deconvolution layer using kernel size 8 and stride 2 to recover the original feature size Cf ×W f ×H f .
Afterwards, they are concatenated with the existing layers in the deconvolution layers of the CCA.
By doing so, the contexts trained in the convolution layer cannot be missed and maintain the important
characteristics of real cracks. We also show the ablation tests turning on and off the convolution and
deconvolution layers of the skip connections in testing procedures. When turning on the operation,
the network can focus on the actual cracks. In the opposite case, it shows other noise components
when turning off the function, as shown in Figure 4.
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Figure 4. Ablation tests turning on and off the convolution and deconvolution in skip connections.

The skip connections are located at the convolution layers before pooling layers. The kernel size in
the convolution layer is set to 3. After the deconvolution layers, the CCA network predicts a map that
localizes the ground truth of a crack map. We also add a max-pooling layer to every 2 or 3 convolution
layers to reduce the number of parameters and prevent an overfitting problem.

3.2.2. Crack-Region-Aware Network

The CRA network has 10 convolution and pooling layers and one deconvolution layer to restore
the same size as the size of an input image. The layers before pooling layer are shared with the CCA
network. The network maintains the features of the up-sampled image through the 1 × 1 convolution
layer, as shown in Table 2. The network also provides a predicted map that approximates a region of a
crack. We set the kernel size to 3.

Table 2. Implementation details of the crack-region-aware network.

Layer Kernel Size Stride Feature Map

Conv1_1
3 1 512 × 512 × 64Conv1_2

Pool1 2 2 256 × 256 × 64

Conv2_1
3 1 256 × 256 × 128Conv2_2

Pool2 2 2 128 × 128 × 128

Conv3_1
3 1 128 × 128 × 256Conv3_2

Conv3_3

Pool3 2 2 64 × 64 × 256
Deconv1 16 8 512 × 512 × 128

1×1 Conv 1 1 512 × 512 × 1

Cross-entropy 1 1 512 × 512 × 1
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3.2.3. Combination of CCA and CRA

The features trained in CCA and CRA are the same before pooling layer 3 in Tables 1 and 2, but
the feature maps that have passed through the CCA and CRA networks are further computed with
element-wise multiplication and additional one 1 × 1 convolution layer to precisely output the map of
cracks, as shown in the final output of Figure 5. Figure 5 shows examples of input images and the
ground truth and the intermediate outputs of the CCA and the CRA and the final output from the left
to the right. The output values of the CRA are adjusted to have the maximum pixel value of 255 in the
examples for the purpose of visual comparisons, while they are actually filled with some small values.
The features trained in CCA capture detailed edges in concrete surfaces, but the results can include a
lot of edges, blobs, and lines. Meanwhile, the CRA cannot extract detailed patterns as shown in the
fourth column, while being capable of determining whether the region is important or not. When
combining the results, the crack is appropriately extracted in the output. For instance, the input in
the second row has none of important cracks, and accordingly, the output map becomes empty even
though the CCA points several low-level edge features in the image.
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output (from left to right).

4. Training

4.1. Crack Data Acquisition

It is important to use a large number of data samples to train the deep neural network and validate
the performance. We show how to acquire crack image samples and manage them for training. We use
three crack databases, i.e., Fire Crack Dataset (FCD), CrackForest Dataset (CFD) [34], and AigleRN [35].
The FCD is obtained from fire experiments conducted by the authors to have a sufficient size of datasets.
The acquisition process by fire experiments is shown in Figure 6. The CFD and the AigleRN are
available online.
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4.1.1. Fire Crack Dataset (FCD)

Two concrete structures are made with the height, the width, and the length of 25 cm × 40 cm ×
500 cm, and they go through fire experiments to obtain the crack dataset. The fire experiments are
conducted for the two concretes around 60 min and 120 min, respectively. The time-temperature curves
are controlled to follow ISO-834. High Definition (HD) resolution images of concrete surfaces are
obtained from DSLR (Digital Single Lens Reflex) cameras. The camera is a Canon EOS 760D with Canon
EF-S 60mm USM Macro lens. The aperture is f2.8. The resolution is 24 megapixels (6000 × 4000 pixels).
It is shown in [36] that the detection of fatigue cracks using image processing techniques is feasible in
appropriate conditions of camera specification. Our conditions also satisfy the constraints.

We take several pictures of the parts of the original concrete specimens and process them to have
non-overlapping 10 partitions of 40 cm × 50 cm, as shown in Figure 7. Then, an image of each partition
is divided into 80 image patches, corresponding to the actual size of 5 cm × 5 cm. Since we capture
photos from two sides of two concrete specimens, the total number of image patches is 3200. We resize
an image patch to 512 pixels by 512 pixels in the width and the height, and thus a pixel represents
around 0.09 mm × 0.09 mm in the specimen.
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In addition, domain experts in concretes materials and construction create the ground-truth of
FCD manually. When generating the ground-truth, we define a crack whose width is larger than
0.3 mm or about three to four pixels as the critical crack, as recommended in [5]. The crack regions are
marked with pixel intensity of 255 as the brightest pixels in an image, and vice versa for non-crack
regions. It is noted that the concrete surfaces show some fire marks and paint as highlighted in the
yellow boxes of Figure 7. The image patches may worsen effectiveness of the proposed network,
but we include all the patches with no processing to be closer practical scenarios. We use no input
normalization, noise removal, nor histogram equalization in the data preparation.

4.1.2. Crack Forest Dataset (CFD) and AigleRN

The CFD has 118 RGB images with resolution of 320× 480 captured from pavements [34]. The dataset
includes sample images suffered from noise and light changes to test in various environments. AigleRN
has 38 gray images with a resolution of 460 × 990 [35]. The dataset has clean crack images captured
from roads, but it has complex background textures. The ground truth of the FCD is determined by
domain experts [5]. The ground truth of CFD and AigleRN is available along with the datasets.

4.2. Training Methods

We use natural image datasets such as BSDS [37], ImageNet [38], VOC [39], DRIVE [40] in addition
to the concrete crack images to avoid the overfitting problem. We show the procedures in detail
as follows.

When learning parameters of CNN from the beginning, all the parameters are initialized with
random Gaussian distribution as in [41]. However, the learning method may incur an overfitting
problem from an insufficient number of training samples. The collection of a large number of annotated
crack images poses some challenges due to the expensive costs, e.g., in fire experiments. Therefore,
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we apply a learning method to use several non-crack datasets in addition to the crack datasets to
efficiently learn the parameter of each sub-network. Our hypothesis is that the model parameters
intensively trained on the well-annotated large-scale datasets can help the crack recognition tasks
effectively. Specifically, we first use some of the convolution layers of VGG16 that have been trained
using ImageNet [38] for the common layers of CRA and CCA. They are shown in white in Tables 1
and 2. Then, we use DRIVE [40] and VOC [39] datasets to learn the layers of CRA in Table 2. The VOC
and DRIVE datasets have some annotations used for image segmentation. However, we use them
regardless of several types of labels. In other words, the different annotations remarking foreground
regions are set to 1 while the other background regions are set to 0. Then, we train the CCA using
the BSDS dataset [37]. The dataset is originally developed for image segmentation, but it remarks a
ground truth of an edge in a natural image as shown in Figure 8. Thus, it can be used for training
a CCA network to learn edge-like components in cracks. In this training step, the last three layers
in CRA with gray colors in Table 2 are not changed. Afterwards, we use all the datasets including
DRIVE, VOC, and BSDS, and FCD, CFD, and AigleRN for fine-tuning all the layers of the networks in
the end-to-end learning. We use no additional optimization techniques such as batch normalization,
drop-out, data augmentation, or K-fold validations in training, and therefore, the proposed learning is
the only method to avoid the overfitting in our work.
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4.3. Loss Function

The training dataset D = {(X, Y)} is composed of an input set of a crack image X and a ground
truth set of a crack map Y. x ∈ X denotes an input sample of a crack image, and y ∈ Y denotes the
ground truth. L is a loss function defined as a sum of three cross-entropy losses, i.e., L1, L2, and L3.
The cross-entropy loss represents the error between the output of the cross-entropy function ỹ and the
ground truth y. Mathematically, we have

Li = −
1
N

∑
x

[y ln ỹi + (1− y) ln(1− ỹi)] (1)

where ỹ1 and ỹ2 are the output images of the CCA and CRA, respectively. ỹ3 is the predicted output
image, given as the element-wise multiplication of the CCA and CRA.

We train the network parameter h∗ to minimize L, i.e.,

h∗ = argmin(L) = argmin(α1L1 + α2L2 + α3L3), (2)

where α1 = α2 = 0.3 and α3 = 0.4. To obtain the parameter, we use the standard backpropagation
algorithm using ADAM optimizer. To be specific, the learning rate is 10−5, and the rate is reduced to a
multiple of 0.1 every 10,000 iterations. The training is stopped after 10K iterations. The hyperparameters
are empirically obtained.

5. Experimental Result

In this section, we evaluate the performance of the proposed algorithm. All experiments are
conducted on a GPU sever with Intel 3.5GHz, 32GB memory and a GPU (Geforce GTX 1080) that
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is sourced from NVIDIA, Santa Clara, USA. We used Caffe deep learning software framework to
implement the proposed technique. We used around 3230 training samples and 135 testing samples in
FCD dataset. We combine the sample images in CFD and AigleRN datasets. The two datasets consist
of sample images of pavements, while the numbers of the samples are relatively small to train the
convolution neural network. We used 156 samples in the combined sets for the testing.

The detection performance of the proposed algorithm is evaluated with other conventional
algorithms. Specifically, we first adopt state-of-the-art crack detection algorithms based on CNN, i.e.,
Cha et al. method [14] and Kim et al. method [15]. They use block-based classification techniques
to identify whether or not a tested block of an image presents a crack. We also compare Lim et al.
method [21], recently developed for the crack detection using the Laplacian of Gaussian (LoG).
Furthermore, we employ HED network [9] and DCAN [11] for the comparisons since they are the
state-of-the-arts contour and edge detection algorithms based on CNN that can be possibly applied to
the crack detection.

5.1. Performance Comparisons for Crack Detection

We examine the performance with receiver operating characteristics (ROC) curves and the
corresponding area-under-curve (AUC) values. Figure 9 shows the ROC curves using FCD dataset,
comparing the performance of the proposed algorithm denoted by “Ours” and the other conventional
algorithms. As shown in Figure 9, the proposed algorithm outperforms all the other conventional
algorithms. The AUC value of “Ours” is 0.904 while HED, DCAN, Lim et al., Cha et al., and Kim et al.
are 0.779, 0.602, 0.617, 0.626, and 0.620, respectively.
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Moreover, Figure 10 shows the ROC curves using CFD and AigleRN datasets. As can be seen,
the proposed algorithm also provides better detection performance than the other algorithms, while
the DCAN shows comparable performance. Quantitatively, the AUC values of the proposed algorithm
is 0.910, while those of the HED, DCAN, Lim et al., Cha et al., and Kim et al. are 0.795, 0.872, 0.867,
0.843, and 0.830, respectively.
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It is observed that some of the compared algorithms also provide fairly good performance in
the detection, when using the CFD and AigleRN datasets. One reason can be the properties of the
two datasets, which contain less noise in the concrete surfaces. In comparison, the FCD dataset
poses more challenges in the detection as the surfaces are sometimes contaminated by combustion,
and the images display a number of small and tiny cracks, given in the fire experiments. Accordingly,
most of the algorithms show worse performance. Particularly, the conventional algorithm using
edge detection such as Lim’s method shows significantly different performance in Figures 9 and 10.
However, the performance of the proposed algorithm is relatively reliable regarding the different
datasets in the quantitative results.

For more quantitative comparisons, we calculate the precision, the recall, and the F-measure.
The precision is obtained with the proportion of the crack samples to the entire samples that are
estimated to the crack. The recall is obtained with the proportion of the crack samples to the entire
samples that actually are the crack. A Fβ score is the harmonic mean of the precision and the recall. It
is mathematically given as

Fβ = (1 + β2)
precision · recall
β2precision + recall

(3)

where β is set to 1 in our evaluation. The precision, the recall, the F-measure, and the AUC values
are shown in Tables 3 and 4 when using the FCD dataset and using the CFD and AigleRN datasets,
respectively. As described in the tables, the proposed algorithm yields significantly improved
performance as compared to the other algorithms.

Table 3. Performance results on the FCD.

Precision Recall F-measure AUC

Ours 0.749 0.753 0.751 0.904

HED 0.774 0.655 0.709 0.779

DCAN 0.746 0.137 0.231 0.602

Lim et al. 0.471 0.173 0.253 0.617

Cha et al. 0.212 0.983 0.349 0.626

Kim et al. 0.169 0.833 0.281 0.620
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Table 4. Performance results on the CFD and AigleRN.

Precision Recall F-measure AUC

Ours 0.834 0.830 0.832 0.910

HED 0.344 0.502 0.408 0.795

DCAN 0.702 0.837 0.764 0.872

Lim et al. 0.723 0.791 0.756 0.867

Cha et al. 0.266 0.935 0.414 0.843

Kim et al. 0.244 0.774 0.371 0.830

We also compare the computational complexity of the proposed algorithm with the tested
algorithms in terms of the measurement time and memory sizes. We observed the time and the
memory when 10 input image samples are processed and measured the numbers on the average to
have robust results. In our model, the time was around 0.585 s, and the CPU and GPU memory were
around 60MB and 3.8GB, respectively. As for Lim’s method, the time was around 0.512 s and the CPU
and GPU memory around 42MB and 1.4GB, similar to Cha’s method. Both the methods are actually
developed for block classification, and the amounts of the computational complexity were smaller
than the proposed algorithm. However, the performance is somewhat degraded. As for HED and
DCAN, they have deeper convolutional layers, increasing the computational loads more, and the time
was estimated around 4.677 s and 1.077 s, respectively. In our design, we have attempted to use all
convolution layers [42] instead of using pooling layers. The performance varies with test datasets
slightly while the computational time increases. Thus, we use the pooling layers. The CPU memory
were around 410MB and 380MB, and the GPU memory around 11GB and 8.2GB, which are larger than
the proposed algorithm. They have deeper layers than the proposed algorithm.

5.2. Visual Comparisons for Crack Detection

We perform the visual comparisons in Figure 11. A larger pixel intensity represents a higher
probability of crack information in the position, determined by each algorithm. The FCD dataset
has a number of image patches including stains and noise that occurred at the fire experiments, so it
has challenges distinguishing the noise components and the actual cracks. As shown in Figure 11,
the proposed algorithm provides better results that are closer to the ground truth, even though some
cracks, e.g., in the sixth column are not detected properly. However, the other algorithms also fail to
detect the cracks. Actually, the crack detection algorithms are not much efficient when the cracks are not
noticeable compared to the background. As compared to Lim et al.’s method, the proposed algorithm
is more robust regarding color changes. For instance, in the fifth column, when there is no crack beside
stains in the image patch, the proposed algorithm outputs empty crack information. However, Lim
et al.’s method outputs some amounts of false positive errors. As compared to HED and DCAN,
the proposed algorithm detects the cracks better. Both Cha et al.’s method and Kim et al.’s method have
similar results because they include similar classification processes done by CNN. The difference is only
the use of the probability map measuring the confidence in the existence of the crack. In Kim et al.’s
method, they used soft-thresholds once the block is classified. However, they predict many image
patches to cracks in common, especially when the datasets contain noise. For this reason, though both
of them provide higher recall values, the precision values become significantly lower, which results in
significantly degraded overall accuracies in detection.
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The visual comparisons of CFD and AigleRN are given in Figure 12. In the fourth and sixth columns,
the proposed algorithm and the HED output comparable results to the ground truth. Meanwhile,
Lim et al. and DCAN detect all the background textures of the crack images, which significantly
drop the detection performance. Especially in the fourth column, DCAN fails to distinguish the
crack and the background textures. HED successfully detects solid cracks in the third and in the fifth
columns. The results are given when the backgrounds are simple. However, if the background becomes
complicated as in the first column, HED has difficulties in the detection. Furthermore, Kim et al. and
Cha et al. show robust performance against complex background textures and the performance is
comparatively higher than that of FCD. However, the recognition rate is still low because of the lower
precision values.
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In Figure 13, we point out the false positive errors and the false negative errors in the proposed
algorithm, by subtracting the ground truth from the output images of the proposed algorithm to obtain
the error images. The green boxes represent the false positive errors, and the red boxes represent
the false negative errors. For instance, in the first row of Figure 13a, the concrete image has some
holes on the surface, and it is observed that the edges of the cavity are mistakenly detected as cracks.
The second row of the Figure 13a is CCA and CRA output image of the first test input image. Through
the CCA network, all large and small holes were detected. In the CRA, all small holes were ignored,
but large holes were recognized as group of edges and detected as crack regions. As a result, large
holes were detected incorrectly.
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In addition, in the first row of the Figure 13b, the concrete image has both very thin and thick
cracks and the thin crack is ignored when difference in thickness is large. The second row of the
Figure 13b is CCA and CRA output image of that input concrete image. When there is a significant
difference in thickness, the thin cracks are recognized as if the intermediate connection is broken.
However, they are not clearly recognized even in the CCA network. In the CRA network, only the
thick crack region was recognized, and the thin crack region was ignored. Finally, the thin cracks
recognized by CCA were completely eliminated by CRA.

We also conduct experiments called inter-DB in Figure 14 to see the effective performance of the
proposed network. The inter-DB denotes that the trained networks are applied in testing, using the
different dataset that has been not used in training. The inter-DB is more challenging because the
network needs to be adapted to different properties. In Figure 14, we observe the network is efficiently
applied to the new dataset named SDNET2018 [43]. The last two columns of Figure 14 show interesting
results. In the fifth column, there are no visible cracks in the images, but there are some color changes.
The proposed network is able to capture the difference and show very few activations in the output.
In the last crack, there are color changes as well as cracks. In this case, the network can capture the
differences. These results show that the network can be efficiently applied in inter-DB as well.
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6. Conclusions

We proposed an autonomous crack detection algorithm by using two-branched convolutional
neural network. The cracks cannot be distinguished with other noises when they are obtained from
image sensors. To efficiently recognize cracks, we designed a crack-component-aware (CCA) network
with a u-shaped structure to train the edge features of the cracks. Crack-region-aware (CRA) network
emphasizes critical cracks and suppresses trivial noise. Through the combination of two sub-networks,
we could finally extract only the significant cracks. The proposed method requires some increments of
the computational complexity due to the deep learning architectures as compared to block-based crack
detection techniques. However, the proposed algorithm provided improved detection accuracies and
reliable detection performance as compared to the previous algorithms in different crack image datasets.

Author Contributions: Conceptualization, H.-S.K. and J.-W.K.; methodology and software, N.K. and J.L.;
validation, J.L. and E.-M.R.; formal analysis and investigation, N.K., J.L. and J.-W.K., resources, H.-S.K.; data
curation, N.K., J.L. and E.-M.R.; writing—original draft preparation, J.L.; writing—review and editing, J.-W.K.;
funding acquisition, J.-W.K. and H.-S.K.

Funding: This work has supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. NRF-2019R1C1C1010249).

Acknowledgments: This work has supported by the National Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (No. NRF-2019R1C1C1010249).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Prasanna, P.; Dana, K.J.; Gucunski, N.; Basily, B.B.; Hung, M.L.; Lim, R.S.; Parvardeh, H. Automated crack
detection on concrete bridges. IEEE Trans. Autom. Sci. Eng. 2016, 13, 591–599. [CrossRef]

2. Chen, F.-C.; Jahanshahi, M.R. Nb-cnn: Deep learning-based crack detection using convolutional neural
network and naive bayes data fusion. IEEE Trans. Ind. Electron. 2018, 65, 4392–4400. [CrossRef]

3. Zhang, L.; Yang, F.; Zhang, Y.D.; Zhu, Y.J. Road crack detection using deep convolutional neural network.
In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA,
25–28 September 2016; pp. 3708–3712.

4. Makantasis, K.; Protopapadakis, E.; Doulamis, A.; Doulamis, N.; Loupos, C. Deep convolutional neural
networks for efficient vision based tunnel inspection. In Proceedings of the 2015 IEEE International Conference
on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 3–5 September
2015.

5. Korea Concrete Institute. Korea Structural Concrete Design Code 2012; English & Korean; Korea Concrete
Institute: Seoul, Korea, 2012.

6. Noh, Y.; Koo, D.; Kang, Y.-M.; Park, D.; Lee, D. Automatic crack detection on concrete images using
segmentation via fuzzy c-means clustering. In Proceedings of the 2017 International Conference on Applied
System Innovation (ICASI), Sapporo, Japan, 13–17 May 2017.

7. Youm, M.; Yun, H.; Jung, T.; Lee, G. High-speed crack detection of structure by computer vision. In Proceedings
of the KSCE 2015 Convention 2015 Civil Expo and Conference, Gunsan, Korea, 28–30 October 2015.

8. Song, Q.; Lin, G.; Ma, J.; Zhang, H. An edge-detection method based on adaptive canny algorithm and
iterative segmentation threshold. In Proceedings of the 2016 2nd International Conference on Control Science
and Systems Engineering (ICCSSE), Singapore, 27–29 July 2016.

9. Xie, S.; Tu, Z. Holistically-nested edge detection. In Proceedings of the 2015 IEEE International Conference
on Computer Vision, Santiago, Chile, 7–13 December 2015.

10. Liu, N.; Han, J.; Yang, M.-H. Picanet: Learning pixel-wise contextual attention for saliency detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 18–23 June 2018; pp. 3089–3098.

11. Chen, H.; Qi, X.; Yu, L.; Heng, P.-A. Dcan: Deep contour-aware networks for accurate gland segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
26 June–1 July 2016; pp. 2487–2496.

http://dx.doi.org/10.1109/TASE.2014.2354314
http://dx.doi.org/10.1109/TIE.2017.2764844


Sensors 2019, 19, 4796 17 of 18

12. Kim, H.; Ryu, E.; Lee, Y.; Kang, J.-W.; Lee, J. Performance evaluation of fire damaged reinforced concrete
beams using machine learning. In Proceedings of the 17th International Conference on Computing in Civil
and Bulding Engineering, Tampere, Finland, 5–7 June 2018.

13. Song, Q.; Wu, Y.; Xin, X.; Yang, L.; Yang, M.; Chen, H.; Liu, C.; Hu, M.; Chai, X.; Li, J. Real-time tunnel crack
analysis system via deep learning. IEEE Access 2019, 7, 64186–64197. [CrossRef]

14. Cha, Y.-J.; Choi, W.; Büyüköztürk, O. Deep learning-based crack damage detection using convolutional
neural networks. Comput. Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [CrossRef]

15. Kim, B.; Cho, S. Automated vision-based detection of cracks on concrete surfaces using a deep learning
technique. Sensors 2018, 18, 3452. [CrossRef] [PubMed]

16. Yokoyama, S.; Matsumoto, T. Development of an automatic detector of cracks in concrete using machine
learning. Procedia Eng. 2017, 171, 1250–1255. [CrossRef]

17. Silva, W.; Diogo, S. Concrete cracks detection based on deep learning image classification. Multidiscip. Digit.
Publ. Inst. Proc. 2018, 2, 489. [CrossRef]

18. Basu, M. Gaussian-based edge-detection methods—A survey. IEEE Trans. Syst. Man Cybern. 2002, 32,
252–260. [CrossRef]

19. Khan, A.; Sung, J.; Kang, J.-W. Multi-channel Fusion Convolutional Neural Network to Classify Syntactic
Anomaly from Language-Related ERP Components. Inf. Fusion 2019, 52, 53–61. [CrossRef]

20. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation.
In Proceedings of the MICCAI 2015, Munich, Germany, 5–9 October 2015.

21. Lim, R.S.; La, H.M.; Sheng, W. A robotic crack inspection and mapping system for bridge deck maintenance.
IEEE Trans. Autom. Sci. Eng. 2014, 11, 367–378. [CrossRef]

22. Cho, H.; Yoon, H.-J.; Jung, J.-Y. Image-based crack detection using crack width transform (cwt) algorithm.
IEEE Access 2019, 6, 60100–60114. [CrossRef]

23. Liang, S.; Jianchun, X.; Xun, Z. An algorithm for concrete crack extraction and identification based on
machine vision. IEEE Access 2018, 6, 28993–29002. [CrossRef]

24. Li, L.; Wang, Q.; Zhang, G.; Shi, L.; Dong, J.; Jia, P. A method of detecting the cracks of concrete undergo
high-temperature. Constr. Build. Mater. 2018, 162, 345–358. [CrossRef]

25. Zalama, E.; Gómez-García-Bermejo, J.; Medina, R.; Llamas, J. Road crack detection using visual features
extracted by gabor filters. Comput. Aided Civ. Infrastruct. Eng. 2014, 29, 342–358. [CrossRef]

26. Li, Y.; Li, H.; Wang, H. Pixel-Wise Crack Detection Using Deep Local Pattern Predictor for Robot Application.
Sensors 2018, 18, 3042. [CrossRef]

27. Chaudhury, S.; Nakano, G.; Takada, J.; Iketani, A. Spatial-temporal motion field analysis for pixelwise crack
detection on concrete surfaces. In Proceedings of the 2017 IEEE Winter Conference on Applications of
Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; pp. 336–344.

28. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. In Proceedings of the ICML 2015, Lille, France, 6–11 July 2015.

29. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

30. Li, R.; Liu, W.; Yang, L.; Sun, S.; Hu, W.; Zhang, F.; Li, W. Deepunet: A deep fully convolutional network
for pixel-level sea-land segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3954–3962.
[CrossRef]

31. Lee, J.; Kang, M.; Kang, J.-W. Ensemble of Binary Tree Structured Deep Convolutional Network for Image
Classification. In Proceedings of the Asia-Pacific Signal and Information Processing Association (APSIPA),
Kuala Lumpur, Malaysia, 12–15 December 2017.

32. Mun, Y.J.; Kang, J.-W. Ensemble of Random Binary Output Encoding for Adversarial Robustness. IEEE Access
2019, 7, 124632–124640. [CrossRef]

33. Islam, M.; Sohaib, M.; Kim, J.; Kim, J. Crack Classification of a Pressure Vessel Using Feature Selection and
Deep Learning Methods. Sensors 2018, 18, 4379. [CrossRef]

34. Shi, Y.; Cui, L.; Qi, Z.; Meng, F.; Chen, Z. Automatic road crack detection using random structured forests.
IEEE Trans. Intell. Transp. Syst. 2016, 17, 3434–3445. [CrossRef]

35. Amhaz, R.; Chambon, S.; Idier, J.; Baltazart, V. Automatic crack detection on two-dimensional pavement
images: An algorithm based on minimal path selection. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2718–2729.
[CrossRef]

http://dx.doi.org/10.1109/ACCESS.2019.2916330
http://dx.doi.org/10.1111/mice.12263
http://dx.doi.org/10.3390/s18103452
http://www.ncbi.nlm.nih.gov/pubmed/30322206
http://dx.doi.org/10.1016/j.proeng.2017.01.418
http://dx.doi.org/10.3390/ICEM18-05387
http://dx.doi.org/10.1109/TSMCC.2002.804448
http://dx.doi.org/10.1016/j.inffus.2018.10.008
http://dx.doi.org/10.1109/TASE.2013.2294687
http://dx.doi.org/10.1109/ACCESS.2018.2875889
http://dx.doi.org/10.1109/ACCESS.2018.2844100
http://dx.doi.org/10.1016/j.conbuildmat.2017.12.010
http://dx.doi.org/10.1111/mice.12042
http://dx.doi.org/10.3390/s18093042
http://dx.doi.org/10.1109/JSTARS.2018.2833382
http://dx.doi.org/10.1109/ACCESS.2019.2937604
http://dx.doi.org/10.3390/s18124379
http://dx.doi.org/10.1109/TITS.2016.2552248
http://dx.doi.org/10.1109/TITS.2015.2477675


Sensors 2019, 19, 4796 18 of 18

36. Dorafshan, S.; Thomas, R.J.; Maguire, M. Fatigue crack detection using unmanned aerial systems in fracture
critical inspection of steel bridges. J. Bridge Eng. 2018, 23, 04018078. [CrossRef]

37. Martin, D.; Fowlke, C.; Tal, D.; Malik, J. A database of human segmented natural images and its application
to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the Eighth
IEEE International Conference on Computer Vision (ICCV), Vancouver, BC, Canada, 7–14 July 2001.

38. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.;
Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252.
[CrossRef]

39. Everingham, M.; Eslami, S.A.; van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object
classes challenge: A retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [CrossRef]

40. Staal, J.; Abràmoff, M.D.; Niemeijer, M.; Viergever, M.A.; van Ginneken, B. Ridge-based vessel segmentation
in color images of the retina. IEEE Trans. Med. Imaging 2004, 23, 501–509. [CrossRef] [PubMed]

41. Krizhevsky, A.; Sutskever, H.; Hintton, G.E. (Eds.) ImageNet Classification with Deep Convolutional Neural
Networks; NIPS: Lake Tahoe, CA, USA, 2012.

42. Springenberg, J.T.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for simplicity: The all convolutional net.
arXiv 2014, arXiv:1412.6806.

43. Dorafshan, S.; Thomas, R.; Maguire, M. SDNET2018: An annotated image dataset for non-contact concrete
crack detection using deep convolutional neural networks. Data Brief 2018, 1664–1668. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0001291
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-014-0733-5
http://dx.doi.org/10.1109/TMI.2004.825627
http://www.ncbi.nlm.nih.gov/pubmed/15084075
http://dx.doi.org/10.1016/j.dib.2018.11.015
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	Previous Studies in Crack Detection 
	Convolution and Deconvolution Architecture in CNN 

	Proposed Crack Detection Network 
	Motivation 
	Architecture Description 
	Crack-Component-Aware Network 
	Crack-Region-Aware Network 
	Combination of CCA and CRA 


	Training 
	Crack Data Acquisition 
	Fire Crack Dataset (FCD) 
	Crack Forest Dataset (CFD) and AigleRN 

	Training Methods 
	Loss Function 

	Experimental Result 
	Performance Comparisons for Crack Detection 
	Visual Comparisons for Crack Detection 

	Conclusions 
	References

