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Abstract: Doppler radar for monitoring vital signals is an emerging tool, and how to remove the
noise during the detection process and reconstruct the accurate respiration and heartbeat signals are
hot issues in current research. In this paper, a novel radar vital signal separation and de-noising
technique based on improved complete ensemble empirical mode decomposition with adaptive
noise (ICEEMDAN), sample entropy (SampEn), and wavelet threshold is proposed. First, the noisy
radar signal was decomposed into a series of intrinsic mode functions (IMFs) using ICEEMDAN.
Then, each IMF was analyzed using SampEn to find out the first few IMFs containing noise, and these
IMFs were de-noised using the wavelet threshold. Finally, in order to extract accurate vital signals,
spectrum analysis and Kullback–Leible (KL) divergence calculations were performed on all IMFs,
and appropriate IMFs were selected to reconstruct respiration and heartbeat signals. Moreover, as far as
we know, there is almost no previous research on radar vital signal de-noising based on the proposed
technique. The effectiveness of the algorithm was verified using simulated and measured experiments.
The results show that the proposed algorithm could effectively reduce the noise and was superior to
the existing de-noising technologies, which is beneficial for extracting more accurate vital signals.

Keywords: doppler radar; vital signal; separation and de-noising; ICEEMDAN; sample entropy;
wavelet threshold

1. Introduction

In recent years, non-contact vital signal detection based on Doppler radar has attracted wide
attention [1–4]. Radar has unique advantages in vital signal detection. Remote monitoring can be
performed without direct contact with the subject, and is not susceptible to environmental factors,
such as weather, temperature, and light [5]. Radar waves have a strong penetrating ability, which is
of great significance for long-term physiological monitoring in special occasions. Especially in the
health monitoring and sleep monitoring fields, radar plays an important role. In the field of sleep
monitoring, different sleep states are obtained via feature extraction and machine learning classification
of the separated radar signals [6]. At the same time, some scholars have studied the accuracy of the
classification of sleep states in different postures and different orientations [7]. Radar is also a promising
method to assess psychophysiological conditions by detecting the pressure level [8]. In terms of radar
structure, many of the radar systems of the past are now in some devices for integrated circuit chips
and printed circuit boards. Typical radar systems currently include unmodulated radar, FMCW radar,
and hybrid mode radar [9]. Although the analog circuit in the radar system can remove some noise,
it will still receive interference signals caused by other objects and a human body’s own jittering within
a similar distance. Moreover, heartbeat signals are likely to be submerged in respiratory harmonics,
which makes it difficult to extract heartbeat signals [10]. Therefore, an appropriate de-noising algorithm
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is needed to remove noise interference from noisy radar signals and extract pure respiratory and
heartbeat signals.

In the past few years, the traditional radar vital signal processing methods have mostly used
filtering to achieve the removal of noise and separating the respiratory and heartbeat signals [11,12].
However, due to the limitation of the passband range, only noise outside the vital signal band can be
removed. In-band noise and respiratory harmonic interference cannot be removed, and due to the
attenuation of the stop band, a relatively accurate vital signal cannot be obtained. At the same time,
some scholars have proposed to extract periodic vital signals from irregular noise signals using an
adaptive noise cancellation algorithm [13,14]. However, due to the limitation of the reference signal
input, the adaptive signal filtering requires two-signal inputs, i.e., two radars, which brings difficulties
to the experimental operation and reduces the accuracy. In order to solve this problem, an adaptive
linear enhancement method is adopted, and the delayed signal of the original signal is used as a
reference input, which greatly reduces the complexity of the experiment [15,16]. Some scholars have
also proposed a peak detection algorithm to extract vital signals. Due to the working characteristics
of the radar, the vital signs obtained by the radar sensor are not as obvious as the traditional ECG
signals. Even if this algorithm can obtain the heart rate information, due to the limitation of the
algorithm itself, the time–frequency domain analysis cannot be performed. Therefore, it cannot reflect
time-varying characteristics of physiological signals and other detailed characteristics [17]. On the
issue of de-noising, some studies have applied wavelet de-noising to simulate chest wall motion.
The radar signal is de-noised by adding different noise signals through simulation to enhance the
adaptability of the algorithm [18]. However, the separation of noise in the heartbeat signal is still not
possible, and the signal cannot be processed on different time scales. In addition, there are the adaptive
harmonic comb-filter algorithm [19], extended Kalman filter [20], and independent component analysis
algorithm [21] for environmental, system de-noising, and clutter suppression, but the respiratory signal
harmonic problem and heartbeat signal noise removal effect is not ideal.

Empirical mode decomposition (EMD) is an adaptive signal decomposition algorithm for
non-linear and non-stationary signals [22]. It was proposed by Huang et al. in 1998. Compared with
the traditional signal processing algorithm, not only does EMD break through the limitation of the
Fourier transform, but it also does not have the problem of preselecting a wavelet basis function like a
wavelet transform does. It has a good time resolution and self-adaptability and can reconstruct the
signal perfectly.

The local characteristics of EMD may have oscillations of different scales in one mode or similar
scale oscillations in different modes. This situation produces the problem of “mode mixing.” In order to
solve this problem, a new ensemble empirical mode decomposition (EEMD) method is proposed [23].
The method decomposes an ensemble of noisy copies of the original signal and gets the result via
averaging. However, the EEMD algorithm still has the problem that signals plus different noise will
produce a different number of modes. A complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) is an important improvement to EEMD [24]. Its reconstruction error is
almost negligible. Still, CEEMDAN still needs some necessary improvements. There are some residual
noises in its mode, and there are some “spurious” modes in the early stages of decomposition [25].
Therefore, we adopt the improved CEEMDAN (ICEEMDAN).

ICEEMDAN effectively solves the above two problems. It was proposed by Colominas et al. in
2014 [26]. Due to the non-stationary nature of vital signals and the distribution of raw respiratory and
heartbeat signals on different time scales, this algorithm is particularly suitable for the processing of
biomedical signals.

In this paper, a novel signal separation and de-noising method based on ICEEMDAN,
sample entropy (SampEn), and wavelet threshold for radar vital signals is proposed. However, as far as
we know, there is almost no previous research on radar vital signal de-noising based the proposed
technique. Compared with the other existing algorithm, the proposed algorithm can de-noise the
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signals separately at different time scales. It has a better de-noising and separation effect, and can
retain the details of the signal to the greatest extent.

2. Model and Measurement Setup

2.1. The Vital Signal Model Based on Doppler Radar Measurements

The basic model of using continuous wave (CW) radar to monitor human vital signals is shown
in Figure 1.
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Figure 1. The theoretical basis for detecting respiratory and heartbeat signals using CW radar.

For the frequency selection of the radar module, the higher frequency radar has a higher resolution
and smaller volume and its transmission capability is enhanced, but the energy of the reflected signal
is weak. Therefore, considering the need for transmission capacity and volume, we selected an X-band
(10.525 GHz) radar module.

In a CW radar system, the transmitting antenna emits an X-band signal, and the reflected wave
is received by the receiving antenna. When an electromagnetic wave signal reaches a target and is
reflected, frequency modulation occurs due to the motion of the target. Generally, the Doppler shift in
frequency is given as:

fd(t) =
2 f v(t)

c
=

2v(t)
λ

(1)

where v(t) is the velocity of the target, λ is the wavelength of the transmitted signal, f is the frequency
of the transmitted signal, and c is velocity of the propagating wave.

Suppose the target is at a distance d0, with a time-varying chest wall displacement x(t), and the
distance between the target and the transceiver is d(t) = d0 + x(t). When the target of the radar detection
is the chest cavity, the Doppler frequency shift can be represented in the form of a non-linear phase
signal θ(t) given as Equation (2) and the transmitted signal is given as Equation (3):

θ(t) = 2π×
2x(t)
λ

=
4πx(t)
λ

(2)

T(t) = AT cos(2π f t + φ(t)) (3)

where T(t) is the transmitted signal, AT is the amplitude of the signal, and φ(t) is the initial phase noise
of the oscillator. The R(t) obtained by the receiver is the delayed signal of the transmitted signal, and td
is the delay time generated during the signal propagation:

td =
2d

(
t− d(t)

c

)
c

=
2
(
d0 + x(t− d(t)

c )
)

c
(4)
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R(t) = AR cos(2π f (t− td) + φ(t− td) + θ0)

= AR cos
(
2π f t− 4πd0

λ −
4πx(t− d(t)

c )
λ + φ

(
t− 2d0

c −
2x(t− d(t)

c )
c

)
+ θ0

)
≈ AR cos

(
2π f t− 4πd0

λ −
4πx(t)
λ + φ

(
t− 2d0

c

)
+ θ0

) (5)

where θ0 is the constant phase shift generated during the reflection of the target surface, which is close
to 180◦. As the signal is also transmitted while the chest wall is moving, the distance between the
antenna and the chest wall at the time of reflection is denoted as d (t − d(t)/c).

After the R(t) passes through the low noise amplifier (LNA), it is converted to a baseband signal
B(t) via a mixer, and the mixer mixes the received signal and the copy of the transmitted signal
generated by the voltage-controlled oscillator (VCO):

B(t) ≈ AB cos(θ+ θ(t) + ∆φ(t)) = AB cos
(

4πd0

λ
− θ0 +

4πx(t)
λ

+ ∆φ(t)
)

(6)

where θ = 4πd0/λ− θ0 is the constant phase shift related to the parameters of the receiver itself and
depend on the nominal distance to the target, and ∆φ(t) is the residual phase noise.

It can be seen from the baseband signal that the change in signal is only related to the initial
distance d0 and the Doppler phase shift, while the Doppler phase shift is only related to the time-varying
chest wall displacement x(t). Therefore, we can obtain the chest wall displacement of the human body
through the baseband signal.

2.2. Measurement Setup

A commercial CW Doppler radar HB100 (ST Engineering Ltd, Singapore) combined with a custom
data acquisition system was chosen. The microwave band of 10.525 GHz has a good directivity and is
easily attenuated during transmission and it will not cause harm to the human body because it works
in a safe range.

The millivolt baseband signal from the transceiver was first subjected to amplification filtering
processing of the analog signal before being processed by the digital signal. Therefore, we designed a
set of targeted analog filter amplifier circuits. After the analog circuit filtering and amplifier processes,
the Arduino’s 10-bit AD module (Arduino UNO R3) was used to convert the analog signal into a digital
signal, and then the serial port data was read by the host computer for display and data processing.

At the same time, we aimed to prove the effectiveness of the radar acquisition of physiological
signals; therefore, we used Neulog’s Electrocardiogram logger sensor NUL-218 and Respiration
Monitor Belt logger sensor NUL-236 (Neulog, Israel) to collect reference ECG signals and reference
respiratory signals. The measurement setup is depicted in Figure 2.Sensors 2019, 19, x FOR PEER REVIEW 5 of 17 
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3. Methods

3.1. ICEEMDAN

ICEEMDAN—as an improved algorithm of EMD, EEMD, and CEEMDAN—effectively solves the
shortcomings of other methods, and is especially suitable for analyzing biological signals.

EEMD has the problem of producing different mode numbers when different noises are added.
CEEMDAN improves this by adding paired noise (one positive and one negative) to the original signal.
Therefore, CEEMDAN overcomes the issues of inconsistent modal numbers during the decomposition
process. However, EMD and CEEMDAN behave similarly in improving the mode-mixing ability.
CEEMDAN still has two major problems: the presence of residual noise in the modes and the existence
of spurious modes. This makes it more difficult to de-noise a signal that is already noisy. We tried to
improve this status with ICEEMDAN. The overall algorithm was as follows:

Ek(·) is specified as the kth IMF component of the EMD decomposition, M(·) is the local mean of
the signal, <·> is the overall average of the signal, x(i) = x + βEi(w(i)) is a noisy signal, and w(i) is the
added Gaussian white noise.

1. Decompose the noisy signal x(i) = x + β0E1(w(i)) using EMD to obtain the first residue and the
first IMF:

r1 =< M(x(i)) > (7)

IMF1 = x− r1 (8)

2. Take the local average of r1 + β1E2(w(i)) as the second residue and define the second mode:

IMF2 = r1− < M(r1 + β1E2(w(i))) > (9)

3. Calculate the kth residue k = 3, . . . , K:

rk =< M(rk−1 + βk−1Ek(w(i))) > (10)

4. Compute the kth mode:
IMFK = rk−1 − rk (11)

5. Repeat steps 3 and 4 until all IMFs are extracted. If the residual obtained in step 3 does not satisfy
the condition of further EMD decomposition, terminate the calculation process.

We chose the ICEEMDAN algorithm for the following reasons:

• ICEEMDAN has a better decomposition performance, effectively solving the problem of mode
mixing, inconsistent IMF number with different noise, and partial residual noise.

• ICEEMDAN is suitable for decomposing non-linear, non-stationary signals. In theory, the essence
of ICEEMDAN decomposition is to smooth out a sequence. The result is the decomposition
of the fluctuations or trends of different time scales in the signal to produce a series of data
sequences with different feature scales. The radar signal containing the vital signal is completely
in accordance with the characteristics of the algorithm because the vital signals have a fixed range
of time scales.

• The ICEEMDAN algorithm is adaptive and can be decomposed from different time scales according
to the characteristics of the signal without the need for a basis function.

3.2. Sample Entropy

Sample entropy (SampEn) is an improved method of approximate entropy (ApEn), which can
be used to measure the complexity of a time series. It was proposed by Richman and Moorman in
2000 [27]. This method is mainly used to analyze noisy data sets encountered in cardiovascular and
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other biological studies. It can be used to evaluate the complexity of physiological time series and
diagnose a pathological status. The specific algorithm is as follows:

Assume that there is a time series Xi = {x1, x2, x3, . . . , xN}; its length is N.

1. Define the algorithm-related parameters, where m is the length of the sequence to be compared
and r is the tolerance to accept the match and consider the M-dimensional vector group
{x m(1), xm(2), . . . , xm(N −m + 1)}.

Xm(i) =
{
x(i), x(i + 1), . . . , x(i + m− 1)

}
, 1 ≤ i ≤ N −m + 1 (12)

2. Suppose that the distance d[Xm(i), Xm( j)] between a vector x(i + k) and x( j + k) is the maximum
value of the absolute value of the difference between the corresponding elements of a vector.
That is:

d[Xm(i), Xm( j)] = maxk=0,1,2,...,m−1(
∣∣∣x(i + k) − x( j + k)

∣∣∣) (13)

3. Given the tolerance r(r > 0), the number of d[Xm(i), Xm( j)] < r is counted for each i value, and is
denoted as Bi. Calculate the ratio of Bi to the total number of N − m distances, which is denoted
as Bm

i (r). Then, find Bm
i (r) for the average of all i values, which is denoted as Bm(r):

Bm
i (r) =

1
N −m− 1

Bi (14)

Bm(r) = (N −m + 1)−1
N−m+1∑

i=1

Bm
i (r) (15)

4. Increase the dimension to m + 1, and calculate the number of Xm+1(i) and Xm+1( j) less than or
equal to r, which is denoted as Ai. Define Am

i (r) as:

Am
i (r) =

1
N −m− 1

Ai (16)

Am(r) =
1

N −m

N−m∑
i=1

Am
i (r) (17)

According to the above analysis, Bm(r) is the probability that two sequences match m points
under the tolerance r. Am(r) is the probability that two sequences match m + 1 points.

5. Then, the SampEn of this time series can be defined as:

SampEn(m, r) = lim{− ln[
Am(r)
Bm(r)

]} (18)

when the length of the time series is N, the estimated value of the sample entropy is:

SampEn(m, r, N) = − ln[
Am(r)
Bm(r)

] (19)

The dimension m and the threshold r are the two main parameters of the SampEn. According to
the research results of Pincus, m = 1 or m = 2, r = 0.1 Std can obtain the sample entropy with more
reasonable statistical characteristics. In this paper, the parameter values were m = 2 and r = 0.2, and the
algorithm was chosen for the following reasons:

• The SampEn analyzes the complexity of the time series by measuring the size of the new pattern in
the signal. The required target signal is a periodic signal, and the more noise it contains, the more
complex the signal.
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• The SampEn should be a useful tool in studies of the dynamics of a human physiological signal.

3.3. Improved Wavelet Threshold

Wavelet transform is a multi-scale signal analysis method, and its excellent de-noising effect is
very popular. The process of wavelet de-noising can be divided into the following steps:

1. The appropriate wavelet base and the number of decomposition layers are selected to perform
wavelet decomposition on the noisy signals to obtain wavelet coefficients corresponding to
different decomposition layers.

2. Select the appropriate threshold function and threshold to sift the corresponding
wavelet coefficients.

3. Perform an inverse transformation on the sifted wavelet coefficients to reconstruct the
de-noised signal.

The selection of the wavelet threshold function is the key part of de-noising. The soft and hard
threshold functions proposed by Donoho et al. [28] have been widely used in practice. Combining the
characteristics of soft threshold and hard threshold functions, this paper uses an improved threshold
function [29] to estimate wavelet coefficients:

∧

d j =

{
sgn(d j)(

∣∣∣d j
∣∣∣− β(T j−|d j |)T j)

0
,
∣∣∣d j

∣∣∣ ≥ T j
,
∣∣∣d j

∣∣∣ < T j
(20)

where β > 1 and β ∈ R. In the above formula, when β→∞ , this is equivalent to a hard threshold
function, and when β→ 0 , this is equivalent to a soft threshold function. This reflects the adaptability
of the improved threshold function. The threshold value is chosen using:

T j = σ
√

2 log ‖d j‖/log( j + 1) (21)

where
∧

d j represents the wavelet coefficient.
Therefore, the improved wavelet threshold de-noising method can be seen as a compromise

between the soft threshold and the hard threshold method. The appropriate β value can be selected via
analysis through trial and error to meet the de-noising requirements of the radar signal. Here, we chose
the β value of 25 based on previous experience.

3.4. Kullback–Leible (KL) Divergence

KL divergence is also known as relative entropy. To some extent, entropy can measure the distance
between two random variables. KL divergence is an asymmetry measure of the difference between
two probability distributions P and Q. Assuming that P and Q are the two probability distributions of
x, the relative entropy of P to Q is:

D(p ‖ q) =
n∑

i=1

p(x) log
p(x)
q(x)

(22)

The KL divergence measures the distance between two random distributions. When the two
random distributions are the same, their relative entropy is zero. When the difference between the
two random distributions increases, their relative entropy also increases. Therefore, the breath and
heartbeat signals can be discerned by calculating the KL divergence value between each IMF and the
original signal.
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4. Separation and De-Noising Technique

4.1. The Steps of the Separation and De-Noising Technique

The raw radar signal is often inevitably accompanied by noise during the acquisition process.
Some noise comes from the body movement of the subject and some noise comes from the background
noise of the experimental environment. The chest wall motion caused by the heartbeat motion is very
weak, generally one-fifth of the respiratory signal. Therefore, the heartbeat signal will not only be
buried in the respiratory harmonics, but also be interfered with by various noises, which will create
difficulties regarding the extraction of an accurate heartbeat signal.

To remove the noise present in the signal, the respiratory and heartbeat signals are separated from
the original radar signal. The algorithm block diagram of the signal processing is shown in Figure 3.
The specific process is summarized as follows:
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Figure 3. The flow chart of radar signal processing.

1. The raw signal is preprocessed, including removing the first and last invalid signals and
de-trending. The preprocessed radar signal is decomposed using ICEEMDAN, retrieving a lot of
IMFs, including noise containing IMFs and real IMFs, in the process.

2. The sample entropy of each IMF is calculated to characterize the regularity and complexity of
each IMF.

3. The noise-containing IMF is identified using SampEn. If the sample entropy of the IMF is greater
than 0.5, it can be considered as a noise-containing IMF; otherwise, it is a real IMF. The threshold
of 0.5 is an empirical value. It can distinguish whether the sample entropy is noisy or not under
the premise that the sample entropy is generally declining.

4. The noise-containing IMF is de-noised using a wavelet threshold. We used the improved wavelet
threshold function for de-noising the noise-containing IMFs, and decomposition levels were sym6
and sym4.
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5. By estimating the frequency spectrum of the de-noised IMFs and the real IMFs, the IMFs with the
frequency range of 0.2–0.6 Hz and 0.9–1.5 Hz were selected as the potential respiratory signal and
heartbeat signal.

6. The KL divergence value of the potential respiratory signal is calculated and the first two IMF
reconstructed respiratory signals with the largest KL divergence value are selected. The potential
heartbeat signal receives the same action. If the number of IMFs is less than 2, it is directly used
as the target signal.

4.2. Simulated Signal Processing

We first constructed the simulated signal to verify the effectiveness of the algorithm. The radar
demodulation signal characterizes the reciprocating motion of the human chest wall. Its active
components include respiratory signals and heartbeat signals. We constructed a respiratory signal and
a heartbeat signal with the fundamental frequencies of 0.28 Hz and 1.28 Hz, respectively. Then, we
added Gaussian noise of 0 dB, 5 dB, and 10 dB signal-to-noise ratio (SNR). The sampling time and data
length of the data were 60 s and 1000, respectively.

Take the signal of 5 dB SNR as an example. The raw waveform of the simulated signal and the time
domain waveform of the 5 dB SNR signal are shown in Figure 4. The result of the signal decomposition
is shown in Figure 5. The noisy simulated signal was decomposed using ICEEMDAN. A series of IMFs
with high frequency to low frequency are obtained. In general, the higher the frequency of the IMF,
the more noise it contained. Then, the IMF containing noise was identified by calculating the sample
entropy for each IMF as shown in Table 1.Sensors 2019, 19, x FOR PEER REVIEW 10 of 17 
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Table 1. SampEn value of each IMF.

IMFs IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10

SampEn 1.644 0.7963 1.2 0.6754 0.2746 0.3751 0.2037 0.08601 0.02052 0.00746

Table 1 shows that the first four IMFs were determined to be noisy IMFs according to the previously
set threshold of 0.5. The improved wavelet threshold de-noising for the first four IMFs was undertaken,
and Figure 6 shows the de-noised IMFs using the improved wavelet threshold. Then, the respiratory
and heartbeat signals were distinguished using spectral estimation, and the KL divergence was
calculated to screen out the IMFs with the highest correlation between the respiration and heartbeat for
respiration and heartbeat signal reconstruction.
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Figure 6. The IMFs de-noised results using an improved wavelet threshold.

The IMFs conforming to the heartbeat signal spectrum (0.9–1.5 Hz) were IMF3 and IMF4, and for
the respiratory signal spectrum (0.2–0.6 Hz), there were IMF5 and IMF6. Calculation results for the KL
divergence value of the corresponding IMF separately is shown in Table 2, and the smallest one or
two IMF reconstruction signals that met the spectral estimation conditions were selected. The final
heartbeat signal was reconstructed using IMF4 and the respiratory signal was reconstructed using
IMF5 and IMF6, as shown in Figure 7.

Table 2. KL divergence value of each IMF.

IMFs IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10

Kldiv 185.76 177.23 81.712 26.783 20.892 45.672 389.967 2167.8 5782.4 8532.6
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5. Results and Discussion

5.1. Results of the Simulated Signal

We de-noised the signal of the 5 dB SNR using the proposed algorithm in the previous
section. For comparison purposes, we also used bandpass filtering and the EEMD-SE algorithm to
process the same signal. The de-noising results and the waveform and spectrogram are given in
Figure 8. By analogy, we also applied three algorithms to the signals of 0 dB SNR and 10 dB SNR,
and compared the performance of signals with different degrees of noise under the three algorithms.
Performance indicators under different intensity noises are shown in Table 3.

Table 3. Performance indicators of respiration and heartbeat signals under different noise intensities
and different de-noising algorithms.

SNR Index
Denoising Method

Bandpass Filter EMD-SampEn ICEEMDAN-SampEn-IWT

Respiratory Signal

0 dB
SNR (dB) 6.7562 2.8756 4.1224

MSE 0.0825 0.0563 0.0347

5 dB
SNR (dB) 11.8184 7.2221 9.9485

MSE 0.0658 0.0216 0.0142

10 dB
SNR (dB) 19.5873 12.8729 16.8541

MSE 0.0412 0.0173 0.0087

Heartbeat Signal

0 dB
SNR (dB) −12.0412 −9.5428 −7.3873

MSE 3.1159 1.8346 1.0342

5 dB
SNR (dB) −10.5629 −8.7267 −4.0267

MSE 1.9824 1.1785 0.8754

10 dB
SNR (dB) −7.5673 −4.6734 0.2478

MSE 0.9632 0.7382 0.0947
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Figure 8. (a) Respiratory waveforms and spectrograms using three algorithms (simulated signal).
(b) Heartbeat waveforms and spectrograms using three algorithms (simulated signal).

As can be seen from Figure 8, the separation de-noising method using ICEMDAN-SampEn-IWT
had the most concentrated spectral peaks and contained less noise in the spectrum. Although the
bandpass filtering in Figure 9a was more prominent when extracting respiratory signals, our proposed
method retained more detailed features, such as differences in exhalation and inhalation processes.
To quantify the superiority of the proposed algorithm, the signal-to-noise ratio (SNR) and mean square
error (MSE) were used as indicators of de-noising performance. SNR reflects the ratio of signal to noise.
MSE defines the energy of the noise signal. The equations for SNR and MSE were redefined as:
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SNR = 10 log10



fmajor+B/2∑
fmajor−B/2

l2( f )

N∑
0

l2( f ) −
fmajor+B/2∑
fmajor−B/2

l2( f )


(23)

MSE =
1
N


N∑
0

l( f ) −
fmajor+B/2∑
fmajor−B/2

l( f )


2

(24)

where
fmajor+B/2∑
fmajor−B/2

l2( f ) is the target spectral peak of the signal and
N∑
0

l2( f ) is the total energy of the

spectrum of the signal. fmajor is the peak frequency and B = 0.1 Hz was the resolution in the estimation
of the periodogram.
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Figure 9. Measured noisy radar signal and reference signal.

In summary, the purpose of this study was to remove the noise components in the radar signal
and extract the respiratory and heart rate signals. To verify the de-noising effect, we analyzed the
de-noised respiration and heart rate signals using the quantified indexes of SNR and MSE. The SNR
characterizes the noise reduction effect and the MSE characterized the degree of difference from the
ideal physiological signal. The larger the SNR, the better the de-noising effect. The smaller the MSE, the
closer to the ideal signal. Therefore, it can be seen from the above Table 3 that the method in respiratory
signal proposed in this paper had a higher SNR, as well as a lower MSE, as compared with the other
two methods under the same noise intensity, and had a better noise reduction effect. The trend was
consistent under different (0, 5, 10 dB SNR) conditions. Although EEMD-SampEn also reduced the
noise, the residual noise was still present since the IMF component was still noisy; the de-noising
effect was not good enough. Bandpass filtering had a higher SNR value for the de-noising of the
respiratory signal, but the MSE value was very high and did not reflect the characteristics and details
of the original signal. Heartbeat signals had a similar performance.

5.2. The Results of Measured Signal

We collected a noise-containing radar signal with a duration of 60 s using a laboratory-made radar
acquisition module. While collecting the radar signal, the Neulog devices were used to simultaneously
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collect the respiratory and ECG reference signals. Through spectral analysis, the primary frequency of
the reference respiratory signal was 0.264 Hz, and the primary frequency of the reference heartbeat
signal was 1.284 Hz. The ICEEMDAN-SampEn-IWT algorithm was proposed to de-noise the radar
signal. As a comparison, we also used bandpass filtering and EEMD-SampEn to de-noise and separate
the radar signal. The 50 s pre-processed radar signal and reference signal removed by the signal
de-trending and the first and last invalid signals are shown in Figure 9. The de-noised respiration and
heartbeat signals are shown in Figure 10, and the performance indicators are shown in Table 4.

Table 4. Performance index and error estimation of respiration and heartbeat signals under
different algorithms.

Types
Denoising Method

Index Bandpass Filter EMD-SampEn ICEEMDAN-SampEn-IWT

Respiration

SNR (dB) 12.7826 9.8256 11.2174

MSE 0.0842 0.0367 0.0173

Error (BPM) 0.024 0.015 0

Heartbeat

SNR (dB) −9.8341 −13.2675 −4.7712

MSE 0.9173 0.3782 0.0958

Error (BPM) 0.055 0.031 0.014

Figures 9 and 10 show that the proposed method had a more concentrated spectral peak. To further
compare the performance of three typical algorithms, as can be seen from Table 4, the bandpass filtering
de-noising method has a higher SNR when extracting the respiratory signal, and in other cases, it was
not as good as the other two algorithms. The heartbeat signal extracted by the EEMD-SampEn method
still had more noise signals. Comparing the three methods, the ICEEMDAN-SampEn-IWT algorithm
performed best; both respiratory and heartbeat signals had the highest SNR and lowest MSE for this
algorithm. The error in the above Table 4 was the major frequency difference between the de-noised
signal and the reference signal. The algorithm proposed in this paper had the lowest estimation error.
Although the error rates of the three methods were all below 1 BPM, the performance of the method
used in this paper was the best and can be seen from the quantitative parameters closer to the ideal
signal, such as the trend of exhalation and inhalation.
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6. Conclusions

A novel radar vital signal separation and de-noising algorithm based on ICEEMDAN,
sample entropy, and improved wavelet threshold was proposed. The ICEEMDAN was used to
decompose the noisy radar signal into a series of IMF signals. By calculating the SampEn of each
IMF, the noisy IMFs were screened and the improved wavelet threshold was used for de-noising.
Then, spectrum analysis was performed on all the IMFs after de-noising. For the extraction of respiratory
and heartbeat signals, the KL divergence values of each IMF were calculated, and appropriate IMFs
were selected for signal reconstruction. Simulation and measured experimental results demonstrated
the effectiveness of the algorithm. We also quantified the de-noising ability through two indicators,
SNR and MSE. The results show that the algorithm had a better de-noising performance than other
existing technologies. As a new de-noising algorithm, it effectively solves the problem of extracting
accurate respiratory and heartbeat signals from noisy radar signals, especially for heartbeat signals,
which are not easily extracted from respiratory harmonics and noise. This advanced technology is
expected to be applied to health monitoring in the home. In future work, we will continue to improve
the de-noising method of radar signals and explore the deployment of accurate vital signals in more
complex noise backgrounds for deployment in the home environment.
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