
sensors

Article

A MIMO Radar-Based DOA Estimation Structure
Using Compressive Measurements

Tao Chen 1 , Jian Yang 1,2 and Muran Guo 1,*
1 College of Information and Communication Engineering, Harbin Engineering University,

Harbin 150001, China; chentao@hrbeu.edu.cn (T.C.); jyang@hrbeu.edu.cn (J.Y.)
2 Beijing Institute of Remote Sensing Equipment, Beijing 100854, China
* Correspondence: guomuran@hrbeu.edu.cn

Received: 8 October 2019; Accepted: 26 October 2019; Published: 29 October 2019
����������
�������

Abstract: In this paper, we propose a novel direction-of-arrival (DOA) estimation structure based on
multiple-input multiple-output (MIMO) radar with colocated antennas, referred to as compressive
measurement-based MIMO (CM-MIMO) radar, where the compressive sensing (CS) is employed to
reduce the number of channels. Therefore, the system complexity and the computational burden are
effectively reduced. It is noted that CS is used after the matched filters and that a measurement matrix
with less rows than columns is multiplied with the received signals. As a result, the configurations of
the transmit and receive antenna arrays are not affected by the CS and can be determined according
to the practical requirements. To study the estimation performance, the Cramér–Rao bound (CRB)
with respect to the DOAs of the proposed CM-MIMO radar is analyzed in this paper. The derived
CRB expression is also suitable for the conventional MIMO radar by setting the measurement matrix
as an identity matrix. Moreover, the CRB expression can work in the under-determined case, since the
sum-difference coarray structure is considered. However, the random measurement matrix leads to
high information loss, thus compromising the estimation performance. To overcome this problem,
we consider that the a prior probability distribution of the DOAs associated with the targets can be
obtained in many scenarios and an optimization approach for the measurement matrix is proposed
in this paper, where the maximum mutual information criterion is adopted. The superiority of the
proposed structure is validated by numerical simulations.

Keywords: compressive sensing; Cramér–Rao bound; DOA estimation; information theory;
MIMO radar

1. Introduction

Direction-of-arrival (DOA) is an important branch of array signal processing and has gained
considerable attention for several decades [1,2]. In conventional DOA estimation problem, the passive
(or receive-only) array is used, where the received signals can be either the signals emitted by the
targets or the signals that are transmitted by one transmitter and then reflected by the targets. In some
literatures, this structure is called single-input multiple-output (SIMO) radar system [3,4]. However,
the corresponding estimation performance is limited by the array aperture. The multiple-input
multiple-output (MIMO) radar system, which is proposed in Reference [5], has multiple transmit
antennas, where multiple independent waveforms are transmitted to detect the targets. By using
a bank of matched filters in the receive part, a sum coarray is generated. Thus, the MIMO radar can
achieve an extended array aperture, thus improving the estimation accuracy and the number of degrees
of freedom (DOFs) [6]. More recently, the massive MIMO concept was introduced in Reference [7].
Then, this concept was extended to large-scale MIMO radar [8], where numerous antennas are used.
However, a shortcoming for MIMO radar is that the number of the channels after matched filtering is
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extremely large. Considering a MIMO radar consisting of M transmit antennas and N receive antennas,
the number of channels is MN. Thus, the system complexity and cost, as well as the computational
burden, will dramatically increase when large M and N are used.

Compressive sensing (CS) is a technique that can recover the sparse original data from a small
set of samples [9,10]. The sparse reconstruction method for the DOA estimation problem has been
widely used in the passive radar system, for instance, the estimation algorithm [11,12] and the array
interpolation [13,14]. We should note that CS is essentially a framework, meaning that, if a problem
can be described by a sparse model, then CS can be used to solve the problem, e.g., References [15–17].
Recently, due to the superiorities of the MIMO radar system, the applications of CS in the MIMO
radar system have been studied in several literatures [18–24]. In Reference [18], the compressive
reconstruction algorithm was extended to the MIMO radar system and a waveform design method
was also introduced. In the same proceeding, the CS was employed in a distributed MIMO radar
system to reduce the sampling rate [19]. Later, Reference [20] extended the results in Reference [19]
into the MIMO radar system with colocated antennas, where the antennas were randomly placed
on a disk. In addition, the performance in the presence of a jammer was analyzed in Reference [20].
Then, two approaches were proposed in Reference [21] to optimize the measurement matrix that is
used in the CS-based MIMO radar system. In Reference [22], the technique of step frequency was
used in the CS-based MIMO radar system. The CS was exploited in the spatial domain to reduce the
number of antennas of the MIMO radar system in Reference [23], and the recovery guarantees were
also derived. In Reference [24], the performance of several DOA estimation algorithms for the MIMO
system is discussed under the practical background of future handsets.

An alternative way to use the CS has been proposed in References [25,26] for the passive radar
system, where a measurement matrix is multiplied with the received signal. The number of channels
is therefore reduced, thus leading to an improvement on the system complexity and the computational
burden. The measurement matrix, denoted as Φ, is essentially the CS kernel, where Φ has less rows
than columns and is usually selected in random. Using a random Φ will lead to information loss and
is analyzed in Reference [27] through Cramér–Rao bound (CRB). To address this issue, the spatial
correlation function and the CRB are used to design the measurement matrix Φ [28]. Furthermore,
if the a prior probability density of the incident directions is known, Φ can be optimized iteratively by
maximizing the mutual information between Φ and the DOAs [29,30]. The compression structure has
also been used in sparse arrays [31,32].

However, existing works on the CS-based MIMO radar mainly focus on reducing the sampling
rate or the number of antennas through exploiting the CS, where the sparsity in time domain or
spatial domain is considered. As to the research on the use of CS to reduce the number of channels,
the background of passive radar is taken into account, while the relevant research under the MIMO
radar background is still open. Therefore, in this paper, the CS is employed to reduce the number of
channels in an MIMO radar system. It is noted that, different from the spatial compressive MIMO
radar proposed in Reference [23], the transmit and receive antenna arrays remain unchanged in
the proposed structure. In addition, the transmit or receive antennas are not required to be placed
with equal interval. By multiplying the received signal with the measurement matrix, the system
complexity as well as the computational burden are effectively reduced. Furthermore, the estimation
accuracy is guaranteed due to the large aperture of the transmit and receive antenna array. To study
the estimation performance of the proposed structure, the CRB is then explicitly analyzed in this
paper. Note that, since the sum-difference coarray structure is exploited, the proposed CRB expression
can work in the under-determined scenario. In addition, by setting the measurement matrix Φ as
an identity matrix, the CRB expression derived in this paper can be used for the conventional MIMO
radar in the under-determined case. To reduce the information loss, we extend the maximum mutual
information criterion to the proposed structure. When the prior knowledge of the incident angles is
obtained, the estimation accuracy can be improved by using the optimized Φ. Numerical simulations
are designed to examine the performance and the CRB analysis of the proposed structure.
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This paper is organized as follows. Section 2 introduces the system model and an improved
multiple signal classification (MUSIC) algorithm of the proposed CM-MIMO radar. Then, the CRB
expression is derived and analyzed in Section 3. The optimization of the measurement matrix is given
in Section 4. Numerical simulations are presented in Section 5, and Section 6 concludes this paper.

Notations: we use the lowercase letter (e.g., a), lowercase bold letter (e.g., a), and uppercase bold
letter (e.g., A) to represent the scalars, vectors, and matrices, respectively. The superscripts ∗, T,
and H denote the complex conjugate, the transpose, and the complex conjugate transpose, respectively.
In addition, vec(·) is used to represent the vectorization and expectation operations. The diagonal
matrix of which the diagonal entries are given in a is expressed by diag(a). Moreover, tr(A) means
the trace of matrix A. The identity matrix with dimension L× L is represented by IL. The Kronecker
product and Khatri–Rao product are denoted by ⊗ and ◦, respectively.

2. The Proposed CM-MIMO Radar Structure

2.1. System Model

In this section, we consider a MIMO radar with M colocated transmit antennas and N colocated
receive antennas. Denote two different integer sets as T and R. The locations of the transmit antenna
array and the receive antenna array are given as {d̄td0|d̄t ∈ T} and {d̄rd0|d̄r ∈ R}, respectively,
where d0 is the half wavelength of the transmitted signals. It is noted that T and R are not required
to consists of all continuous integers, indicating that the transmit and receive arrays are not force to
be ULAs.

Assume that Q targets with DOAs {θ1, θ2, · · · , θQ} distribute in the far-field area. Since the issue
discussed in this paper is DOA estimation, no clutter is considered. The M orthogonal waveforms
with unit energy are transmitted by the M transmit antennas. In addition, omnidirectional antennas
are used to transmit and receive signals. Then, after matched filtering, the received signal vector with
respect to the mth transmit antenna, denoted as xm(t), is expressed as

xm(t) =
Q

∑
q=1

[
at(θ̄q)

]
m ar(θ̄q)sq(t) + nm(t), (1)

where sq(t) is the reflectivity of the qth target with q = 1, 2, · · · , Q, nm(t) is the noise,
and θ̄q = d0 sin θq/λ0 is the normalized DOA of the qth target. It is noted that sq(t) is assumed
to follow complex Gaussian distribution CN (0, pq), where pq is the power of the reflected signal
associated with the qth target. In addition, we assume that the targets are uncorrelated between each
other, indicating that sq(t) is mutually uncorrelated. Furthermore, sq(t) is assumed to be independent
with the noise. The steering vector of the transmit array and the receive array, i.e., at(θ̄q) and ar(θ̄q),
are respectively defined as

at(θ̄q) =
[
ej2πd̄t1 θ̄q , · · · , ej2πd̄tM θ̄q

]T
, (2)

ar(θ̄q) =
[
ej2πd̄r1 θ̄q , · · · , ej2πd̄rN θ̄q

]T
, (3)

where d̄tm is the position of the mth transmit antenna with m = 1, 2, · · · , M and d̄rn is the position
of the nth receive antenna with n = 1, 2, · · · , N. As such, assume that no mutual coupling effect is
encountered. Then, the receive signal vector x(t) is

x(t) = As(t) + n(t), (4)

where s(t) = [s1(t), · · · , sQ(t)]T and n(t) is assumed to be the white Gaussian noise with zero mean
and the covariance matrix pnIMN in which pn is the noise power. The manifold matrix A is defined as
A = [a(θ̄1), · · · , a(θ̄Q)], where a(θ̄q) = at(θ̄q)⊗ ar(θ̄q).
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It is found that MN channels are required to process the received data, which leads to a high
system complexity. Furthermore, the computational burden is increased due to the high dimension of
the received signal. To address this issue, a compression operation is inserted after the matched filters.
The compression operation can be described as a complex-valued matrix, denoted as Φ ∈ CL×MN

with L < MN as the number of channels after compression. The system configuration is shown in
Figure 1. Then, the compressive measurement vector y(t) is

y(t) = Φx(t) = Φ [As(t) + n(t)] . (5)

Figure 1. System configuration of the proposed compressive measurement (CM)-multiple-input
multiple-output (MIMO) radar structure.

In order to keep the noise independent between different channels after compression, Φ is
assumed to be row orthogonal, i.e., ΦΦH = IL. The covariance matrix of y(t) is expressed as

Ryy = ΦARssAHΦH + pnIL, (6)

where Rss is the covariance matrix of s(t) of which the diagonal elements are the power of the reflected
signals, i.e., Rss = diag(p) with p = [p1, · · · , pQ]

T . In practice, Ryy is approximated by a finite number
of signal snapshots. Denote R̂yy as the estimated covariance matrix which is obtained by

R̂yy =
T

∑
t=1

y[t]yH [t], (7)

where T is the number of snapshots.

2.2. Improved MUSIC Algorithm

MUSIC is a high-resolution DOA estimation algorithm and can estimate the DOAs simultaneously.
Due to these superiorities, the MUSIC algorithm has gained considerable attention. Several improvements
were made on MUSIC to make it available in other scenarios, e.g., sparse array-based DOA
estimation [33,34], compressive sensing [35], and radar imaging [36–39]. Therefore, we develop
a MUSIC-based algorithm for the proposed CM-MIMO radar system in this section.



Sensors 2019, 19, 4706 5 of 14

After compression, the conventional MUSIC algorithm fails to estimate the DOAs. A minimum
variance distortionless response (MVDR)-based algorithm has been introduced in References [25,29]
for the passive radar system, where the compressive measurements are used. The row orthogonality
of Φ guarantees that the noise subspace would not spread to the signal subspace. Considering the
similarities between MUSIC and MVDR, we introduce an improved MUSIC algorithm here. It is noted
that, different with the passive radar system, the steering vector used here is obtained by computing
the Kronecker product between the steering vectors of the transmit and receive antenna arrays.
The improved MUSIC is also a high-resolution estimation algorithm and can achieve a high estimation
accuracy. On the other hand, the number of resolvable targets of the proposed algorithm is limited by
the dimension of the covariance matrix, which depends not only on the number of unique lags in the
sum coarray but also on the number of channels after compression. We should note that the number of
targets Q can be pre-estimated using the model order selection technique, e.g., minimum description
length (MDL) [40]. Thus, here, we assume that Q is already obtained before proceeding the improved
MUSIC algorithm. The procedure of the proposed algorithm is briefly summarized as follows.

1. Compute R̂yy using Equation (7);
2. Make the eigen-decomposition for the estimated covariance matrix R̂yy;
3. Select the eigenvectors corresponding to the smallest L − Q eigenvalues to obtain the noise

subspace, denoted as ÛN ;
4. Devide the spatial domain into a dense grid G, and compute the MUSIC spectrum using the

following equation:

PMUSIC =
1

aH(θg)ΦHÛNÛH
NΦa(θg)

, (8)

where g ∈ G is the index of the spatial grid.
5. Find the largest Q peaks of PMUSIC, and the corresponding directions are the estimated DOAs.

3. CRB Analysis

As the sparse array concept develops, DOA estimation based on the sparse MIMO radar has been
exploited in many literatures, e.g., References [41–43]. To make the derived CRB expression available
in the under-determined case, the sum-difference coarray structure is involved. Therefore, we first
briefly introduce the definitions of the sum coarray and sum-difference coarray.

From the expression of a(θ̄q), a sum coarray S can be defined as follows:

S = {n1 + n2|n1 ∈ T, n2 ∈ R} . (9)

Note that, for some array structures, there exist overlapping lags in the sum coarray. Let |S| be
the cardinality of S; then, a binary matrix, denoted as Js, is defined in Definition 1.

Definition 1. The binary matrix Js is of size MN × |S|, and the column of Js corresponding to the lag m is
defined as

〈Js〉:,m = vec (I(m)) , m ∈ S, (10)

where I(m) is given as

〈I(m)〉n1,n2 =

{
1 if n1 + n2 = m,
0 otherwise.

n1 ∈ T, n2 ∈ R. (11)

It is noted that, in Definition 1, the triangle bracket 〈xS〉n represents the value corresponding to
the support n ∈ S. For example, let xS = {2, 3, 4} and S = {−1, 0, 1}. Then, we have 〈xS〉−1 = 2,
〈xS〉0 = 3 and 〈xS〉1 = 4.
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From the sum coarray, it can be found that the aperture corresponding to the MIMO radar is
extended, thus improving the number of DOFs and the estimation accuracy. Denote As as the manifold
matrix of the sum coarray. Then, the relationship between A and As is expressed as

A = JsAs. (12)

Inspired by the sparse array concept, the sum-difference coarray was exploited to further improve
the number of DOFs. The sum-difference coarray is written as

D =
{

n′1 − n′2|n′1, n′2 ∈ S
}

. (13)

Similarly, another binary matrix, denoted as Jsd, is defined in Definition 2.

Definition 2. The binary matrix Jsd is of size |S|2 × |D|, and the column of Jsd corresponding to the lag md is
defined as

〈Jsd〉:,md = vec (Isd(md)) , md ∈ D, (14)

where Isd(md) is given as

〈Isd(md)〉n′1,n′2
=

{
1 if n′1 − n′2 = md,
0 otherwise.

n′1, n′2 ∈ S. (15)

Denote Asd as the manifold matrix of the sum-difference coarray. The relationship between Asd
and As is expressed as

A∗s ◦As = JsdAsd (16)

Note that the stochastic model for s(t) is considered in this paper. From Equation (6), it is known
that the compressive measurement vector y(t) also follows the complex Gaussian distribution
CN (0, Ryy). Define the real-valued parameter vector α as

α =
[
θ̄T pT pn

]T
, (17)

where θ̄ =
[
θ̄1, · · · , θ̄Q

]T is the vector of the normalized DOAs. According to Reference [44], the (µ, ν)th
entry of the Fisher information matrix (FIM) of the proposed structure is

[FIM(α)]µ,ν = Ttr
(

R−1
yy

∂Ryy

∂αµ
R−1

yy
∂Ryy

∂αν

)
. (18)

Utilizing the properties of matrix computation [45], Equation (18) can be further simplified as

[FIM(α)]µ,ν

= T
[(

RT
yy ⊗Ryy

)− 1
2 ∂ryy

∂αµ

]H [(
RT

yy ⊗Ryy

)− 1
2 ∂ryy

∂αν

]
,

(19)

where ryy = vec(Ryy) is the vectorized covariance matrix. Although the signal power p and the noise
power pn are unknown parameters, the normalized DOAs θ̄ are the only parameters to be estimated.
Therefore, α can be divided into two parts, and the FIM is then rewritten as

FIM(α) = T

[
GH

∆H

] [
G ∆

]
, (20)
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where G and ∆ are defined as

G =
(

RT
yy ⊗Ryy

)− 1
2
[

∂ryy

∂θ̄1
, · · · ,

∂ryy

∂θ̄Q

]
, (21)

∆ =
(

RT
yy ⊗Ryy

)− 1
2
[

∂ryy

∂p1
, · · · ,

∂ryy

∂pQ
,

∂ryy

∂pn

]
. (22)

If FIM is invertible, the CRB expression for θ̄ of the proposed structure is given as

CRB(θ̄) =
1
T

(
GHΠ⊥∆ G

)−1
, (23)

where Π⊥∆ is the null space of ∆, defined as Π⊥∆ = I− ∆(∆H∆)−1∆H .
To derive the CRB expression, the vectorized covariance matrix ryy must be simplified first.

According to the definition of ryy, we have

ryy = vec(Ryy)

=
Q

∑
q=1

pqvec
([

Φa(θ̄q)
] [

Φa(θ̄q)
]H
)
+ pnvec (IL)

= (Φ∗ ⊗Φ)
Q

∑
q=1

pqa∗(θ̄q)⊗ a(θ̄q) + pnvec (IL) .

(24)

By substituting Equation (12) into Equation (24), ryy can be further simplified as

ryy = (Φ∗ ⊗Φ) (Js ⊗ Js)
Q

∑
q=1

pqa∗s (θ̄q)⊗ as(θ̄q) + pnvec (IL) , (25)

where as(θq) is the steering vector of the sum coarray associated with the qth target. It is noted that
the property (AB)⊗ (CD) = (A⊗C)(B⊗D) is exploited in Equation (25). Then, using the equality
described in Equation (16), ryy is rewritten as

ryy = (Φ∗ ⊗Φ) (Js ⊗ Js) Jsd

Q

∑
q=1

pqasd(θ̄q) + pnvec (IL)

= FAsdp + pnvec (IL) ,

(26)

where asd(θ̄q) is the steering vector of the sum-difference coarray associated with the qth target and
F = (Φ∗ ⊗Φ) (Js ⊗ Js) Jsd.

Thus, the expressions of the partial derivative of ryy with respect to the normalized DOA,
the reflected signal power, and the noise power are

∂ryy

∂θ̄q
= j2πpqFdiag(D)asd(θ̄q), (27)

∂ryy

∂pq
= Fasd(θ̄q), (28)

and
∂ryy

∂pn
= vec (IL) , (29)
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respectively. Then, we can obtain G and ∆, expressed as

G = j2π
(

RT
yy ⊗Ryy

)− 1
2 Fdiag(D)asd(θ̄q)P, (30)

∆ =
(

RT
yy ⊗Ryy

)− 1
2
[
Fasd(θ̄q) vec(IL)

]
, (31)

where P = diag(p). As such, the CRB for θ̄ of the proposed structure can be computed using
Equations (23), (30) and (31). Since the sum-difference coarray is considered in the CRB expression,
we have the following remark.

Remark 1. The proposed CRB expression also works in the under-determined case, where the number of targets
is larger than the number of lags in the sum coarray.

It is noted that, by setting the measurement matrix as an identity matrix, the proposed DOA
estimation structure degenerates to the conventional MIMO radar. On the other hand, the matrix F is
simplified as

F = (Js ⊗ Js) Jsd. (32)

As this moment, we can obtain the CRB of the conventional sparse MIMO radar by substituting
Equation (32) into Equations (30) and (31), which has not been derived before. However, in the
under-determined case, the correlation information of the received signal vector must be utilized,
which will equivalently generate a group of coherent sources. Then, the improved MUSIC algorithm,
demonstrated in Section 2.2, fails to estimate the DOAs. Therefore, the under-determined case is not
considered in this paper.

4. Optimization of the Measurement Matrix

Denote the a prior probability density function (pdf) of the DOA as f (θ). Then, discretize f (θ)
into K angular bins, where the length of each bin is represented by ∆θ. Denoting p′k = f (θk)∆θ,
we then have ∑k∈K p′k = 1, where K = {1, 2, · · · , K}. According to the derivations in Reference [29],
the mutual information between the compressive measurements and the DOA, denoted as I(y; θ),
is approximated as

I(y; θ) ≈ − ln ∑
k∈K

p′k
∣∣∣Ryy|θk

∣∣∣−1
− ∑

k∈K
p′k ln

∣∣∣Ryy|θk

∣∣∣ , (33)

where Ryy|θk
= Φ(psa(θ)aH(θ) + pnIMN)Φ

H with ps representing the reflected source power.
Then, the gradient of I(y; θ) with respect to Φ is

∇Φ I(y; θ) =

∑
k∈K

p′k
∣∣∣Ryy|θk

∣∣∣−2 ∣∣∣Ryy|θk

∣∣∣′
∑

k∈K
p′k
∣∣∣Ryy|θk

∣∣∣−1 − ∑
k∈K

p′k

∣∣∣Ryy|θk

∣∣∣′∣∣∣Ryy|θk

∣∣∣ , (34)

where
∣∣∣Ryy|θk

∣∣∣′ is the partial derivative of
∣∣∣Ryy|θk

∣∣∣ with respect to Φ. For a symmetric matrix A,
the following equality holds [46]:

∂|BABH |
∂B

= 2(BABH)−1BA. (35)

Then,
∣∣∣Ryy|θk

∣∣∣′ is expressed as

∣∣∣Ryy|θk

∣∣∣′ = 2R−1
yy|θk

ΦRxx|θk
, (36)
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where Rxx|θk
= psa(θ)aH(θ) + pnIMN . Substituting Equation (36) into Equation (34), ∇Φ I(y; θ) can be

obtained. Then, the measurement matrix Φ can be optimized iteratively through

Φ(ξ+1) = Φ(ξ) + κ∇Φ(ξ) I(y; θ), (37)

where ξ represents the ξth iteration and κ > 0 is the step size.

5. Simulations

In the following simulations, it is assumed that the normalized DOAs of the targets are
θ̄q = −0.45 + 0.85(q− 1)/Q with q = 1, 2, · · · , Q. The reflected signals have the same power and
are uncorrelated with each other. In addition, the signals are independent from the noise. To evaluate
the estimation accuracy, the root mean square error (RMSE) is defined as follows:

RMSE =

√√√√ 1
IQ

I

∑
i0=1

Q

∑
q=1

(θ̄q − ˆ̄θ(i0)q )2, (38)

where ˆ̄θ(i0)q is the estimated normalized DOA of the q target in the i0th Monte–Carlo trial and I is the
total number of Monte–Carlo trials. A ULA consisting of 7 antennas is used for both transmitting and
receiving, indicating that M = N = 7. Thus, for conventional MIMO radar, MN = 49 channels are
required. We denote this MIMO radar as MIMO radar 1, which will be used for comparison in the
following simulations. In the proposed structure, the number of channels is compressed to L = 25
by using a measurement matrix Φ with dimension 49× 25. Each entry in Φ is randomly generated
from the standard complex Gaussian distribution CN (0, 1). To show the superiority of the proposed
structure when the number of channels is fixed, a conventional MIMO radar, denoted as MIMO radar 2
in the simulations, is considered, where the 5-element ULA is used to transmit and receive signals.

5.1. Spatial Spectrum

The performance of the proposed structure is evaluated by comparing the spatial spectrum in the
first simulation. It can be found that the number of DOFs for MIMO radar 1 and the proposed structure
is 12, while the MIMO radar 2 can resolve 8 targets at most. Hence, we consider Q = 7 targets here
so that all the structures can estimate the DOAs correctly. Using 0 dB signal-to-noise ratio (SNR) and
100 snapshots, the simulation results are shown in Figure 2. It is observed that the proposed structure
obtains a similar spatial spectrum with the MIMO radar 1. On the other hand, the proposed structure
can provide a better spectrum than the MIMO radar 2.
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Figure 2. Spatial spectrum comparison.
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5.2. RMSE and CRB Simulation

To further assess the estimation accuracy of the proposed structure, the RMSE is computed in
this simulation. In addition, the CRB expression derived in this paper is also examined. Similarly,
Q = 7 targets are considered here and the MIMO radar 1 and MIMO radar 2 are used for comparison.
Simulation results are plotted in Figure 3. The number of snapshots is 100 in Figure 3a, and SNR is
0 dB in Figure 3b. Due to the extended array aperture, the proposed structure outperforms the MIMO
radar 2, indicating that the proposed structure can achieve a better performance than the conventional
MIMO radar when the number of channels is the same. However, the compression operation leads to
information lost, which will affect the estimation accuracy, as shown in the simulation results.
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Figure 3. RMSE vs. (a) SNR and (b) the number of snapshots.

In addition, it is observed that the RMSE approaches the CRB as the SNR or the number of
snapshots get higher, indicating that the CRB expression derived in this paper can effectively predict
the estimation performance of the proposed CM-MIMO radar system and that the improved MUSIC
algorithm is the optimal estimation algorithm under the given assumptions. However, we should
note that MUSIC cannot always meet the CRB, for instance, in case of the correlated targets or the
sparse arrays.

Furthermore, to verify that the CRB expression also works in the under-determined case for
conventional sparse MIMO radar, we consider a coprime MIMO radar, where the antenna positions
of the transmit and receive arrays are T = {0, 3, 6, 9} and R = {0, 4, 8}, respectively. The number of
unique lags in the corresponding sum-difference coarray is 29, meaning that the number of DOFs is 14.
Using 0 dB SNR and 100 snapshots, the curve of the CRB versus the number of targets is plotted in
Figure 4. It is obvious that the maximum number of resolvable targets indicated by the CRB is also 14,
which is consistent with the array configuration.

5.3. Optimization of the Measurement Matrix

In this section, we assume that there is only one target in the spatial domain and that the
incident direction follows the complex Gaussian distribution CN (0, 52). In the optimization procedure,
300 iterations are repeated with κ = 0.01 being the step size. It is noted that the exact SNR which
is difficult to get is required in the optimization procedure. To address this issue, as analyzed
in Reference [47], the optimization is proceeded in high SNR region. The RMSE is computed
to evaluate the estimation accuracy, where the proposed structure with random Φ, the proposed
structure with optimized Φ, and the MIMO radar 1 are considered. The simulation results are
given in Figure 5, where 100 snapshots are used in Figure 5a and 0 dB SNR is used in Figure 5b.
As expected, the optimization for the measurement matrix can reduce information loss, thus improving
the estimation accuracy, especially in the a low-SNR region. An interesting result is that when, SNR is



Sensors 2019, 19, 4706 11 of 14

−16 dB, the proposed structure using optimized Φ can obtain a better performance than the MIMO
radar 1. A possible reason is that, in the compression process, most of the useful information remains
while the noise is greatly filtered because of the use of optimized Φ. As a result, the SNR is improved
after compression. However, as the SNR increases, the information loss is larger than the noise
suppression. Thus, MIMO radar 1 still obtains the best estimation accuracy.
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Figure 4. Cramér–Rao bound (CRB) for the normalized direction of arrivals (DOAs) of conventional
sparse MIMO radar versus the number of targets.
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Figure 5. RMSE vs. (a) SNR and (b) the number of snapshots.

6. Conclusions

In this paper, we employed the CS with the MIMO radar structure and proposed the CM-MIMO
radar system. The proposed structure can effectively reduce the system complexity and computational
burden of the estimation algorithm, where the estimation accuracy is also guaranteed. To reveal the
performance of the proposed structure, we also derived the corresponding CRB expression, which is
suitable for both the traditional case and the under-determined case. Furthermore, an optimization
approach based on maximum mutual information criterion was proposed in this paper for the case
where the a prior probability density of the targets is known. Simulations examined the performance
of the proposed structure and verified the CRB analysis. It is note that the system model constructed
in this paper is under the assumption of transmitting narrowband signals. Therefore, developing
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the system model and the corresponding algorithms that are suitable for the wideband scenario is
a direction that is worth exploring in the future.
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