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Abstract: Deep neural networks (DNNs) have been shown to be effective for single sound source
localization in shallow water environments. However, multiple source localization is a more
challenging task because of the interactions among multiple acoustic signals. This paper proposes
a framework for multiple source localization on underwater horizontal arrays using deep neural
networks. The two-stage DNNs are adopted to determine both the directions and ranges of multiple
sources successively. A feed-forward neural network is trained for direction finding, while the long
short term memory recurrent neural network is used for source ranging. Particularly, in the source
ranging stage, we perform subarray beamforming to extract features of sources that are detected
by the direction finding stage, because subarray beamforming can enhance the mixed signal to the
desired direction while preserving the horizontal-longitudinal correlations of the acoustic field. In this
way, a universal model trained in the single-source scenario can be applied to multi-source scenarios
with arbitrary numbers of sources. Both simulations and experiments in a range-independent
shallow water environment of SWellEx-96 Event S5 are given to demonstrate the effectiveness of the
proposed method.

Keywords: multiple source localization; deep neural network; subarray beamforming; shallow water
environment

1. Introduction

Multiple source localization in an ocean waveguide is a challenging task because of the interactions
among multiple acoustic signals. Several multiple source localization methods have been proposed for
tracking underwater targets in past decades. Matched-field processing (MFP) is a classical approach
for underwater source localization by correlating the modeled field and the experimental field [1–3].
The range and depth of source are given by the global maximum in the ambiguity surface generated
by MFP.
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However, the model based methods usually require the environmental parameters to model
the acoustic model in advance. Difficulty in obtaining complete knowledge of the real environment
may lead to incorrect or inaccurate localization results. To reduce the dependence on environmental
information, recently, many data-driven techniques are introduced to source localization in ocean
waveguides [4–14]. In previous works, researchers applied deep neural networks (DNNs) to source
localization in shallow water environments and obtained promising results [7–14]. However, these
studies usually focus on single-source localization. In real-world environments, there are usually
multiple sources emerging. Therefore, it is significant to solve the multi-source localization problem in
real environments. For a multiple source localization task, several variants of MFP have been proposed
through modified Bartlett functions [15,16], maximum likelihood (ML) estimation [17,18], maximum
a posteriori (MAP) processors [19], and so forth. Besides, compressive sensing (CS) [20–22] or sparse
Bayesian learning (SBL) [23] have been combined with beamforming or MFP to estimate sources’
locations in multi-source scenarios. To our best knowledge, there are a few methods that apply DNNs
to multiple source localization. In a multi-source scenario, sources tend to emerge in various directions.
The directions of sources will be a valuable clue to discriminate multiple sources (the source direction
is also represented by source azimuth angle). In this paper, we propose a DNN based method for
multiple source localization on underwater horizontal arrays (UHAs).

To apply DNNs to a multiple source localization task, generally, there are two ideas in previous
studies. The first idea is to train a single neural network that detects the locations of multiple sources
using the mixed signals emitted from various location combinations directly [24–28]. However,
training a single network from mixtures to estimate the locations of multiple sources is not an easy
task, the reasons of which include—(1) It is hard to traverse all the combinations of source locations
with different azimuth angles and ranges (it is supposed that the source location is determined by
azimuth angle and range). To get an idea of how much training is required, we consider the two-source
scenario for example. We start with training the network with 1◦ separation of azimuth angles from
0◦ to 359◦ (e.g., (0◦, 1◦), (1◦, 2◦),. . . , (359◦, 0◦)). Next we repeat the same procedure with 2◦ to 180◦

separations. Assuming the azimuth angle is integer, the combinations of azimuth angle are C2
360

for two-source scenario. Then we also take the range combinations into consideration, the possible
training combinations will be enormous because of the exhaustive training; (2) if we do not separate
the mixed signal in advance, the feature for learning is highly correlated with the source combination.
Thus the estimation would fail if the test sources’ location combination is mismatched with the training
set, and the application will be limited. For example, in the two-source scenario with test source one at
[125◦, 1.2 km] and test source two at [220◦, 2.5 km], if this combination does not exist in the training set,
the single network (trained for two-source scenario) may fail to give an accurate estimation. Therefore,
training the network suitable for various scenarios by mixtures directly is not an optimal scheme.

The second idea tries to simplify the multi-source localization task to single-source localization
task. The most popular methods are based on the sparsity assumption on sound source signal [29,30].
Although simultaneous sources overlap in time, if the signal (e.g., speech signal), conforms to
be sparsely distributed in the time-frequency (TF) domain, multiple sources will have different
distributions in the frequency domain. Hence, this allows training using single-source data and the
DNN-based single source localization methods can be conducted on each TF bin. Then, a fusion
process is leveraged to integrate the localization results on all TF bins into the spatial information, such
as the direction-of-arrivals (DOAs) and the number of multiple sources. However, the underwater
sources usually cannot satisfy the sparsity assumption, so this idea is not suitable for our work.

To circumvent these problems, a two-stage DNN based method is proposed to determine both
the azimuth angles and ranges of multiple sources successively, which includes a feed-forward neural
network (FNN) for direction finding and a long short term memory recurrent neural network [31]
(LSTM-RNN) for source ranging. Basically, there are three originalities of our proposed framework.
First, in a feature extraction module, we design a subarray beamforming [32] based feature extractor to
separate multiple sources at the level of feature, so that the multi-source localization can be simplified
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to the single-source localization. Consider the horizontal-longitudinal correlations of the low-frequency
acoustic field [33], the UHA is divided into several subarrays and the conventional beamforming
(CBF) [34] is conducted on each subarray. The spatial correlation matrix (SCM) of the beamformed
signals at all subarrays is taken as the feature. Second, since different sources are discriminated by
the features, the multiple sources’ ranges can be respectively estimated by the DNN model trained
in the single-source scenario. Besides, the LSTN-RNN is adopted to take full advantage of long-term
temporal contextual information for the current estimation. Third, an FNN-based direction finding
method is presented. A FNN model with a back propagation (BP) algorithm [35] is trained to find the
possible directions of sources and determine source number. Then the features of multiple sources can
be extracted based on the direction candidates. With subarray beamforming and two-stage DNNs,
the need to include multi-source data for training is avoided and the model trained by single-source
data can be applied to the multi-source scenarios with arbitrary numbers of sources. In particular,
we can localize sources that even overlap fully in the frequency domain.

The rest of the paper is organized as follows. Section 2 formulates the signal model. Section 3
describes the proposed method and each module in detail. Sections 4 and 5 give various simulations
and experiments for evaluation. Finally, Section 6 concludes this work.

2. Signal Model

Consider D broadband sound sources impinge on an array of K hydrophones in a far-field
scenario, the signal at frequency fi received by the hydrophones is described as

Y( fi) =
D

∑
d=1

Sd( fi)A(θd, fi) + N( fi), i ∈ {1, . . . , F}, (1)

where Sd( fi) denotes the dth signal, A(θd, fi) denotes the K× 1 steering vector corresponding to the
dth source, θd denotes the DOA of the dth signal, N( fi) denotes the noise at the hydrophones, i denotes
the frequency index, and F denotes the number of frequency bins. Denote

H(θd, fi) = A(θd, fi)/||A(θd, fi)||2,

xd( fi) = Sd( fi)||A(θd, fi)||2,
(2)

Equation (1) can be rewritten using the matrix notation as

Y( fi) = H( fi)X( fi) + N( fi), (3)

where H( fi) = [H(θ1, fi), . . . , H(θD, fi)] is a K× D steering matrix defining all the potential positions,
HH(θd, fi)H(θd, fi) = 1, X( fi) = [x1( fi), . . . , xD( fi)]

T is a D × 1 dimensional vector denoting the
signal, (·)H denotes the Hermitian transpose, and (·)T denotes the transpose.

The DOA θd is represented by the azimuth angle αd and the grazing angle βd,

θd = [cos αd cos βd, sin αd cos βd, sin βd]
T . (4)

The geometrical relationship of the DOA (θ) and the azimuth angle (α) and the grazing angle (β)
is shown in Figure 1. For horizontal array, the grazing angle of propagation is small in the far-field
scenario (β < 20◦) [36], that is, cos β ≈ 1. Therefore, the steering vector depends mainly on the azimuth
angle α. For simplicity, θd is approximated to [cos αd, sin αd, 0]T in the following process.
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Figure 1. Geometrical relationship of direction of arrival (DOA) (θ) and the azimuth angle (α) and the
grazing angle (β). A horizontal array is deployed at the xy plane. The horizontal distance between
source and array is r km.

3. Proposed Method

The block diagram of the proposed method is shown in Figure 2. In the training stage, the features
are extracted from the single source signal radiated from different locations by performing subarray
beamforming and calculating the SCM of the beamformed signals at all subarrays. Then DNN-2 is
trained to model the regression relationship between the extracted feature and the source range. In the
testing stage, the azimuth angles of sources are firstly estimated by DNN-1. The features of sources
are extracted based on all azimuth angle candidates at subarrays. Finally, the range of each source is
inferred by feeding the feature associated with each source to DNN-2.

Subarray

beamforming

Spatial correlation 

matrix calculation

Feature extraction

DNN training

Training Stage

Training samples 

(single source)

Label (range)

Model

(DNN-2)

Testing Stage

Feature extractionTesting samples 

(multiple sources)

Localization 

results

Direction finding

(DNN-1)

Figure 2. Block diagram of the proposed method.

3.1. Direction Finding

Rstogi et al. proposed using the hopfield network [37] in direction finding [38]. The basic idea is to
use a neural network to find the best possible choice of directions present in the received signal through
minimizing a quadratic cost function. Compared to the conventional neural network, DNN with a BP
algorithm has a stronger capability for finding the good solutions to a difficult optimization problem.
However, there are few methods that apply DNNs to direction finding in the ocean environments.
In this paper, we attempt to get desirable results of sources’ directions using a FNN. The configuration
of FNN (i.e., DNN-1 in Figure 2) is shown in Figure 3, where the projection from the input vector νι at
the ιth layer to the output vector νι+1 at the (ι + 1)th layer is represented as

νι+1 = Wινι + bι, (5)
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where Wι and bι denote the weight and bias matrix from the ιth layer to the (ι + 1)th
layer. The feature of DNN-1 is the FFT coefficients of the observed signal Y. The real and
imaginary part of FFT coefficients are concatenated as the input of DNN-1. Denote H(θd, fi) =[
1, ej2π fiτ2 , ej2π fiτ3 , · · · , ej2π fiτK

]T (τk is the time delay between the kth hydrophone and the first
hydrophone), which is the steering vector of the dth source, the cost function for the broadband case
can be expressed as

Λ =
1

L× F

L

∑
l=1

F

∑
i=1

∣∣∣∣∣∣Yl( fi)−
[
Γ f ,1Yl( fi) · · · Γ f ,PYl( fi)

]
z
∣∣∣∣∣∣2, (6)

where Γ f ,p = H(θd, fi)
[
HH(θd, fi)H(θd, fi)

]
HH(θd, fi), L denotes the the snapshot number and z =

[z1, z2, · · · , zP]
T (zp ∈ [0, 1]

)
is the output vector of the neural network. Γ f ,1Yl( fi) is the K × 1

dimensional vector of the observed signal projected onto the steering vector H(θd, fi). The cost
function will be minimized by the best linear combination of the steering vectors, when convergence,
the extremums in vector z indicate the possible sources.
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Figure 3. The architecture of FNN/DNN-1.

Each significant peak of vector z is identified as a sound source, the probability of which is greater
than the threshold,

δ = Oavg + η(Omax −Oavg), (7)

where Oavg and Omax denotes the average and maximum of the smoothed probabilities, and the
coefficient η (0 < η < 1) is set by experiment.

Note that only in the testing stage is the FNN using BP algorithm trained to find the directions
that sound sources may emerge. For each direction candidate, we extract the corresponding features,
then the sources’ ranges are estimated by feeding the features into DNN-2 (i.e., LSTM-RNN).

3.2. Source Ranging

To avoid the exhaustive training, we aim to train a general and flexible model that is suitable
for situations with different source numbers. Thus, how to design an effective feature, which can
be used for various scenarios, is a critical problem. For DNN analysis, the more similar the test set
is to the training set, the better the testing result will be. However, in our task, the training set is
composed by the single-source signals at different locations while only the mixture is available when
testing. It is vital to extract a feature that can represent each single source information from the mixture,
so that the test signal (or feature) can be matched with the training signals. Beamforming, which can
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enhance the signal from the desired direction while attenuating others, is ideal to extract the individual
signal component from the mixture. Nevertheless, if we perform beamforming using all sensors,
the horizontal-longitudinal correlations of the acoustic field, which include the spatial information
of source, will lost in the enhanced signal. Therefore, we introduce subarray beamforming to extract
the individual source component, meanwhile preserving the horizontal-longitudinal correlations.
The SCM of the enhanced signals at all subarrays is used as the feature.

3.2.1. Feature Extraction

Beamforming algorithms can be used to track those interested sources and null out the other
sources as interference by controlling the beampattern of an array. The simplest beamforming
technique is adopted in our framework, which refers to the delay-and-sum beamforming. It delays the
multi-channel signals so that all versions of the source signal are time-aligned before they are summed.
To preserve the horizontal-longitudinal correlations of the low-frequency acoustic field, this CBF is

conducted on each subarray. The hydrophone array is divided to B subarrays,
{

Ω1, . . . , ΩB

}
, then the

signal enhanced to the dth direction at the bth subarray is obtained by applying CBF to the signals
received by the hydrophones in the bth subarray,

gd
b( fi) = ∑

k∈Ωb

Yk( fi)e−j2π fiτk,d ,

τk,d =`kγT
k θd/c,

(8)

where τk,d denotes the dth time delay of the kth hydrophone corresponding to the first hydrophone at
the bth subarray (the first hydrophone is chosen as the reference), `k and γT

k denote the distance and
the unit directional vector between the kth hydrophone and the reference hydrophone, Ωb denotes
the hydrophone index set of the bth subarray, c denotes the sound speed and j =

√
−1 denotes the

imaginary unit. The enhanced signals of the dth source at frequency fi obtained by all subarrays are

given by Gd( fi) =
[

gd
1( fi), . . . , gd

B( fi)
]T

. The block diagram of subarray beamforming is shown in
Figure 4.
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Figure 4. Block diagram of subarray beamforming.

The SCM of the signals enhanced to each source direction is used as the feature, because it contains
sufficient information about the individual signal. The SCM of the dth source is calculated by

Rd( fi) = E[G̃d( fi)G̃H
d ( fi)], (9)

where G̃d( fi) = Gd( fi)/||Gd( fi)||. The real and imaginary part of the upper triangular matrix of the
SCM is concatenated as a B× (B + 1) dimensional vector denoted by ud, which is used as the input
feature of the neural network.
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3.2.2. DNN Analysis with LSTM-RNN

DNN [39] is a data-driven technique that learns the potential patterns from the original acoustic
data directly. Due to the movement of the source, we take source localization to be a regression task.
In the regression problem, the target output r ∈ (0, ∞) is a continuous range variable. For the source
localization task, current range of a source is considered to be related to its adjacent locations. However,
FNN, or time delay neural network [40] (TDNN), can provide only limited temporal modeling by
splicing fixed frames of features in the input or hidden layers. By contrast, RNNs contain cycles that
feed the network activations from a previous time step as inputs to the network to influence predictions
at the current time step, so the more sufficient long-term temporal contextual information can be
used. In particular, LSTM architecture [31] overcomes the gradients vanishing and exploding existing
in traditional RNNs by introducing some special units called memory blocks. Therefore, we adopt
LSTM-RNN to model the mapping between the feature and source range in our framework.

The deep LSTM-RNN is shown in Figure 5a, and the configuration of LSTM memory blocks
is shown in Figure 5b, where the input and output vectors are denoted as u = (u1, · · · , uT) and
v = (v1, · · · , vT). The configuration of LSTM memory blocks that unfolded across time (the yellow
dashed box in Figure 5a) is shown in Figure 6. The memory block contains several self-parameterized
controlling gates, i.e., input gate, output gate, and forget gate, to control the flow of information.
The input gate controls the flow of input activations into the memory cell. The output gate controls the
output flow of cell activations into the rest of the network. Finally, the forget gate is added to forget or
reset the cell’s memory adaptively.

…LSTM

 

!

Unfold

"#$% "# "#&%

…

'#$% '# '#&%

LSTM

LSTM

output

input

(b)(a)

Figure 5. The configuration of LSTM-RNN. (a) The deep LSTM-RNN; (b) The configuration of LSTM
memory blocks that unfolded across time.
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Figure 6. The configuration of LSTM memory block.
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The associated computations that map the input vector to the output vector are given as follows:

it = σ(Wiuut + Wimmt−1 + Wicct−1 + bi) (10)

ft = σ(W f uut + W f mmt−1 + W f cct−1 + b f ) (11)

ct = ft � ct−1 + it � g(Wcuut + Wcmmt−1 + bc) (12)

ot = σ(Wouut + Wommt−1 + Wocct + bo) (13)

mt = ot � h(ct) (14)

vt = mt (15)

where i, f, o, c, m denote the input gate, forget gate, output gate, cell activation, and cell output
activation vectors respectively, W terms denote the weight matrices, in which Wic, W f c, Woc are
diagonal weight matrices for peephole connections (the dotted lines from cell to gates in Figure 6),
b denotes the bias matrices, σ denotes the sigmoid activation function, � denotes the element-wise
product, g and h are the cell input and cell output activation functions that are tanh in this paper.

The cost function is defined as the mean square error (MSE) between the estimated source range
rq and the reference source range r̂q, given by

E =
1
Q

Q

∑
q=1

(rq − r̂q)
2, (16)

where Q denotes the sample number. We use the truncated back propagation through time (BPTT)
learning algorithm [41] to update the parameters.

3.2.3. Data Augmentation

In our framework, the two-stage DNNs are used to determine both the azimuth angles and
ranges of multiple sources. In source ranging stage, we need azimuth angles that estimated by DNN-1
to perform feature extraction for DNN-2. The accuracy of estimated source range by DNN-2 is not
only determined by DNN-2, but also the feature extracted based on the estimated results of DNN-1.
Therefore, if the azimuth angles are inaccurately estimated by DNN-1, the features generated based
on the deviant azimuth angles may lead to differences from the correct features (i.e., the result of
subarray beamforming using the estimated azimuth angle α is different from that using the true
azimuth angle α̂). Therefore, the error introduced by direction finding may cause the inaccurate
estimation of source range. To reduce the negative effect of direction finding on source ranging and
improve the generalization ability of DNN-2, we introduce some disturbances in feature extraction and
the disturbed features are merged to the training set in the training stage of DNN-2. This strategy is
called data augmentation [42–44] (which is widely used in speech recognition or speech enhancement).
The original data, denoted as Φ, are disturbed during feature extraction stage to obtain the augmented
features, denoted as Ψ. Explicitly, for each sample in Φ, we obtained the augmented feature uκ

ζ (where
the superscript κ denotes the sample index in Φ) by introducing an offset angle αζ to the true azimuth
angle α̂. The augmented beamformed signal calculated by the disturbed azimuth angle α

′
= α̂ + αζ is

obtained by modifying Equation (8) as

g
′
b( fi) = ∑

k∈Ω
Yk( fi)e−j2π fiτ

′
k ,

τ
′
k =`kγT

k θ
′
/c,

(17)

where θ
′
= [cos α

′
, sin α

′
, 0]T . The augmented feature uκ

ζ is obtained by calculating the SCM of the

augmented signals at all subarrays, G
′
( fi) =

[
g
′
1( fi), . . . , g

′
B( fi)

]T
. The data augmentation process is

detailed as Table 1 (Algorithm 1), where ϑ limits the range of angle offset and ϑo is the step size.
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Table 1. Algorithm 1: data augmentation process.

Input: original data Φ;
Output: augmented training set Ψ;
Set Ψ = ∅;
For each sample Yκ( fi) in Φ do

For offset αζ = −ϑ : ϑo : ϑ do
Add αζ to the true azimuth α̂, α

′
= α̂ + αζ ;

Generate the beamformed signals using Equation (17);
Generate feature uκ

ζ using Equation (9);
Ψ = Ψ

⋃
uκ

ζ ;
End

End

4. Simulations

4.1. Acoustic Environmental Model

To investigate the performance of the proposed method, we simulated the relatively range
independent SWellEx-96 Event S5 [45] environment. The sound speed profile (SSP) and geoacoustic
parameters for SWellEx-96 Event S5 are shown in Figure 7. The seafloor is composed first of a 23.5 m
thick sediment layer with a density of 1.76 g/cm3 and an attenuation of 0.2 dB/kmHz. The top and
bottom sound speeds are 1572.368 m/s and 1593.016 m/s. Below the sediment layer is an 800 m thick
mudstone layer with a density of 2.06 g/cm3 and an attenuation of 0.06 dB/kmHz. The top and bottom
sound speeds of the mudstone layer are 1881 m/s and 3245 m/s. The geoacoustic model is completed
by a halfspace with a density of 2.66 g/cm3, an attenuation of 0.02 dB/kmHz, and a compressional
sound speed of 5200 m/s.

4.2. Data Description

In the simulation, the bandwidth of signal was [50, 210] Hz and the sampling rate was 3276.8 Hz.
The hydrophone array was deployed at a 213 m depth of water. We investigated two topologies
of UHAs, including a horizontal circular array (HCA) and a horizontal line array (HLA) (note that
our method is suitable for UHA with arbitrary topologies). The HCA was 50-element with a 250 m
radius, where the hydrophones were uniformly distributed. The HLA was 27-element, the layout
of which was the same as that of the HLA North of SWellEx-96 Event S5 (the details can refer to the
web page http://swellex96.ucsd.edu/hla_north.htm). In fact, the line array was not strictly linear but
had a certain degree of curvature. The map of source movement and the location of the hydrophone
array are depicted in Figure 8. The training data included sources with azimuth angles from 0◦ to
180◦ with 5◦ intervals (the course equals to azimuth angle). In each azimuth angle, the source ranged
from 1.0 to 5.6 km at a speed of 5 knots (2.5 m/s). The source depth was fixed to 54 m. When testing,
every testing segmentation contained ten minutes (including 960 samples) and the two-source scenario
included source one from [64.7◦, 2.05 km] to [66.9◦, 3.59 km], and source two from [115.6◦, 1.95 km]
to [113.6◦, 3.49 km]. The three-source scenario included source one from [64.7◦, 2.05 km] to [66.9◦,
3.59 km], source two from [115.6◦, 1.95 km] to [113.6◦, 3.49 km], and source three from [173.3◦, 2.00 km]
to [174.9◦, 3.54 km]. The training data and testing data were mutually different.

http://swellex96.ucsd.edu/hla_north.htm
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Figure 7. Waveguide with sound speed profile and geoacoustic parameters for range-independent
SWellEx-96 Event S5.
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Figure 8. The map of source movement and the location of the hydrophone array in the simulation.
The semi-annular orange region covers the ranges of training sources’ motions. The training data
included sources with azimuth angles from 0◦ to 180◦ with 5◦ intervals (the course equals to azimuth
angle). In each azimuth angle, the source was ranging from 1.0 to 5.6 km at a speed of 5 knots (2.5 m/s).
The blue, yellow, and red lines were the trajectories of test source one, two, and three. The array
includes two topologies, including HCA and HLA. The HCA was 50-element with a 250 m radius,
where the hydrophones were uniformly distributed. The HLA was 27-element, the layout of which is
the same as the HLA North of SWellEx-96 Event S5.
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The signal was transformed to the frequency domain by operating fast Fourier transformation
(FFT) (Hanning windowed). The frame length was 1.25 s with 50% overlap. The bandwidth for
processing was set to [100, 200] Hz (with 5 Hz increment, totally 21 frequency bins). For HCA,
the 50 hydrophones were divided into five subarrays uniformly, that is, Ω1 = {1, · · · , 10},
Ω2 = {11, · · · , 20}, Ω3 = {21, · · · , 30}, Ω4 = {31, · · · , 40}, and Ω5 = {41, · · · , 50}. For HLA,
the 27 hydrophones were divided into four subarrays, the hydrophone indexes of subarrays were
Ω1 = {1, · · · , 7}, Ω2 = {8, · · · , 14}, Ω3 = {15, · · · , 21}, and Ω4 = {22, · · · , 27}. Twenty snapshots
were used to calculate the SCM. Data augmentation was performed using ϑ = 7◦ and ϑo = 0.5◦,
generating about 3.1× 106 training samples.

4.3. The Configuration of DNNs

In direction finding, the configuration of FNN was 5 layers (one input layer + three hidden layers +
one output layer) with 128 hidden nodes. The rectified linear units [46] (ReLU), f (x) = max(0, x), was
used as the activation function. The initial learning rate was 0.001 and the batch size was 6. The input
of FNN was the FFT coefficients of each frame, so the input dimension of FNN were 1134 (27× 2× 21,
real and imaginary parts were concatenated) for HLA and 2100 (50× 2× 21) for HCA.

In source ranging, the LSTM-RNN was three layers with 896 nodes. The activation function
was ReLU. The initial learning rate was 0.001 and the batch size was 512. The input dimension of
LSTM-RNN were 420 (4× 5× 21) for HLA and 630 (5× 6× 21) for HCA.

It should be mentioned that all parameters (e.g., hidden nodes, hidden layers, learning rate, and
batch size) of FNN or LSTM-RNN were chosen based on experiments. The tensorflow [47] toolkit was
taken for FNN and LSTM-RNN training. Adam [48] was utilized for optimization.

4.4. Metrics

4.4.1. Direction Finding

For direction finding, the detected sources were classified into two categories, namely the correctly
detected sources and the incorrectly detected sources. The detection was considered to be correct if
the estimated azimuth angle deviated no more than 7◦ from the real azimuth angle of any source.
The incorrectly detected sources consisted of the imaginary sources (detected but non-existing sources)
and the inaccurately detected sources. The detection correctness was mainly evaluated in terms of
the positive detection rate (PDR) (i.e., the ratio of the number of correctly detected sources to the
total number of sources) and the false detection rate (FDR) (i.e., the ratio of the number of incorrectly
detected sources to the total number of sources). The receiver operating performance characteristics
(ROC) curve gave a complete description of the relationship between PDR and FDR with the change
of threshold η (0 to 0.95 with 0.05 steps). Define

ηo = min
η
|1− PDR(η) + FDR(η)|, (18)

the mean absolute error (MAE) between the true azimuth angles and the estimated azimuth angles of
correctly detected sources when η = ηo was combined with ROC curve to evaluate the performance
in direction finding stage. The MAE between the true azimuth angles (α̂) and the estimated azimuth
angles (α) is defined as

MAEα =
1
Ξ

Ξ

∑
ξ=1

min
d∈{1,...,D}

F (αξ − α̂ξ,d), (19)

where F (α) is denoted as
F (α) = min

n

∣∣α + 360◦ × n
∣∣, (20)

where n is an integer denoting the number of azimuth period, F (α) ∈ [0, 180◦], and Ξ denotes the
number of estimation results and ξ is the sample index.
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4.4.2. Source Ranging

The objective evaluation metrics used for source ranging were the MAE and the mean relative
error (MRE) between the estimated ranges (r) and the true ranges (r̂),

MAEr =
1
Ξ

Ξ

∑
ξ=1
|rξ − r̂ξ |, (21)

MREr =
1
Ξ

Ξ

∑
ξ=1

|rξ − r̂ξ |
r̂ξ

× 100%. (22)

4.5. Simulation Results

The first simulation was conducted to investigate the performance of the proposed method under
different signal-to-noise ratios (SNRs). White noise was added to the simulated signals, resulting
in SNRs of 15, 5, and −5 dB. The SNR [49] reported here was defined as the SNR (at 210 Hz) at
a single hydrophone when the source range was 1 km (SNR would decrease with source range
increasing). Both source level (SL) and noise level (NL) were attenuated by −6 dB/Oct. The CBF [34]
was chosen as the competing algorithms in direction finding. Twenty snapshots were used to calculate
beamformer power of CBF. For the sake of fairness, the posterior probability of FNN was averaged
over every twenty frames. The results of the two-source scenarios and three-source scenarios on HCA
are summarized in Table 2. The ROC curves of two-source scenario and three-source scenario are
plotted in Figures 9 and 10 (The SNR shown here is the SNR of the received signal for each source, and
the SL of each source is assumed to be equal). It should be mentioned that, the number of points seen
on the figures may be less than the number of points actually sampled, because (1) there are some η

correspond to the same PDR and FDR and they are overlapped in the figures; (2) there are some points
of CBF go out of scope because of the large FDR when η is small. From the ROC curves, although
the performance degrades with the lower SNR, the FNN and CBF can detect sources effectively in
general. Superficially, the three methods can give a high PDR with a low FDR by setting an appropriate
threshold; however, the values of ηo of CBF are larger than FNN significantly. The smaller ηo implies
the stronger ability of suppressing the interference. Thus, there are little phantom peaks of FNN
than CBF, which is a good indication of its better capability of suppressing interference. When SNR
decreases to −5 dB, the FDR of CBF rises and PDR decreases, which reveals the proposed method is
more robust than CBF under a lower SNR. Furthermore, the estimation errors of FNN are smaller than
CBF in all conditions as shown in Table 2.
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Figure 9. ROC curves of direction finding on HCA under different SNRs in the two-source scenarios.
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Figure 10. ROC curves of direction finding on HCA under different SNRs in the three-source scenarios.

Table 2. The performance comparison under different SNRs in the two-source and three-source
scenarios using the simulated data on HCA.

SNR (dB) Method ηo MAEα (degree) PDR (%) FDR (%) MAEr (km) MREr (%)

Two
sources

15
FNN+LSTM-RNN 0.1 0.24 100.0 0.0 0.08 3.2

FNN+FNN 0.43 16.0
CBF 0.25 0.26 100.0 0.0 — —

5
FNN+LSTM-RNN 0.1 0.24 100.0 0.0 0.09 3.4

FNN+FNN 0.57 22.2
CBF 0.45 0.28 100.0 0.05 — —

−5
FNN+LSTM-RNN 0.2 0.25 100.0 0.0 0.59 21.3

FNN+FNN 0.76 28.7
CBF 0.55 0.53 82.4 20.8 — —

Three
sources

15
FNN+LSTM-RNN 0.1 0.25 100.0 0.0 0.18 7.0

FNN+FNN 0.66 25.6
CBF 0.3 0.29 100.0 0.0 — —

5
FNN+LSTM-RNN 0.1 0.25 100.0 0.0 0.32 12.0

FNN+FNN 0.71 27.7
CBF 0.35 0.31 99.9 0.7 — —

−5
FNN+LSTM-RNN 0.1 0.27 100.0 0.0 0.74 28.8

FNN+FNN 0.81 31.9
CBF 0.5 0.66 83.6 13.6 — —

For source ranging, we compared the performance of LSTM-RNN with FNN. The FNN was five
layers with three hidden layers and 896 hidden nodes. From Table 2, the LSTM-RNN outperforms FNN,
which demonstrates the superiority of LSTM-RNN in modeling the long-term temporal information.
In addition, we may notice that the locations of the test sources may not exist in the training set.
However, the proposed method can still give reliable estimates to sources’ ranges, which reveals that
the proposed method can localize the sources as long as the test source locations are in the region of
the training set.

We also evaluated the performance on HLA under different SNRs. The results are summarized in
Table 3. We can find that the proposed method also exhibits a good performance on direction finding
and source ranging on HLA. Comparing Tables 2 and 3, basically, the performance of the proposed
method is similar to different array topologies. Whereas the MAEα of HLA is larger than HCA, the
reason of which considers the angular resolution of HCA is constant with the change of azimuth angles
while it varies for HLA. The experimental results indicate that the proposed method can be applied to
the UHA with arbitrary topologies. For simplicity, the following simulations were all conducted on
HCA.
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Table 3. The performance comparison under different SNRs in the two-source and three-source
scenarios using the simulated data on HLA.

SNR (dB) Method ηo MAEα (degree) PDR (%) FDR (%) MAEr (km) MREr (%)

Two
sources

15

FNN+LSTM-RNN 0.15 1.37 100.0 1.5 0.04 1.6
FNN+FNN 0.51 19.9

CBF 0.6 1.79 100.0 0.0 — —

5

FNN+LSTM-RNN 0.1 1.39 100.0 0.0 0.06 2.1
FNN+FNN 0.53 20.5

CBF 0.7 1.79 100.0 2.3 — —

−5

FNN+LSTM-RNN 0.1 1.49 100.0 0.0 0.67 25.8
FNN+FNN 0.71 27.7

CBF 0.9 1.69 99.4 2.6 — —

Three
sources

15

FNN+LSTM-RNN 0.1 1.52 100.0 0.2 0.15 5.8
FNN+FNN 1.00 38.5

CBF 0.65 2.06 100.0 0.0 — —

5

FNN+LSTM-RNN 0.1 1.55 100.0 0.0 0.22 8.1
FNN+FNN 0.98 38.8

CBF 0.7 2.06 100.0 0.0 — —

−5

FNN+LSTM-RNN 0.1 1.61 100.0 0.0 0.65 24.0
FNN+FNN 1.04 38.9

CBF 0.9 2.00 99.6 4.7 — —

The second simulation evaluated the performance with or without data augmentation in the
two-source scenario. The SNR was set to 5 dB and the neural network was LSTM-RNN. The MAEr

and MREr without data augmentation are 0.56 km and 20.9%. From Table 3, with data augmentation,
the MAEr and MREr drop to 0.09 km and 3.4% respectively. The results demonstrate that data
augmentation can improve the generalization ability of DNN model.

The third simulation was made to investigate the performance of the proposed method when the
SLs of two testing sources were different, where the source with the higher SL referred to the dominant
source. The SNR of the dominant source was 5 dB. Define ∆SL = SL1 − SL2 (dB) (SL1 corresponds to
the dominant source and SL2 corresponds to the weak source), Figure 11 compares the ROC curves of
CBF and FNN when ∆SL = 2, 4, 6 dB. Both methods can give high PDR with low FDR when two SLs
are comparable. Nevertheless, the false detections of CBF rise faster than FNN when the difference
between the two SLs increases. In addition, the MAEr and MREr of source ranging are summarized in
Table 4. With ∆SL increasing, the estimation error increases because the weak source is masked by the
presence of the dominant source, which leads to the larger error of the weak source.
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Figure 11. ROC curves of direction finding when the SLs of two testing sources are different in
the two-source scenarios. The SNR of the dominant source was 5 dB. ∆SL = SL1 − SL2 (dB)
(SL1 corresponds to the dominant source and SL2 corresponds to the weak source).
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Table 4. MAEr and MREr comparison when two SLs are different on HCA.

∆SL (dB) MAEr (km) MREr (%)

2 0.19 6.7
4 0.27 9.8
6 0.32 12.4

The last experiment investigated the spatial resolution of the proposed method. The separations
of two sources were set to 2◦, 3◦, 5◦, 7◦, and 10◦. Here, the azimuth of each source was fixed, while
the range of each source was from 1 km to 2.5 km. The SNR was set to 5 dB. The detection accuracies
of FNN and CBF in direction finding are shown in Figure 12. Here, only when the source number
and the azimuth angles of two sources are estimated correctly is the detection deemed to be correct.
The accuracy is defined as the ratio of the number of accurate detections and the number of test
samples. From Figure 12, generally, FNN and CBF can discriminate two widely separated sources, and
the accuracy of FNN outperforms CBF. When the separation of two sources becomes smaller, FNN
presents its superiority in discriminating two closely separated sources. We evaluated the performance
of source ranging using LSTM-RNN. The results of source ranging are summarized in Table 5, where
the MAEr and MREr are calculated using the test samples with the accurate estimated azimuth angles.
The results show that the separations have little influence on source ranging if the azimuth angles are
estimated accurately. Note that the MAEr and MREr are slightly smaller than those shown in Table 2,
because the range of testing sources here are nearer than those in the first simulation.
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Figure 12. Detection accuracies of FNN and CBF. The detection is deemed to be correct only when the
source number and the azimuths of two sources are estimated correctly. The accuracy is defined as the
ratio of the number of accurate detections and the number of test samples.

Table 5. MAEr and MREr comparison under different source separations on HCA.

Separation (Degree) MAEr (km) MREr (%)

2 0.03 1.4
3 0.04 1.9
5 0.03 2.1
7 0.03 2.1
10 0.03 2.2
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5. Experiments

5.1. Experimental Database

The proposed method was further evaluated by real experimental data that were recorded by
HLA North of SWellEx-96 Event S5. The water depth was 213 m and the HLA North array is a 240 m
aperture horizontal array deployed on the seafloor. The source ship (R/V Sproul) started its track
south of the array and proceeded northward at a speed of 5 knots. The signals of the deep source
were used for processing. The map of the source movement and the location of the hydrophone array
were shown in Figure 13. There were fifty minute signals from J131 23:40 GMT to J132 00:30 GMT
that were recorded by HLA North (Day J131 corresponds to 5/10/96). The range and azimuth angle
motions between source and array were plotted in Figure 14. To imitate the multi-source signals (i.e.,
a snapshot generated by several sources), we combined snapshots from the same source recorded at
different positions. As a result, the NL of the resultant multi-source signal was higher than that in the
original recordings, that is, the SNR was reduced when increasing the source number.
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Figure 13. Map of the source movement and the location of the hydrophone array.
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Figure 14. The ranges (a) and azimuth angles (b) between source and array from J131 23:40 GMT to
J132 00:30 GMT.
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The experimental data with sample rate 3276.8 Hz were transformed to frequency by 4096-point
FFT (Hanning windowed). The frame length was 1.25 s and the SCMs were averaged over 20 snapshots
with 50% overlap. Considering the Doppler effect, processing frequencies were selected from three
frequency bins centered on each of the nominal source frequencies. Accordingly, there were 3× F
processing frequency bins if we took F source frequencies into account. Referring to Doppler Shift
theory, the maximum Doppler shift is 4 f = ± 2.5

1500 fi = ±1.7× 10−3 fi ( fi is the source frequency),
which corresponds to ±0.083 to ±0.66 Hz for the pilot tones. Similar to Section 4.2, data augmentation
is used to generate the training set (refer to Algorithm 1, ϑ = 7◦ and ϑo = 0.5◦).

5.2. Experimental Results

Firstly, we investigated the performance of our proposed method using different frequency
bins in the two-source scenarios. The two-source signals were the combination of snapshots
from J131 23:47 GMT to J131 23:53 GMT and snapshots from J132 00:19 GMT to J132 00:25 GMT,
which were six minutes in total. Three frequency bin sets were investigated, which were{

49 64 79 94 112 130 148 166 201 235 283 338 388
}

Hz,
{

94 112 130 148 166 201 235 283 338 388
}

Hz, and
{

49 94 148 235 283 338
}

Hz (i.e., 3× 13, 3× 10, and 3× 6 frequency bins used for processing
because of Doppler shift). The parameters of DNNs in direction finding and source ranging were set
the same as those in the simulations, while the input dimensions were slightly different from those in
the simulation because of the difference in the number of frequency bins.

In direction finding, the ROC curves are plotted in Figure 15. The results show that the proposed
direction finding method outperforms CBF significantly. The FNN can detect more sources effectively
while having lower false detection relative to CBF. Also, the lower threshold ηo means the strong
ability to suppress interferences. As there are more phantom peaks of CBF, its FDRs are much higher
than FNN. The MAEα, MAEr, MREr, the corresponding ηo, PDR and FDR are summarized in Table 6.
The proposed method achieves the best performance in all conditions. Besides, the source range
estimates across time are plotted in Figure 16, where the results using the three sets of frequency
bins are respectively shown in Figure 16a–c. We can see that the proposed method can give reliable
estimates of the range of two sources successively, although the performance degrades with reduction
of the frequency bins.

Table 6. The performance comparison with different frequency bins in the two-source and three-source
scenarios using the real experimental data.

Frequency (Hz) Method ηo MAEα (degree) PDR (%) FDR (%) MAEr (km) MREr(%)

Two
sources

{
49 64 79 94 112 130 148

166 201 235 283 338 388
} FNN+LSTM-RNN 0.1 2.74 100.0 0.0 0.11 5.0

FNN+FNN 0.14 5.6
CBF 0.3 3.49 90.1 12.3 — —{

94 112 130 148 166 201
235 283 338 388

} FNN+LSTM-RNN 0.1 3.32 100.0 0.0 0.13 5.4
FNN+FNN 0.18 7.9

CBF 0.25 3.34 89.6 15.4 — —

{
49 94 148 235 283 338

} FNN+LSTM-RNN 0.2 3.35 95.9 3.0 0.15 6.7
FNN+FNN 0.24 10.2

CBF 0.3 3.44 86.4 17.1 — —

Three
sources

{
49 64 79 94 112 130 148

166 201 235 283 338 388
} FNN+LSTM-RNN 0.1 3.34 89.4 0.0 0.36 15.6

FNN+FNN 0.47 23.7
CBF 0.15 3.42 79.2 22.0 — —{

94 112 130 148 166 201
235 283 338 388

} FNN+LSTM-RNN 0.1 3.84 78.1 1.0 0.34 14.0
FNN+FNN 0.55 25.2

CBF 0.15 3.24 71.2 26.8 — —

{
49 94 148 235 283 338

} FNN+LSTM-RNN 0.1 3.57 89.2 10.9 0.41 19.3
FNN+FNN 0.51 24.8

CBF 0.15 3.55 82.3 22.0 — —
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Figure 15. ROC curves of direction finding using different frequency bins in the two-source scenario
using the real experimental data.

Figure 16. The source rang estimates across time using different frequency bins in the two-source
scenario using the real experimental data.

To demonstrate that LSTM-RNN can make full advantage of the long-term temporal contextual
information, we compared the FNN with LSTM-RNN for source ranging. The results are also shown
in Table 6. It can be seen that the LSTM-RNN outperforms FNN, especially when the number of
frequency bins decreases. The results reveal the superiority of LSTM-RNN on modeling the long-term
information.

Next, we investigated the influence of the parameters of LSTM-RNN on the performance of source
ranging. Thirteen source frequencies were used (39 bins). The hidden layers were changed from 2 to
4, the hidden nodes were set to 512, 896, and 1024, and the learning rates were chosen from 0.0005,
0.001, and 0.002. The testing results are summarized in Table 7. The best results were achieved by the
network with 3 hidden layer, 896 hidden nodes, and learning rate 0.001. From the results, generally,
the change in parameters has little influence on the performance of source ranging.

Finally, we evaluated the proposed method on the three-source scenario. The three-source
signals contained six minutes that were combined by snapshots from J131 23:47 GMT to J131
23:53 GMT, snapshots from J132 00:07 GMT to J132 00:13 GMT and snapshots from J132 00:23 GMT
to J132 00:29 GMT. The ROC curves are plotted in Figure 17 and the MAEα, MAEr, MREr, and the
corresponding PDR and FDR are summarized in Table 6. The threshold ηo is the same as the two-source
scenario. From the results, we can find the proposed method generally outperforms the competing
methods. Also, the LSTM-RNN exhibits a more robust performance than FNN.



Sensors 2019, 19, 4768 19 of 22

Table 7. MAEr and MREr comparison with different parameters of LSTM-RNN using the
experimental data.

Parameter
MAEr MREr

Hidden Layer Hidden Node Learning Rate

3 512 0.001 0.16 6.4%
3 896 0.001 0.11 5.0%
3 1024 0.001 0.14 5.9%
3 896 0.0005 0.13 5.2%
3 896 0.002 0.13 5.2%
2 896 0.001 0.12 5.0%
4 896 0.001 0.13 5.4%
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Figure 17. ROC curves of direction finding using different frequency bins in the three-source scenario
using the real experimental data.

6. Conclusions

This paper presents a two-stage DNN based method for multiple source localization in a shallow
water environment using UHA. We attempt to train a general and flexible model using single-source
signals that is suitable for source ranging in various scenarios with different source numbers.
The subarray beamforming technique is taken as the feature extractor that separate sources at the level
of feature and LSTM-RNN is leveraged for source ranging. Since the subarray beamforming requires
the direction information to be known beforehand, a FNN model is trained for direction finding,
meanwhile determine the source number. Both the simulation and experimental results demonstrate
the effectiveness and superiority of the proposed framework. As LSTM-RNN can make full use of
long-term temporal contextual information for the current estimation, it is an ideal model for source
ranging. Our method can localize arbitrary numbers of sources that overlap in the TF domain. In our
future work, we will make further efforts to improve the robustness of the proposed method in the
more complex environments with lower SNRs and more sources.
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Abbreviations

The following abbreviations are used in this manuscript:

DNN Deep neural network
MFP Matched-field processing
ML Maximum likelihood
CS Compressive sensing
MAP maximum a posteriori
SBL Sparse Bayesian learning
UHA Underwater horizontal arrays
TF Time-frequency
DOA Direction of arrival
FNN Feed-forward neural network
LSTM-RNN Long short term memory - recurrent neural network
CBF Conventional beamforming
SCM Spatial correlation matrix
BP Back propagation
TDNN Time delay neural network
MSE Mean square error
SSP Sound speed profile
HCA Horizontal circular array
HLA Horizontal line array
FFT Fast Fourier transformation
ReLU Rectified linear units
PDR Positive detection rate
FDR False detection rate
ROC Receiver operating performance characteristics
MAE Mean absolute error
MRE Mean relative error
SNR Signal-to-noise ratio
SL Source level
NL Noise level
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