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Abstract: Barkhausen noise testing (BNT) is a nondestructive method for investigating many
properties of ferromagnetic materials. The most common application is the monitoring of grinding
burns caused by introducing locally high temperatures while grinding. Other features, such as
microstructure, residual stress changes, hardening depth, and so forth, can be monitored as well.
Nevertheless, because BNT is a method based on a complex magnetoelectric phenomenon, it is not
yet standardized. Therefore, there is a need to study the traceability and stability of the measurement
method. This study aimed to carry out a statistical analysis of ferromagnetic samples after grinding
processes by the use of BNT. The first part of the experiment was to grind samples in different facilities
(Sweden and Finland) with similar grinding parameters, different grinding wheels, and different
hardness values. The second part was to evaluate measured BNT parameters to determine significant
factors affecting BNT signal value. The measurement data from the samples were divided into two
different batches according to where they were manufactured. Both grinding batches contained
measurement data from three different participants. The main feature for calculation was the
root-mean-square (RMS) value. The first processing step was to normalize the RMS values for
all the measurements. A standard analysis of variance (ANOVA) was applied for the normalized
dataset. The ANOVA showed that the grinding parameters had a significant impact on the BNT
signal value, while the other investigated factors (e.g., participant) were negligible. The reasons for
this are discussed at the end of the paper.

Keywords: Barkhausen noise testing (BNT); uncertainty; proficiency test; ANOVA

1. Introduction

Nondestructive testing (NDT) of machine parts’ surface integrity has grown greatly over the last
20 years. There are many methods and techniques, based on different physical effects, that can be used
for NDT (Figure 1). Faster and more efficient process control leading to reduced set up time can be
achieved through the introduction of proper methods and innovative concepts for nondestructive
analysis and verification of product quality, especially for altering the component type in the production
line [1].
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Figure 1. General scheme of Barkhausen test equipment.

One of these NDT methods is Barkhausen noise testing (BNT), which is utilized to assess changes
in the surface layer of ferromagnetic materials, especially to monitor changes in their hardness
and residual stresses. BNT is based on the interaction between the external magnetic field and the
ferromagnetic material. The reorganization of the magnetic domains and the formation of an internal
magnetic field are registered by the sensor. The magnitude of the registered signal and its parameters
depend on many factors. Many of them are noncorrelated, while others share a strong correlation.
One can easily demonstrate that the set of factors affecting the Barkhausen signal comprises more than
200 components, including interactions between factors (Table 1). The combination of all these factors
results in the material response of external magnetization.

Table 1. General overview of the group of parameters that can affect Barkhausen measurements.

Material Heat Machining Surface Integrity Electromagnetlc Measurement
Treatment Properties
Gauge type
Microstructure Gauge quality
Grain size Surface type
Grain shape . . Roughness Magnetic Surface quality
. Quenching Magnetic holders Waviness .
Crystallographic T . domain Surface cleanness
empering (clutch)—remanence Roundness . R
defects . orientation Temperature
- Annealing Number and type of Hardness S
Chemical .. . . Remanence Magnetizing voltage
oo Carburizing machining Residual stresses -
composition . .. Conductance Magnetizing
Toughening Machining Scratches s
Internal arameters Microcracks Permeability frequency
discontinuities P Burns Coercivity Filtering bandwidth
Nonmetallic Load force
inclusions Calibration

Environmental noise

The basic equipment consists of a measuring device with a sensor and connecting cable to generate
and measure Barkhausen noise (BN) (Figure 1).

The BN analyzing instrument requires both generating the applied magnetic field, in order to
send it into the material, and picking up and presenting the BN signal generated from the material.
For that purpose, BN sensors are used. There are normally two primary functions of a BN sensor. First,
an external magnetizing field is applied, which penetrates the surface of the material to be analyzed.
For that, a magnetic yoke with two magnetic pole pieces is required. The orientation of the magnetizing
pole pieces determines the direction of the applied field and also the measurement direction of the BN
signal. Second, some kind of sensor that can detect the BN signal is needed. The most common way is
to use a sensing coil that can be tailored to the analyzing frequency. Alternatively, a Hall element can
be utilized. There is also the possibility of using an external magnetic yoke to generate the applied
magnetic field and then using a pick-up sensor for the BN signal. The available BN sensor types are
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often classified into two groups: surface-specific sensors (external and internal) and product-specific
sensors (camshaft, crankshaft, gears, etc.). The surface-specific sensors have a broader range of
application and are divided into general purpose sensors, flat sensors, outer diameter (OD) sensors,
and inner diameter (ID) sensors. The product-specific sensors are oriented for specific components,
such as camshafts, crankshafts, gears, or other components.

The generated BN signal needs to be picked up by a sensing coil or element, amplified, filtered,
and presented. The presentation can either be in numbers on a display or as an oscilloscope signal
that can be stored and further analyzed. The BN signal is analyzed by examining features computed
representing, for example, Barkhausen activity and the shape and position of the BNT envelope. BNT is
a stochastic phenomenon and thus only averaged properties are reproducible. The use of a high sample
rate and acquisition of time-related data during a specified number of magnetizing cycles, typically 10
BN bursts, is required to obtain good averaging. The BN signal is acquired over a larger analyzing
frequency spectrum, for example, 1-1500 kHz, which makes it possible to later select different or
narrower bands of analysis. Typical features studied are, for instance, the root-mean-square (RMS)
value, peak height, peak width, and peak position concerning the signal. Both the pulse-like noise
signal and envelope of the BN burst can be analyzed. Also, the amplitude spectrum and pulse height
spectrum can be studied to obtain information concerning the material properties.

A challenge with BNT is that the measured values are not reproducible and depend on the
measurement arrangement. The sensor, measurement parameters, signal processing parameters,
and the issues related to the measurer may influence the measurement result. In this study,
an interlaboratory proficiency testing was carried out to evaluate if participant-related issues are
significant. Three laboratories with similar equipment performed BN measurements for two sets of
samples. The samples were ground with different grinding parameters to obtain changes in the BN
response. A standard analysis of variance (ANOVA) was carried out to distinguish between the effects
of grinding parameters and the measurer.

This study also evaluated how measurement uncertainty decreases as the BN measurement
is repeated. For this measurement, uncertainty was computed as a function of repetitions. Two
uncertainty indices were computed, the first emphasizing the average expected uncertainty, while
the other considered the worst-case scenario of maximum uncertainty. This study highlights the
significance of repetitions to draw valid conclusions.

2. Proficiency Testing

Usually, proficiency testing is carried out as one essential activity of testing laboratories and
it has become a mandatory requirement for laboratory accreditation. The testing ensures that the
statistical methods which are adopted are fit for the intended purposes [2]. Generally, the proficiency
testing scheme is at first described according to the intended objective and purpose of the study. Then,
the statistical test plan with methods is performed. The last phase is to evaluate the results from the
individual test laboratories (performance evaluation).

The samples can be tested either by each laboratory by themselves with certain instructions [2]
or laboratories can use a group of samples made by a certain party which is distributed to them [3].
We studied pressure vessel samples with different annealing treatments (thermal degradation) as one
project partner in a round-robin BNT study.

BNT itself is affected by many factors: the equipment [4], the sensor design [5], the participant [6],
the way the measurement is carried out [7], and the software used. Generally, gauge, repeatability,
and reproducibility (GR&R) tests are used when studying measurement variations and their causes,
which include the effects of a participant, effects of the equipment, and the way the measurements
are carried out. We studied, among other things, the use of different statistical calculation tools for
testing the BNT equipment’s performance (repeatability and reproducibility) in a quality check before
sending BNT equipment to customers.
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Fewer BNT-based round-robin studies have been carried out than X-ray-diffraction-based residual
stress round-robin studies, which have been performed by, for example, [8] and [9]. Regarding BN
round-robin studies, even as early as 1977, a round-robin activity study was performed measuring
railroad wheels and evaluating their residual stresses with different methods, including the BN
method [10]. The round-robin studies involved several research institutes, but the BNT measurements
were carried out by only one research institute. The outcome of the BNT measurements was compared
to the results obtained with other methods.

Takahashi’s group studied the degradation of ferromagnetic materials with BNT [11]. Their
round-robin studies in the Universal Network for Magnetic NDE (Non-Destructive Evaluation)
concentrated on the evaluation of the measurement technique to help the standardization procedure of
magnetic BNT. However, the BN results showed considerable disagreement among the participating
groups and the most likely reason for this was stated to be the differences in the measurement techniques.

The study and analysis of differently ground samples was the objective of this interlaboratory
round-robin test that involved researchers from three different laboratories in Sweden and Finland.
The first part of the experiment was to prepare two batches of ground samples in different facilities
with similar grinding parameters. The second part of the experiment consisted of an interlaboratory
round-robin comparison carried out with the magnetic Barkhausen noise method. The main tasks were
(1) interlaboratory comparison and (2) evaluation of the effect of grinding on Barkhausen noise features.

3. Materials and Methods

In this experiment, the near-surface influence on magnetic BNT was investigated by
grinding-hardened specimens of various hardness values with different abrasives and intensities.

3.1. Design of Experiment

We implemented a full factorial experiment design with three repetitions [12]. Three factors were
chosen: hardness, abrasives, and intensities, each at two levels. That gave k-2F experiments, where k
is the number of repeated experiments and p is the number of factors studied. This gave 3.2 = 24
experiments. Furthermore, the experiments were repeated for two sets of samples, giving a total
number of 48 experiments. Running the full experiment design with all possible factor combinations
meant that all of the main and interaction effects could be estimated. For three factors at two levels,
this meant three main effects, three two-factor effects, and one three-factor effect. This combination is
described by the following model:

Y = ap+m Xy +axXo + a3 Xz + a1 X1 Xo + @13 X1 X3 + anXo X3 + a13X1 X X3 + € 1)

This model allows estimation of all o coefficients {ay, - - - , @123} and the analysis of significance of
the terms. The design applied can be improved by adding at least three center point runs.

3.2. Materials

Round bar samples manufactured from 20MnCrS5+A steel (Table 2) with a diameter of 40 mm
and a height of 35 mm were used in this study. The samples were carburized case hardened with oil
quenching. The total hardening depth was max. 1.2 mm. In total, 56 samples were prepared and
divided into two batches for further processing. Half of the carburized samples were also tempered at
180 °C for 1.5 h. After the heat treatments, a carefully planned grinding procedure was carried out for
the samples.

Table 2. 20MnCrS5+A material composition.

Element C Si Mn S P Cr Ni Cn Mo Ti Vv W
wt % 0.2 0.19 1.18 0.027 0.017 1.12 0.15 0.16 0.02 0.01 0.008 0.01
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3.3. Grinding Plan

Two different grinding batches were prepared in different grinding facilities. In total, three
different variables were changed in the grinding, as shown in Figure 2.

Intensity

Hardness

Figure 2. Grinding plan.

The parameters of the grinding experiment are presented in Table 3. All of the specimens were
case-carburized to a hardness of 63 HRC. Half of the hardened specimens were tempered at 180 °C for
1.5 h to differentiate the hardness. In total, 48 samples were studied, 24 for each batch.

Table 3. Grinding parameters.

Grinding Variables
Batch Material . .. . .. . 1

Hardness Grinding Grinding Grinding Infeed Rate Cooling Fluid

(HRC) Wheel Wheel Table Speed (mm) Emulsion 5%

(CBN) Speed (m/s) (m/min) ¢

A0

#1 50-63% B126 35 8 0.01 Quakercool 370

#2 50-57% B181 10 Quakercool 3640

The CBN grinding wheel grain size varied and was either B126 or B181 (Ilyich Abrasive Company,
Saint Petersburg, Russia). The grinding intensity was altered by carrying out the grinding of, in total,
0.6 mm stock removal in either four or eight steps (batch #1) or in three or six steps (batch #2).
The grinding wheel speed was 35 m/s, and the grinding table speeds were 8 m/min (batch #1) and
10 m/min (batch #2). The cooling fluid (water emulsion 5%) flow was 15 L/min. Four samples were
ground by the normal grinding procedure, of which two were in a hardened condition and two were
tempered. Normal grinding was carried out with a B126 grinding wheel with a high number of steps.

3.4. Measurements

The Barkhausen noise analyzer Rollscan 300 (Stresstech Oy, Vaajakoski, Finland) was utilized
in each laboratory with a similar type of sensor (51-16-13-01) for flat surfaces (Figure 3). Two of
the laboratories utilized the same sensor, serial number 56387, and the third laboratory utilized a
sensor with the serial number 57582. The difference between the sensors was the number of coil turns.
The size of both sensors was 18 X 20 mm. The measurements were carried out with Microscan software
(Stresstech Oy, Vaajakoski, Finland), which records the Barkhausen noise signal and the magnetizing
signal. The sweep method was utilized to determine the measurement parameters (voltage and
frequency) [13]. The measurement parameters were 5 volt-peak-to-peak (Vpp) for the magnetizing
voltage and 80 Hz for the magnetizing frequency. It is worth noting that the magnetic field was not
of interest in this study. The bandwidth of the analyzing frequency range was 70-200 kHz. In total,
10 repetitions were carried out in two directions, referred to as the grinding direction and perpendicular
to the grinding direction. The analysis was carried out perpendicular to the grinding direction, as is
the standard procedure for stress and hardness change evaluation. The moving average was used for
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smoothing of the signal and polynomial fitting for the peak calculation. The direct results obtained
from the Microscan software were utilized in the data comparison.

180° Grinding

traces

90° 270°

Ms, Vs

Ms, Vs

Figure 3. Measurement strategy for samples after grinding (MS—Microscan Software).
3.5. Participating Laboratories

Both industry and university laboratories in Sweden and Finland were involved in the study.
The participating laboratories were as follows: Kungliga Tekniska Hogskolan (KTH Royal Institute of
Technology, Stockholm, Sweden) in collaboration with Scania CV AB (Sodertélje, Sweden), Stresstech
Oy (Vaajakoski, Finland) and Tampere University of Technology (now Tampere University, Tampere,
Finland). All participating laboratories were using equipment from Stresstech Oy, Vaajakoski, Finland.

3.6. Datasets

Two sets of ground samples were prepared according to the full factorial design of experiments.
Ten repetitions of BN measurements were carried out for each sample by the three laboratories.
The measurement device calculated certain features of the BN signal. From these, the traditional
RMS value together with the peak height, position, and width of the BN envelope were used. Thus,
the dataset included 1440 rows of data in two separate datasets. Grinding burns were observed in two
samples of dataset 1. The data from these samples were removed, as suggested in [14].

One of the challenges with Barkhausen noise measurement is that the measured values may
not be reproducible but depend on the measurement arrangement (participant, sensor, etc.) [15].
Figure 4 shows the box plot of dataset 1 showing that the absolute values were not reproducible. Thus,
the so-called z-scores [16] were calculated independently for each participant with:

Xi —Xp

zi = — )

where xj, is the assigned value and 6 is the estimated standard deviation. Both values were calculated
independently for each participant. The z-scores were used in the analysis instead of the direct
measurement results. The analysis of variance used the average values from 10 repetitions, while the
data were more thoroughly used in the analysis of uncertainty.
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Figure 4. Box plot of measurement dataset 1.

3.7. Analysis of Variance

ANOVA is a statistical testing scheme where grouped measurements are compared with each
other. The null hypothesis of the testing scheme is accepted or rejected based on the statistics calculated
from the experimental data. Usually, the null hypothesis states that all the groups are random samples
from the same population. The null hypothesis is rejected if the calculated p-value is lower than a
predefined «-risk level. The a-risk is related to a type I error (false positive), where the null hypothesis
is falsely rejected.

Depending on the data, one- or two-factor analysis can be applied. Furthermore, if the data
include repeated measurements, the computational procedures differ. ANOVA employs the F-test in
determining the test result. The test statistics are computed first by computing the sum of squares (SS)
for the grouped measurements. By dividing the SS by its degree of freedom, the mean squares value
is obtained. The mean squares of the grouped measurements are divided by the within group mean
squares to come up with the F-test statistics. The within group mean squares is an approximation of
the variance of the measurements under the same conditions. The computed statistics are compared
with the reference value, and the p-value is computed to determine if the null hypothesis is rejected.
The reference value depends on the x-risk level and the variance estimates” degrees of freedom [16].

3.8. Computational Procedure

The standard ANOVA was applied to the z-scores to determine if the grinding parameters or the
appraiser influenced the measured BN feature. Each experiment was repeated three times, and thus,
a two-factor ANOVA with replication was applied. As mentioned above, the null hypothesis states that
the grouped measurements are samples from the same population and, thus, the factor has no effect
on the measured BN feature. It is rejected if the observed F-test statistic is greater than the reference
value. The analysis of variance was carried out only for the RMS values measured. The equations for
ANOVA are not presented here but can be found, for example, in [16].

Barkhausen noise is a stochastic phenomenon, and thus, only averaged properties are reproducible.
Thus, the measurement needs to be repeated in order to draw conclusions reliably. The reliability
involved with repeated measurements is assessed with uncertainty. In this study, uncertainty was
computed to evaluate a feasible number of repetitions. Uncertainty was obtained as the standard

deviation of the mean given by [14,15]:

S
u= -
vk )

where s is the standard deviation calculated from p measurements ranging from 2 to 10. However,

1
there are ( kO ) = % possible combinations of measurements depending on the value of k.

In this study, the standard deviation for every combination was computed and followed by two
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10
uncertainty values. The first one was obtained by taking the average of ( » ) standard deviations

and the second one by taking the maximum of those. The computational procedure is illustrated in
Figure 5. The uncertainties were calculated for all of the features selected. The uncertainty from (3)
was further divided by the average to obtain the relative uncertainty in percentages.

10 Standard deviations
(k ) measurement for each combination
combinations

0.97 .
maximum
0 . 1.77 | m— U _ Smax
measurements for max —
| m— — | 081 \/E
[ each sample ] . average

| m— U _ Savg

135 we -k

Figure 5. Computation of uncertainties.

4. Results and Discussion

4.1. ANOVA

Table 3 shows the results of the analysis of variance for dataset 1 with the a-risk set to 0.05. 5SS
is the sum of squares, df is the degree of freedom, MS is the mean squares, F is the F-test statistic,
p-value is the probability that the observed F-test statistic is greater than the reference value in the
case when the null hypothesis is true (i.e., the probability of falsely rejecting the null hypothesis),
and F.,; is the reference value for the F-test statistic. Table 4 shows that none of the sources of variation
were statistically significant. This is quite surprising because it was assumed that the major source of
variation is grinding. A careful analysis of the results given in Table 4 showed that, indeed, the variation
due to grinding was the most significant, but it was not quite statistically significant at the a-risk
set. It was also observed that the variation due to the participant was negligible. The reason for this
result is that the variation within the samples was very high, indicating that the grinding had not been
uniform but instead produced some unintentional changes in samples.

Table 4. The results of two-factor ANOVA with replication for dataset 1.

Source of

Variation SS df MS F p-Value Feit
Grinding 11.85 5.00 2.37 2.37 0.06 2.48
Participant ~ 7.11 x 1071° 2.00 355x 107> 355x1071° 1.00 3.26
Interaction 3.11 10.00 0.31 0.31 0.97 2.11
Within 36.04 36.00 1.00
Total 51 53

To justify that the variation between the grindings with the same parameters is high in dataset 1,
the average and standard deviation of the repeated experiments were computed. When the average
was divided by the standard deviation, an index was obtained that could be used to evaluate the
variation. Figure 6 shows the indices for both datasets and all three participants. The figure shows
that for dataset 1, the index is very low, indicating that standard deviation is high compared with the
average. On the other hand, the index for dataset 2 shows high values, indicating a more uniform
grinding result.
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Figure 6. The average of the repetitions divided by the standard deviation.

Because the variation between the repeated experiments was high, a two-factor ANOVA without
repetitions was carried out for dataset 1. The results are presented in Table 5. One of the conclusions is
that the variation in the data was almost exclusively due to grinding parameters, while the variation
due to the participant was negligible.

Table 5. The results of two-factor ANOVA without replication for dataset 1.

Source of
Variation SS df MS F p-Value Fo it
Grinding 39.45 17 2.32 6.83 1.11 x 1070¢ 1.93
Participant ~ 1.42 x 10714 2 711x 10715 2.09x 10714 1 3.28
Within 11.55 34 0.34
Total 51 53

The results of the two-factor ANOVA with repetitions for dataset 2 are given in Table 6. This table
also shows that the influence of the participant was minimal, while the major variation came from the
grinding. It also shows that the interaction of the studied factors was not significant, as also indicated

by Table 4.

Table 6. The results of two-factor ANOVA with replication for dataset 2.

f/(;llil;ioorf SS df MS F p-Value Fepit
Grinding 64.87 7 9.27 124.10 1.6 x 10728 2.21
Participant ~ 1.42 x 10714 2 711x 1071 952 x 10714 1 3.19
Interaction 0.54 14 0.04 0.52 0.91 1.90
Within 3.58 48 0.07
Total 69 71

4.2. Measurement Uncertainty

The measurement uncertainty calculations were carried out as described in Section 3.7. The results
are presented separately for both datasets. It should be noticed that expanded standard uncertainty
is usually presented where the standard uncertainty is multiplied by 2. For the results given here,
the multiplication was not carried out. We used dataset 2 for calculation of the measurement uncertainty
because of the higher coherence of measurement data.

Figure 7 shows the average uncertainties (U,yg) in the features selected as a function of the
number of repetitions. As expected, uncertainty decreased as the number of repetitions increased.



Sensors 2019, 19, 4716 10 of 14

Overall, the average uncertainties were very low, indicating that the repeated measurements by the
same participant gave uniform results. One can observe that the uncertainty value depended on the
participant and also on the feature used. Peak position and width had higher uncertainties, while peak
height and, especially, the RMS value had lower uncertainties.

a) —e— Participant 1 Participant 2 Participant 3| b) —e—Participant 1 —6— ipant 2 pant 3
~6 _6 .
g g
z z
£ sl E 4l il
£ £
@ [
1= [*}
c c
= =]
5,0 G\N\KQ_M :, \NM
2 2 \M—e__ﬁﬂ_w
] =]
3 = - >
0" ] 0 L |
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c) —e— Participant 1 P 2 ipant 3 d) —— ipant 1 —o—P 2 3

o
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~N
~N

Relative uncertainty (%)
»

Relative uncertainty (%)
»

o
o

oL
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Figure 7. Uncertainty Ugyg as a function of the number of repetitions: (a) the RMS value, (b) peak
height, (c) peak position, and (d) peak width.

Figure 8 shows the maximum uncertainties (Uyux) of the features selected. The figure shows that
uncertainty received high values with a small number of repetitions. The uncertainties in Figure 8
are the worst-case scenario, and thus, the values are expected to be exaggerated. Nevertheless, it still
suggests that at least five repetitions were carried out. Figure 8 also shows that peak position and
width had higher uncertainties than the RMS value and peak height.
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Figure 8. Uncertainty Uy as a function of the number of repetitions: (a) the RMS value, (b) peak
height, (c) peak position, and (d) peak width.
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The minimum set of the measurements was five, because after removing minimum and maximum
values from the set, the average value could still be calculated (from the remaining three). The better
solution would be to use some kind of threshold value which would give an appropriate number of
measurements that need to be done. Nevertheless, Figures 7 and 8 show that this is not a trivial task
but a compromise between optimistic and pessimistic approaches. Therefore, we suggest making at
least five measurements, but there is no upper limit for that.

4.3. Reproducibility of Measurement Results

Even though the presented results showed that the participant did not have a significant effect
on the results, it should be noticed that the analysis was carried out with z-scores. Reading at the
absolute values, it can be noticed that they were not reproducible (Figure 4). Table 7 shows the
average deviations between the participants’ results. This table also shows that the values obtained by
participant 1 were about 10 units higher compared with participants 2 and 3. This was probably due to
the different sensor used by participant 1.

Table 7. Average deviations between participants. Grinding burn samples removed from dataset 1.

Dataset Participant 1 vs. 2 Participant 1 vs. 3 Participant 2 vs. 3
1 11.11 14.09 2.99
2 10.24 11.19 0.95

Differences may also occur in the sensor reading’s sensitivity to a measured quantity. In this
study, the differences in these sensitivities were analyzed by fitting a trend line between the results of
different participants. The slopes of these lines then indicated different sensitivities. Table 7 shows
the equations of the trend lines. In a perfectly matching set of measurements, the slope equals 1 and
the intercept equals 0. Table 8 shows that the measurements for the different datasets behaved quite
differently. For dataset 2, the slopes were close to 1, indicating that the changes in the sensor readings
had almost equal sensitivity to the measured quantity. However, the slopes for dataset 1 show that the
results obtained by participant 3 had different sensitivity compared with participants 1 and 2.

Table 8. The equations of trend lines fitted between the results of different participants. Grinding burn
samples and two outlier samples were removed from dataset 1.

Dataset Participant 1 vs. 2 Participant 1 vs. 3 Participant 2 vs. 3
1 y =0.92x - 5.60 y =0.72x + 4.44 y =0.62x + 16.50
2 y =0.95x — 6.15 y =0.92x — 4.18 y =0.94x + 3.14

Furthermore, it was noticed that along with a different sensitivity, the relationship seems to
be slightly nonlinear when participant 3 is compared with other participants in dataset 1. This is
illustrated in Figure 9, which shows the scatter plots of the RMS values recorded by the participants.
A polynomial trend line was also added to the figure to highlight the nonlinear relationship.

To study the influence of different grinding parameters, the average deviations between grouped
measurements were computed. The groups represent measurements carried out at high and low levels
of the studied variable. The average deviations are given in Table 8, where the rows are not comparable
but the columns are. The Table 9 shows that hardness (i.e., tempering) was the main factor influencing
the outcome of grinding. Regarding the grinding parameters, intensity had more influence on the
residual stress, while abrasives had more influence on hardness.
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Figure 9. The relationship between (a) participants 1 and 2, (b) participants 1 and 3, and (c) participants

2 and 3 for dataset 1.

Table 9. Average deviation between high and low levels tested.

Parameter Hardness Abrasive Intensity
RS (MPa) —64.46 —18.08 —45.94
FWHM 0.71 0.07 0.01

5. Conclusions

This study considered proficiency testing for magnetic Barkhausen noise measurement. Three
laboratories carried out measurements on two sets of samples. The samples were ground with different
grinding parameters that were changed based on the design of the experiments. The standard analysis
of variance was applied to the measurement results to identify the sources of variation. The dataset
recorded included 10 repetitions of each measurement. This information was used to calculate
uncertainties for measurements and to further identify a suitable number of repetitions needed to

guarantee the validity of the results.

Uncertainty evaluation is a key factor in any metrological system when drawing conclusions about
measurement results. For the Barkhausen noise technique, this approach is not fulfilled. Therefore,
the study of uncertainty shown in this paper can have a great impact on future measurement setups.
The main conclusions drawn from the analyses are listed below:

e In the participating laboratories, the same equipment was tested; however, because each sensor
was fabricated individually, some variations in the measurement process occurred.

e Tempering before grinding was the main factor, and for the grinding parameters, intensity was
the main factor affecting residual stress, while abrasives had more influence on hardness.

e  The analysis showed that the absolute measurement values were not reproducible, especially if
a different sensor was applied. Still, the results were reproducible and comparable. The only
exception was observed for dataset 1, where the RMS values captured by one participant showed
nonlinear behavior with respect to the others. The reason for this was not identified but requires

further analysis.
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e  Theuncertainty calculations suggest that at least five repetitions of Barkhausen noise measurements
need to be carried out to guarantee the validity of the results.

e Manual and semimanual measurements require careful preparation and realization in order
to not cause variations in measurement values. Because there are plenty of factors that can
affect measurement, the best possible way is to prepare an internal standardization for sample
preparation and measurement methodology and follow it every time. That will minimize
preparation errors. So far, there is no global standard for the Barkhausen technique.

e Calculated uncertainty parameters follow the standardization for interlaboratory measurement
evaluation, but in future work, the Monte Carlo method should be used. This is due to many
parameters having an effect on the final measurement value.
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