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Abstract: Integrated systems based on wireless sensor networks (WSNs) and unmanned aerial 
vehicles (UAVs) with electric propulsion are emerging as state-of-the-art solutions for large scale 
monitoring. Main advances stemming both from complex system architectures as well as powerful 
embedded computing and communication platforms, advanced sensing and networking protocols 
have been leveraged to prove the viability of this concept. The design of suitable algorithms for data 
processing, communication and control across previously disparate domains has thus currently 
become an intensive area of interdisciplinary research. The paper was focused on the collaborative 
aspects of UAV–WSN systems and the reference papers were analyzed from this point of view, on 
each functional module. The paper offers a timely review of recent advances in this area of critical 
interest with focus on a comparative perspective across multiple recent theoretical and applied 
contributions. A systematic approach is carried out in order to structure a unitary from conceptual 
design towards key implementation aspects. Focus areas are identified and discussed such as 
distributed data processing algorithms, hierarchical multi-protocol networking aspects and high 
level WSN–constrained UAV-control. Application references are highlighted in various domains 
such as environmental, agriculture, emergency situations and homeland security. Finally, a research 
agenda is outlined to advance the field towards tangible economic and social impact. 

Keywords: unmanned aerial system; wireless sensor network; data acquisition; intelligent data 
processing; communication protocol and standardization; data transmission; internet of things; 
integrated collaborative systems; path design 

 

1. Introduction 

The tendency to use collaborative unmanned aerial vehicle-wireless sensor network (UAV–WSN) 
systems for surveillance, exploring and monitoring large regions of interest is increasingly strong 
today. These systems are able to integrate information from ground (WSN), air (UAV), space 
(satellite—GPS or equivalent) and internet. The advantage of these collaborative systems has been 
emphasized for large-scale monitoring [1], increasing mobility, accessibility and reaction time in case 
of emergency. The main novelty included a hybrid system architecture for data collection, which 
integrates an optimal method for the UAV trajectory design in conjunction with cluster head selection 
schemes at the ground sensor level. Practical development and implementation allow validation of 
the proposed theoretical approach in scalable fashion with tens to hundreds of ground nodes. Field 
level data is first aggregated at the node level before being relayed through the UAV systems to the 
central gateway. Salient example of data aggregation methods is represented by consensus 
algorithms, which allow for distributed agreement locally thereby reducing the burden on the 
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communication channels and reducing overall latency. Matching WSN transmission schedules with 
UAV over flight patterns is also highly relevant for the collaborative aspects of such large-scale 
monitoring systems. Neither of the subsystems is efficient in what regards data transmission, 
reliability and duration of functioning by itself. Managing communication only through ground 
sensors would quickly deplete their batteries and using only UAVs would be wasteful from an energy 
point of view. Thus, a mix between these two types of agents (fixed and mobile) provides a solution, 
which is better than the sum of their parts. 

Alongside this initial example there are many relevant and recent contributions, mostly in the 
form of papers, research projects and commercial products concerning either WSN or UAV 
implementations. Neither of these subsystems is efficient in what regards data transmission, 
reliability and duration of functioning by itself. Managing communication only through ground 
sensors would quickly deplete their batteries and using only UAVs would be wasteful from an energy 
point of view. Thus, a mix between these two types of agents (fixed and mobile) provides a solution, 
which is better than the sum of their parts. 

Several surveys are also available that synthesize the characteristics, application areas and 
challenges in each of them, such as [2–6] for WSN and [7,8] for UAV. Over time, sensor networks 
have been widely used for data collection in both outdoor and indoor settings and in various 
application domains. Gradually, given significant technological development, the sensor networks 
have been enhanced with data processing elements, towards on-board intelligence. WSN design 
considerations, mainly relating to: production cost, accessibility, scalability and reliability, 
networking protocols, physical constraints such as: energy consumption, communication range and 
autonomy, data transmission and processing capabilities have been analyzed in many papers in the 
last years. The reference WSN architecture has a hierarchical tree structure and includes several 
sensing nodes (SN) grouped around a cluster head (CH). The CH is responsible for collecting and 
aggregating sensor data to make it available to the user [1]. More complex architectures focus on 
optimizing packet transmission time and reliability and involve multi-hop, mesh routing and even 
adaptive and dynamic topologies, such as in cellular networks, where challenge arise as nodes can 
join or leave the network at any time. 

On the other hand, unmanned aerial vehicles experienced a rapid development as they enabled 
fast access to otherwise inaccessible areas, with initial focus in military and disaster management 
fields. They were referred in the literature under various names such as: UAVs, drones, aerial 
platforms and aerial robots. UAVs can be characterized according to different categories:  
(a) according to the type of communication: open, specific and certified—EASA (European Aviation 
Safety Agency) classification [9]; (b) according to the type of motor: with thermal or electric motors 
and (c) according to the type of wing: airplane type (fixed wing) or helicopter type (rotor or multi-
copter). The EASA rules, which are based on the evaluation of the risk of operation, establishes the 
obligations of drone manufacturers and operators in terms of safety, respect for privacy, the 
environment, protection against noise and security. Thus, starting from June 2020 all drone operators 
shall register themselves and receive an authorization before using a UAV. The registration number 
needs to be displayed on the UAV. It must be specified if the UAV path is below 120 m (visual line 
of sight—VLOS) or more (beyond visual line of sight—BVLOS). Increased pay-load capabilities have 
allowed equipping them with cameras to easily survey a given area, with small tanks of chemical 
solutions for spraying pesticides or fire extinguishing and even with WSN nodes for faster 
deployment. While the basic architecture considers a single UAV and one or more base stations for 
transmitting trajectory parameters, more recent advances analyze multi-copter applications, with or 
without inter-UAV cooperation to overcome energy and distance limitations. Probably the most 
important issue is that these devices raised safety concerns regarding the allocation of airspace, which 
is currently separated from that of commercial airplanes or helicopters. This problem is under 
analysis at both research and institutional/regulatory levels and it is expected that by using specific 
intelligent technologies to reduce the risk both in the air and on ground, a suitable and widely 
adopted solution will be identified [9]. 
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While neither WSN nor UAV architectures lack individual applicability, in the last years 
researchers showed interest in integrating these technologies. Motivated by the current evolving 
requirements for monitoring and data collection from extensive geographical spaces, collaborative, 
hybrid (air-ground or mobile-fixed) UAV–WSN systems have been developed [1,10]. The efficient 
use in wide areas of the UAV–WSN collaborative systems, however, requires an artificial intelligence 
component for the acquisition, transmission and processing of data as well as for the control of the 
mission. Although commercially UAVs with different propulsion systems are available, in this paper 
we will only have under consideration those with electric propulsion, which are generally small, with 
reduced maintenance and operational costs. This is also aligned with the current regulatory context 
in Europe and beyond concerning the reduction of carbon emissions, which is driving electrification 
in the transport sector. Electric cars replacing gas-powered vehicles represent just one salient example. 
For most monitoring applications, the use of UAV with electric propulsion is currently widespread. 
Considering the reduced flight autonomy in comparison to thermal powered versions, one solution 
to extend the useful coverage area is to deploy multi-UAV systems. On the other hand, satellites are 
currently indispensable for most global navigation and other applications, but they can also be 
leveraged as complementary support infrastructure for transmitting data or commands for the 
analyzed UAV–WSN systems. Their impact on the environment however should also be accounted 
for, especially due to the release of small particles by rockets at launched [11]. 

This paper aims to review and highlight the collaborative aspect between the mentioned 
elements, organized in an integrated UAV–WSN architecture, as well as the intelligent data 
processing, computation, communication and control methods for carrying out specific monitoring 
and evaluation tasks in certain fields such as: transport, agriculture, disaster management, 
environmental assessment, etc. 

The paper topic is broad, including many keywords, but they must be viewed from the 
standpoint of the collaborative, integrated UAV–WSN system, as they are a means of integration and 
collaboration between ground agents (WSN) and air agents (UAV). On the other hand, the ways in 
which the different functional components of the system collaborate with each other were 
highlighted. For example, the motion planning procedures are discussed from the viewpoint of their 
interaction with the rest of the WSN: path with sensory data collection, image acquisition and 
processing, efficient communication with data collection and processing, etc. 

Recently, many studies have been carried out on the integration of UAV–WSN systems into the 
Internet of things (IoT) paradigm for long-distance mission communication and control or for cloud 
processing and storage. With the increasing number of papers in IoT technologies and considering 
the IoT role as a data sensing and/or actuating node, we believe it is of great interest including this 
topic in our research. Not the least important, a special emphasis was placed on distributed 
computing elements stemming from Fog and Edge Computing [12–14] domains with direct relevance 
to the efficient design of collaborative UAV–WSN systems. 

Many recent contributions, in the form of papers, research projects, and commercial products 
concern the implementation of WSN [2] and UAV [3] systems. The contribution and timely aspect of 
our article stem from a focused overview and highlight regarding the key collaborative aspects 
between the mentioned elements as well as the intelligent data processing, computation, 
communication and control methods. These lead to carrying out specific monitoring and evaluation 
tasks in application domains of critical interest such as: transport, agriculture, natural disaster 
damage management, environmental assessment and others. 

Over time, sensor networks have been widely used for data collection both outdoor and indoor, 
in various fields of applications [3–5]. Gradually, due to the technological development, the sensor 
networks were equipped with data processing elements, thus becoming intelligent ones [6]. 

In our vision, the blueprint for such a complex, collaborative, monitoring system is composed of 
four main parts, as illustrated by Figure 1: Ground WSNs, UAVs, Internet/global system for mobile 
communications (GSM) networks and ground control stations (GCSs). From the communication 
point of view, we identified five possible communication channels: WSN–WSN (between SN—
marked with red and CH marked with blue), WSN–UAV (between CH and WSN), UAV-GCS 
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(between UAV and GDT, associated with GCS), GCS-internet-GCS, UAV–UAV and UAV-satellite-
GCS. The primary task of the UAV team is to cover a given area where one or several WSNs were 
deployed, having as main objectives collecting data and/or capturing surface images from a certain 
area. The main constraints for accomplishing these tasks are the UAV path trajectory and length, 
devices energy consumption, and communication distance between WSN nodes and UAV. In this 
paper we consider the “agent” notion as an equivalent for the following: sensor, cluster head (ground-
based agents), UAV and mobile sink (aerial agent). In our interpretation, the entire WSN–UAV system 
is a heterogeneous multi-agent system. 

 
Figure 1. The concept of an integrated unmanned aerial vehicle-wireless sensor network (UAV–WSN) system. 

The task of designing procedures for generating paths that optimally fulfill the UAV and WSN 
system requirements, in terms of distance and energy consumption, while simultaneously respecting 
collision avoidance is a matter of great interest. There are several criteria that characterize and 
influence the path planning procedures: 

- offline versus online, which differentiates between the flight preparation phase or during the 
actual flight;  

- coverage versus waypoint passing: the former entails a discovery phase in which features like 
sensor position are estimated while the latter focuses on the interaction with the WSN;  

- static versus dynamic: is the path update carried out at runtime or not? 

Many works consider various restrictions that affect the path planning procedure. These range 
from: 

- geometric: the imposition of artificial limitations in the types of paths, which may result [15–18];  
- energy-based: considerations of the energy expenditure and distances within the WSN [19,20], 

limited buffer capacity for the WSN’s sensors [21]);  
- internal dynamics: fixed-wing UAVs have a higher cruising speed and longer operation time 

whereas rotor UAVs are more flexible but have less autonomy [22–24];  
- communication: signal attenuation due to obstacle occlusion [25], minimum communication 

time with the cluster head [20]. 

In general, the path generation is a complex procedure stemming from the nonlinear nature of 
the UAV dynamics and of the various operational constraints, which include: waypoint passing, line-
of-sight communication, collision avoidance, etc. All these elements lead, in its more general form, to 
a nonlinear (in cost and constraints) constrained optimization problem, which is often impractical to 
solve [26,27]. 
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Noteworthy, the schemes encountered consider mostly a single UAV operation scenario. Those 
which have multiple UAV usually partition the tasks a priori such that each of the UAVs functions 
independently of the others [27,28]. 

The rest of the article has been structured as follows. Section 2 defines a specific context into 
which our contribution can be framed. This is mostly related to a significant increase in the interest 
of the research community in studying and developing UAV, WSN and IOT systems. Our primary 
analysis is based around keyword searches in the reference SCOPUS and Web of Science (WOS) 
databases and we detail the arguments for the articles that we have surveyed for this review. Section 3 
is focused on the advantages and specific design space of collaborative UAV–WSN operation. One of 
the main topics that is handled in this section relate to designing efficient UAV paths and tracking in 
mission scenarios that involve WSN data collection. We also discuss the key challenges and current 
approaches for the data acquisition and data processing, which can leverage the on-board computing 
resources of the network nodes while reducing communication bottlenecks inside the collaborative 
system. Due to the varied radio and networking protocols that are usually deployed, we handle data 
communication as a independent topic in Section 4. This details the radio interfaces that are used at 
both the WSN and UAV levels as well as the components, both logical and physical, that enable 
interoperability in a hierarchical fashion, from low power/low data rate to high power/high data rate. 
Section 5 handles implementation aspects of integrated UAV–WSN systems with a main emphasis 
on optimization algorithms and heuristics that allow improvements in system performance for data 
collection, relaying and extended autonomous operation through energy efficiency. The core 
applications that we survey as representative use cases for collaborative large-scale monitoring 
systems are in agriculture, environmental monitoring and disaster management. These are discussed 
in Section 6. The article concludes with discussion and conclusion sections that observe the current 
trends and main areas for a research agenda in this field. 

For readability, each topical section includes a synthesis table with the main relevant articles that 
were analyzed, highlighting the key objectives and approaches to the reader. To save space and to 
better track the work content, Appendix A gives a complete list of the acronyms and symbols used 
throughout this review article. 

2. Materials and Methods 

Although the works that presented separately WSNs and UAVs are older and their respective 
research topics are well-established in the literature [29], the study of collaborative integration 
between UAV and WSN is relatively recent (mostly after 2004). One of the first reference papers 
addressing an integrated WSN–UAV approach is [30], where an UAV is used for WSN node 
deployment. In [31], considering the drop in the cost of the drones, a multi-UAV system is proposed 
for collecting data from ground sensors. To this end, mobile software agents were used for intelligent 
communication, data collection and processing. 

In order to better frame the opportunity for the current work we have initially performed a 
keyword search across the SCOPUS and WOS databases in order to have a better picture on the main 
topics of this survey. We considered a period of 12 years between 2007 and 2018. The search was split 
between individual keywords and combinations of keywords using “and” and “or” connectors, 
while searching the title, abstract and keywords of the respective original articles indexed in the 
databases and reporting the yearly publication counts. For the individual keywords we searched for 
the following keywords: UAV, WSN and IoT. Figures 2 and 3 show the individual results for Scopus 
and WOS databases respectively. While we observed a linear increase in the interest from the 
scientific community for the UAV topic, for WSN there was an increase until around 2012 followed 
by a relative stagnation beyond this point (or an even slight decrease in terms of WOS data). This was 
more than compensated by the exponential increase in the interest for IoT and can be explained 
through the fact that many current IoT systems rely on wireless sensor networks as key building 
blocks for their implementation. Among the two studies databases the trends in publication counts 
over the years were similar, with Scopus providing an absolute larger number of references when 
compared to WOS as well as timelier indexing of the respective contributions. 
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Figure 2. SCOPUS search results on keywords between 2007 and 2018: UAV, WSN and Internet of 
things (IoT), separately. 

 

Figure 3. Web of Science (WOS) search results on keywords between 2007 and 2018: UAV, WSN and 
IoT, separately. 

For the combined study, we searched for the combinations: UAV and WSN, UAV and IoT, UAV 
and satellite and UAV or WSN, UAV or IoT. In the “or” case, as expected we saw the cumulative 
effect of both areas of contributions in terms of publication numbers over the twelve years. We might 
therefore conclude that these topics represent large and growing areas of study. At their intersection, 
in the “and” case, by adding up the two combined keywords we highlighted an increasing interest 
in studying and developing hybrid large scale monitoring systems based on both UAVs and 
WSN/IoT ground solutions. This serves as a proper justification for the current survey. In addition to 
the previously defined keywords, for the “and” study we also included “satellite” in conjunction 
with UAV and IoT. We argued that there was also an important number of publications, especially 
in the telecommunications community where a satellite was seen as the third link in hybrid large 
scale monitoring systems, which complements as a redundant backhaul the low power radio network 
of the WSN/IoT and the GSM or other type of long-range communication links on-board the UAV 
platforms. We also performed a more restrictive SCOPUS search for the combined UAV–WSN–IoT 
keywords. Five articles [32–36] were identified and referenced, which covered all these topics in areas 
relating to enabling improved data collection, softwarization of large scale monitoring systems and 
agriculture IoT architectures and deployments. 

Finally, the combined results of this literature meta-review are illustrated in Figure 4. 



Sensors 2019, 19, 4690 7 of 40 

 

 
(a) (b) 

Figure 4. SCOPUS search results on keywords between 2007 and 2018: (a) UAV and WSN, together, 
and UAV and IoT, together and (b) UAV or WSN, UAV or IoT. 

For this review 985 papers were found from different databases like: WOS, Scopus, IEEE Xplore 
and PubMed, of which we selected and researched 121 for this review. The main criteria for selecting 
or rejecting a paper was addressing of a UAV–WSN integrated system. We expect for identified early 
papers covering this topic, the authors focused on related work published in the last 5 years to better 
capture the technical novelties proposed in the literature. Under these considerations, papers using 
both UAV and WSN but with no collaborative functions were not considered relevant for the scope 
of the paper. Papers were classified according to the main and secondary topics addressed: 
architecture, path planning, data acquisition and processing, communication, simulation, real 
implementation or specific application. Relevant papers were first selected for each topic based on 
the work visibility and impact of contributions (publishing in high-rank conferences and journals and 
number of citations), based on the technical novelty and relevance of the work and considering this 
survey’s authors’ perspective on the domain and topics addressed. Most relevant papers were 
detailed in each article section. The other less relevant papers, which also included useful 
experimental results or approaches, were included only in the article’s tables.  

3. Collaborative Operation in UAV–WSN Applications 

3.1. Collaboration and Intelligence in the UAV–WSN System  

One of the first collaborative UAV–WSN applications was the location of sensors on the ground. 
Thus, in [30] the AVATAR autonomous helicopter is used for WSN node deployment. The setup 
allowed establishing communication between WSN nodes and a helicopter as a feedback on the 
deployment algorithm. WSN modes were Mica Motes and the communication between UAV and 
WSN used radio signals at 915.5 MHz and achieved a maximum distance of 13 m. 

More recently, UAV–WSN architectures have been using aerial vehicles as one of three types  
of actors: 

- for node deployment [30] in applications with low on-site accessibility or dangerous for human 
operation; 

- as actuators, as in [37] where drones are used for spraying pesticides; 
- as relays for receiving and retransmitting a signal, as in [38], between CH and GDT, in [39,40] as 

message ferrying in sparse networks, in [41] as a mobile node carrying sensing equipment or  
in [42] to overcome faults of the sensing network; 
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- as mobile sinks, this being the most widely used role integrated with either small or large scale 
WSNs. In this case, two data acquisition modes were identified: 

o clustered, when data is sent to a local CH; 
o direct communication, where the UAV collects data from each sensor node. 

In [43] the authors provide a model depending on weight, wing area, air density and energy 
required for transmission for evaluating the energy consumption for a UAV. They compare the 
clustered and direct communication approaches and show the energy consumption is lower in the 
clustered design. UAV were used for the dynamic clustering of ground sensor nodes and cluster head 
selection mechanism in a randomly deployment of sensors [1]. 

Due to the development of new technologies, the trade-off between storing and transmitting 
WSN ground level data is, currently, a challenge [44]. The UAV acts as a mobile CH for the network 
with a novel scenario in which it harbors an energy harvesting module and wireless recharging for 
the ground nodes. Energy harvesting is based on RF signal energy extraction where part of the 
received signal is used for this and part for standard data collection while hovering over a sensor 
node island. Based on information collected from the nodes, the UAV schedules appropriately the 
battery charging and data gathering. Visiting the nodes is based on a variant of the travelling 
salesman problem (TSP) with time windows: shortest travelling time trajectory (STTT). The model 
used for the battery level of a WSN node is a birth–death process based on the observed activity rates 
in terms of data sensing and transmissions. 

3.2. Satellite Information 

Satellite connection offers two major advantages: system localization (both UAV and WSN) and 
data communication support. For localization the system elements (especially the UAVs) are 
equipped with GPS. One of the first notable papers introducing the use of a UAV equipped with a 
GPS as a beacon node was [45]. In this case no a priori knowledge on the WSN node location is 
required. For WSN node localization the GPS information is combined with the RSSI signal strength 
of RF communication between the UAV and the node [1]. The position is represented as a probability 
distribution function. Experimental results prove that by increasing the distance between node and 
WSN the standard deviation of the RSSI signal decreases [45]. Therefore, the positions are less 
sensitive to measurement uncertainties and the signal does not need to be filtered. 

3.3. UAV Path Generation and Tracking 

In the context of WSNs, the main motivation of having an UAV (or team of UAVs) as mobile sink(s) 
is to prolong the sensors’ lifetime (by canceling their need to communicate with a base station [20]) and 
to reduce operational costs (canceling the need of direct human supervision [25]). In addition, cases 
where widely dispersed parcels must be traveled preclude direct sensor communication and 
unavoidably require UAVs [22,23]. 

Thus, gathering and exchanging information with the WSN implicitly translates into the design 
and subsequent tracking of a path (or paths in the multi-UAV case [28]). This is hence the main 
justification for our interest in path planning and the ancillary mechanisms: whereas the WSN–UAV 
system may have different objectives and constraints, ultimately these translate into limitations and 
restrictions of the mobile agent’s path. 

There are several criteria that characterize and influence the path planning procedures. 
(i) Offline versus online planning. Most works assume a known environment (known domain, 

areas of interest, interdicted regions, etc.), which permits to solve the motion planning problem 
offline. A varying environment or changing mission parameters may lead to an online computation 
of the path. This is generally avoided as it introduces elements of risk, which are unacceptable in 
practical applications. Still, path updates are sometimes employed, either due to alarms signaled by 
a collision avoidance mechanism [46] or due to mission updates [24]. 

(ii) Coverage versus waypoint passing. Some works consider a discovery phase in which the 
deployed sensors’ position has to be estimated or the terrain has to be mapped through a preliminary 
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pass. Such missions cover the entire area of interest [47] through either random or deterministic 
scanning. The former may be considered, e.g., in military applications where random routes are 
selected to avoid prediction of future actions. Realistic implementations combine both types of paths 
even when the sensors are deployed deterministically (e.g., in a grid) [48]. Furthermore, obstacles or 
other features of interest may not be stored in the static map available at the mission’s start. 

(iii) Static versus dynamic path planning. Whereas the path generation procedure is mostly static 
(decided at the ground level prior to the flight), novel information is sometimes used to update the 
path. As noted in [19], predefined routes are dangerous as any un-modeled disturbance can greatly 
impact the performance. Thus, more advanced schemes account for obstacle and collision avoidance 
(i.e., sense and avoidance strategies [46,49]) and even for online path reconfiguration [24]. E.g., the 
authors adjust the path by considering both static requirements (accounting for borders as it has to 
stay in a safe lane) and dynamics requirements (counteracting wind gusts and avoiding regions, 
which are already sprayed, based on information sent by the ground sensors). 

3.3.1. Limitations in Path Generation and Tracking 

Separately, we might consider the various restrictions that affect the path planning procedure. 
These range from geometric, energy-based, internal dynamics to communication restrictions (or a 
combination of them). 

(i) Geometric restrictions. Due to the inherent difficulty in solving a generic motion planning 
procedure some authors impose artificial limitations in the types of paths that may result (thus 
simplifying the planning procedure). Most commonly, this means limiting the possible orientations 
of the mobile agent (the UAV) along its path. In [15] the authors consider data collection in a harsh-
undulating terrain with the base station located far from the sensing region and the way-point selection 
is simplified by allowing only forward and axial flight (movements across a rectangle-shaped region 
where the cluster heads are positioned in rows and columns). A similar approach is followed in [16], 
which proposes a grid division algorithm. [17] forces strip-based and zig-zag paths. Authors in [49] go 
further by imposing the avoidance of predefined regions. Somewhat differently [18] groups the sensors 
in concentric shells and maps a spiral path passing between them.  

If the monitoring zones have obstacles or interdicted regions, then they must be circumvented 
on the basis of a predetermined trajectory, if the obstacles are fixed [1], or recalculated, if the obstacles 
are not known in advance or are mobile [46]. 

(ii) Energy-based restrictions. In [19], a mobile sink routing algorithm is used to compute the 
energy expenditure and distances within the WSN (further used in the generation of an optimal path 
for a single mobile sink). [20] proceeds similarly by limiting energy consumption (both due to 
trajectory and communication requirements). Noteworthy, [20] considers multiple GDTs to ensure 
telemetry with the UAV and [21] assumes limited buffer capacity for the WSN’s sensors and solves 
simultaneously the path generation problem and gives the multi-hop rules within the WSN.  

The limitations of the mobile agent may also influence the network’s structure: too many and too 
far away clusters may be impossible to reach in a single flight by the UAV (due to fuel limitations) [15]. 
This leads to formulations where, for a given flight time and/or available energy budget, the optimal 
path which passes through the largest number of sensors is computed [17]. 

Other performance criteria may be employed, e.g., [50] considers a “total flying score”, which 
combines multiple factors in the path planning procedure. 

(iii) Internal dynamics restrictions. In many small to medium scale applications (e.g., in precision 
agriculture—sensing weather and soil conditions; pest and weeds management; animal attacks and 
crop morphology) [22,23] the UAVs employed are quad (or multi) rotor UAVs. Large scale 
applications (e.g., pesticide spraying [24], crop monitoring, etc.) are mostly handled by fixed-wing 
UAVs. The former can track complex trajectories (where both position and yaw angle are controllable 
outputs) and the later are usually limited to a constant-height flight plane (where the velocity and 
heading angle are controlled). Overall, fixed-wing UAVs have higher cruising speed and longer 
operation time whereas rotor UAVs are more flexible and require less maintenance but have  
lower autonomy. 
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Some common drawbacks affect all trajectory procedures. Foremost among these are wind  
gusts [22] and position measurement errors (e.g., location through GPS is imprecise; dead reckoning 
is time-sensitive). 

(iv) Communication restrictions. When the field contains many obstacles, the communication 
link may be weakened or lost as a result of signal attenuation [25]. Almost all the surveyed papers 
consider a necessary time for data transmission at the cluster head; they mostly dispense with it by 
assuming VTOL (vertical takeoff and landing) UAVs (mini-helicopters or, more commonly, 
quadcopters), which can hover indefinitely. To ensure that the mobile agent is within the cluster head 
communication range until all the information from that fixed agent is retrieved imposes additional 
restrictions. These may be implemented either explicitly by computing the time in which the UAV 
lies within the communication radius of the cluster head [20] or implicitly by proposing a path 
guaranteed to spend enough time in the neighborhood (e.g., via loitering [51] or hovering [22]). 

3.3.2. Waypoint Selection, Ordering and Passing Through 

Computing a trajectory most often reduces to finding an ordered collection of waypoints 
through whose neighborhood the UAV has to pass [22]. This neglects the internal dynamics of the 
UAV agent (the trajectory is simply a union of segments that link consecutive waypoints) but is a 
reasonable assumption in most cases and is justified by the fact that most (if not all) commercially or 
academically available autopilots (the ensemble of software that ensures path tracking) expects a list 
of waypoints as input. This simplification becomes less defensible on smaller distances where the 
UAV agent dynamics become significant (e.g., the turn radius cannot be ignored). 

Applying both geometrical/energy-based on one hand and communication restrictions on the 
other hand is challenging. Thus, many works first consider only geometrical/energy-based 
restrictions, which give an unordered list of waypoints and later apply communication restrictions 
to decide in which order should the UAV agent cover the waypoints. 

The ordering may be decided online as in [15] where the next way-point is determined by 
analyzing the information provided by the existing nodes (the closest, still not visited node, is 
chosen). However, most papers consider variations of the TSP for finding an optimal route among 
the waypoints [19]. A more complex representation appears in [24], which considers a second pass 
through (some) of the waypoints if there are still areas uncovered from the first pass. 

Noteworthy, the schemes encountered consider mostly a single UAV agent. Those that have 
multiple UAV (hence a multi-agent UAV subsystem within the larger, heterogenous, multi-agent 
system of WSN plus UAVs) usually partition the tasks a priori such that each of the UAVs functions 
independently of the others [27]. 

Simply passing through a way-point or through its neighborhood is almost never sufficient. 
Most applications require a hovering time (such that there is enough time to gather the required 
information). In such cases, the distinction between multi-rotor and fixed-wing UAVs becomes 
significant: the former can hover easily and for an arbitrary amount of time whereas the later have to 
enter a so-called loitering mode [51] in which they orbit around the current way-point (the minimum 
radius depends on the UAV characteristics). 

Some papers consider an explicit communication range when imposing hovering  
conditions [17,20]. 

In conclusion, the path generation procedure is affected by multiple restrictions and must 
consider several aspects:  

- properties of the WSN: is sensor localization required or available [1]; the size of the WSN area; 
data collection from sensors, sensors activity monitoring relay function [52] and energy loading 
by radiation [44]; 

- characteristics of the used UAV agent: available energy, type (rotary or fixed wing); type of 
antenna and speed; 

- characteristics of the environment: if there are obstacles or the application is in open field; the 
availability of ground base-stations along the entire path.  
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Table 1 summarizes which of these topics were addressed simultaneously in different papers. 

3.3.3. Computational Aspects 

The path generation is a complex procedure due to the nonlinear nature of the UAV dynamics 
and the various operational constraints (waypoint passing, line-of-sight communication, collision 
avoidance, etc.). All these elements lead, in its more general form, to a nonlinear (in cost and 
constraints) constrained optimization problem, which is often impractical to solve. Even a relatively 
simple requirement as ensuring hovering at the waypoint leads to a mixed integer nonlinear problem 
(MINLP) formulation [15]. 

The usual solution is to simplify the motion planning procedure. This may happen either at a 
conceptual level by imposing a limitation that lead to a manageable formulation or by solving the ̀ hard’ 
problem heuristically through algorithms providing sub-optimal but fast solutions. The former means 
considering limitations on the types of paths taken by an UAV (spirals [18]; zig-zags [17], etc.). The later 
approach is concerned with problem reformulations and the application of heuristic algorithms. 

Even when mixed-integer (MI) formulations appear explicitly, they are often solved heuristically 
as in [28], which ensures obstacle avoidance through a MI formulation solved by a genetic  
algorithm. [20] also employs binary variables to check whether the UAV is in contact with a given 
sensor and relaxes the formulation through time allocation tactics and pre-scheduled GDT usage. 
When obstacle avoidance is considered, rapidly exploring random trees (RRT) and optimal RRT 
(RRT*) algorithms are often the preferred method [46]. 

Among the heuristic algorithms used we may mention: iterative genetic algorithms (GA) [22]; 
ant colony optimization (ACO) [53] for AMR (automatic meter reading); fast path planning with rules 
(FPPWR) [16,18]; potential field methods [54] and greedy algorithms [17]. Note that all such heuristic 
methods have (in varying degrees and with varying compromises) common qualities and defects. On 
the one side they provide quick and near-optimal solutions (sometimes orders of magnitude faster 
than exact optimizations) but on the other side lack robustness guarantees and may become stuck 
into local minima (and thus, fail in solving optimally the problem). 

It is important to note that only a few of the surveyed papers validate their results on 
experimental benchmarks [47,48,50]. Most of them limit themselves to simulated environments 
instead. Moreover, most papers do not consider obstacle avoidance issues. None of the reviewed 
papers addressed simultaneously path design with obstacle avoidance in a real environment.  

Table 1 summarizes the important aspects of paths generation in UAV–WSN systems. 
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Table 1. Path planning for UAV–WSN systems. 

Constraints and Costs Method Application Miscellaneous Reference 
path length  GA crop monitoring cUAV, experimental results [22] 

WSN-based path update, communication 
radius, energy consumption 

TSP 
pesticide spraying, crop 

monitoring 
cUAV, multi-pass, grid sensor 

deployment, experimental results 
[19,24,25] 

harsh-undulating terrain, communication 
radius, energy consumption 

MINLP, TSP, FPPWR data gathering cUAV, forward and axial flight [15,16] 

path length, communication radius, energy 
consumption 

greedy algorithm data gathering cUAV, experimental results [50] 

NA 
Particle filtering, Bayesian 

analysis 
data gathering 

cUAV, node localization based on RSSI 
value, experimental testing 

[45] 

travel time, energy consumption PSO, LEACH-C  data gathering online CH selection [55] 
path length, energy consumption, 

communication range 
heuristic methods, greedy 

algorithm 
data gathering spiral, zig-zag, strip-based paths [17,18] 

obstacle avoidance MINLP, GA area coverage, photogrammetry mUAV, sensor placement [28] 
static / mobile obstacle avoidance RRT, RRT*, GA data gathering mUAV, wUAV, experimental results [46,56] 

NA heuristic algorithms, TSP target tracking, area coverage mUAV, experimental results [48] 
sensor lifetime linear programming data gathering limited sensor buffer capacity [21] 

path length, travel time heuristic methods 
sensor node localization, data 

gathering 
wUAV, multi-pass, experimental results, 

zig-zag path, sensor deployment 
[47] 

communication radius, path length, energy 
consumption 

MINLP data gathering wUAV, multiple GDTs [20] 

obstacle avoidance, communication radius, 
path length, CH selection and estimation 

MINLP, heuristic methods precision agriculture wUAV, B-spline parametrization [1,57] 

path length, area coverage 
GA, PSO, Simulated 

Annealing, Hill-Climbing 
pesticide spraying experimental results [49,58] 

energy consumption, collision avoidance 
MINLP, GA, RSCA, Set 

Cover Problem 
data gathering mUAV, TDMA, cyclic path [59] 

multiobjective utility function; prohibited, 
flying and sensing cells 

GA, A* algorithm data gathering over large areas heterogeneous IoT devices [60,61] 

UAV payload and control restrictions TTM  
data gathering from sparse 

networks 
experimental results, acoustic signals [62] 

path time, energy consumption TSP, STTT  
data gathering, recharging of 

depleted IoT devices 
IoT devices [44] 
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3.4. Data Acquisition 

As one of the core functions of the integrated UAV–WSN monitoring systems, data acquisition is 
concerned with the correct and timely collection of ground level measurements and their propagation 
through the network hierarchy. This is implemented in various ways, mainly by using the UAV 
platform as a collection agent for the lower level sensors. Key technical challenges for UAV–WSN data 
acquisition concern the aggregation at the ground clusters and the frequency and route for the data 
collection based on the design decisions at the system level and the optimization problem formulation.  

The main advantage for using UAVs as mobile sinks is that WSN nodes can reduce energy 
consumption by reducing the need for networking overhead at the local level with functions such as 
discovery, connectivity and maintenance of routing tables being maintained by the UAV/mobile sink, 
which periodically updates the cluster nodes with the required information for packet transmissions. 
In many cases the UAVs were considered as relays for receiving signals from CHs or other UAVs and 
then retransmitting the signal to the GCS. The most important requirements in data acquisition in the 
integrated UAV–WSN systems are the energy efficiency (primarily to maintain the energy capacity 
of sensory nodes and, secondly, to increase the UAV coverage area), the accuracy and the time of 
data acquisition. 

Performance analysis for WSN with UAV support is carried out by [63]. The UAV play the role 
of mobile sink across clusters of ground sensor networks. A spectrum allocation scheme is modeled 
in order to achieve robust communication with concurrent transmissions from the WSN and/or 
multiple UAVs. The data transmission capacity at the node and network levels is analyzed. Monte Carlo 
simulations are performed to compare theoretical per-node capacity and UAV working time models to 
varying parameters. The per-node capacity is defined in terms of the interval time between the 
collection of accumulated ground data. The multi-UAV scenario assumes a returning path to avoid 
collisions of packet transmissions between adjacent UAVs. The routing of the UAV is based on  
pre-defined ground cells, which hosts groups of sensor nodes and the optimal number of cells can be 
identified that maximize the per-node capacity of the WSN thus improving the overall data  
collection procedure. 

The usage of UAV platforms to support mobile devices is underlined in [17] as a promising 
solution for infrastructure less integration. In this context infrastructure, less integration is defined 
such that the ground sensors are deployed independently and they only communicate directly with 
the UAV, without local interactions that requires a pre-established network structure, cluster heads 
or additional base stations. The main approach aims to minimize overall system energy consumption 
(mobile devices + UAV) under typical real-world constraints for resource allocation, UAV flying path 
and computation offloading. The solution to the non-convex formulated optimization problem is 
presented by means of decomposition into manageable subproblems. The computational status at 
the mobile device level is analyzed by simulations in conjunction with the UAV path planning for 
task offloading on a slot by slot basis. The metrics against which the optimization scheme is analyzed 
are related to the average energy consumption of the mobile devices and UAV per slot, only the 
average energy consumption of the mobile devices or only of the UAVs, expressed under 
predetermined simulation conditions. Several scenarios are studies where the UAV flying path is 
closer to the mobile devices to provide high channel quality and computational offloading resources 
thereby reducing the local task queue length to be processed. 

The impact of UAV mobility patterns on the quality of the data collection for ground sensor 
nodes is analyzed by [64]. Initial sweep flights at different altitude levels are performed over the area 
of interest to discover and enable the sensor network. Four mobility patterns are subsequently 
defined as: tractor, angular, square and circular patterns. Simulations based on these are 
implemented in OMNET++ and MiXiM frameworks for IEEE 802.15.4 compliant wireless sensor 
nodes. The number of clusters formed, and implicitly associated CHs are reported under static 
ground simulation conditions and variation of the UAV altitude. The metrics used for evaluation 
include the overall coverage by the UAV, time efficiency and utilization, time versus coverage 
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efficiency. The results can be used for preselection of a mobility pattern for the UAV upon mission 
configuration while selecting the ground clustering mechanisms based on this. 

The main use cases for symbiosis between UAV and wireless networks relevant to the study are 
related to providing IoT uplink connections in an energy efficient manner with reliability as well as 
support for disseminating information and connectivity enhancement [65]. The UAV is able to access 
the WSN/IoT ground network directly or by means of a machine-to-machine (M2M) dedicated 
gateway and further integrate with new 5G IoT services in various industry verticals. The types of 
communication protocols that can support such hybrid systems are classified into: proactive 
protocols, reactive protocols and geographic protocols where the design trade-offs between metrics 
such as latency, coverage, energy-efficiency, etc. are known and established beforehand in the system 
design phase. Security and privacy also play a critical role in ensuring that proper safeguard for in-
network information collection is in place. 

The authors of [66] focus on the clustering methods for the ground sensor nodes in a single UAV 
scenario for environmental monitoring and data gathering. The energy model for the sensor nodes is 
composed of the energy needed for packet reporting and for packet forwarding in the case of mesh 
networks where each node can serve as a router for neighbor packets towards the sink. UAV path 
planning uses the 2-opt heuristic, which is a local search algorithm to solve TSP for visiting the WSN 
clusters. The evaluation consists of a 100 m × 100 m grid with 200 randomly deployed nodes according 
to the random Poisson point process. Nodes are modeled with cc2420 family radio interfaces and for 
the UAV the characteristics of the DJI Phantom 3 drone are used. Optimization problem is solved 
using the CPLEX solver. Results plot the energy consumption of the UAV and of the sensors versus 
the maximum number of hops in the network. 

Optimizing for UAV flight time reduction in data collection missions that support ground sensor 
networks is discussed by [67]. The scenario assumes controlled deployment of the WSN in a straight 
line with cruising or hovering behavior from the UAV. The aim is to achieve optimal, non-
overlapping, data collection intervals, UAV speed and sensor transmit power by using a dynamic 
programming (DP) approach. The main finding highlights how the UAV speed should be 
proportional to the energy levels of the sensors and the inter-sensor distance. Several scenarios are 
defined for evaluation under randomness assumptions for data requirements, energy and 
localization of the ground nodes. While cruising, it has been found that even if the data rate of the 
nodes decreases, the reduction in the mission time is able to compensate for this in comparison to 
hovering. This is applicable to low amounts of data, whereas, beyond a certain threshold, the 
hovering approach is preferable. 

The problem is framed as an aerial data collection problem (ADCP) with increased complexity 
given the fact that a set of UAVs is tasked to collect information from mobile ground sensor  
nodes [68]. ADCP is solved optimally for small instances using mixed-integer linear programming. 
Collected data is relayed back to the central base station using multi-hop aerial communication links 
over the set of UAVs in a multi-tier network architecture. Simulations are carried out by means of a 
custom implementation using the JGraphT library and IBM CPLEX solver for the optimization part. 
Computational test results and scalability results are presented with various UAV and WSN sizes 
and deployments. Suitability of the approach for real wildlife application is foreseen. A heuristic 
pricing scheme shows promise to solve efficiently the ADCP formulation in the defined 3D-positions 
of the targets while accounting for mobility and connectivity variations. 

Data Mule Scenario for Data Acquisition 

Data mulling concerns the effective creation of a communication link between disparate network 
subsets by usage of a mobile node. This helps create a data bridge among clusters and earlier works 
discussed the implementation of data mules by means of mobile robots. In [69] the optimization of 
the shortest data mule path is carried out by an improved clustering-based genetic algorithm, which 
enhances the travelling salesman problem with neighborhoods. For larger geographical distances 
where a ground robot solution is unfeasible, UAV-based systems have been integrated [70]. Although 
in most of cases the communication between WSN and UAV is unidirectional, authors from [71] 
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proposed dual stack single radio architecture, which allows a UAV to communicate in a bidirectional 
manner with a WSN (UAV-to-WSN and UAV-to-Sink). It is used a single radio transmitter both for 
collecting data from the WSN and for sending telemetry data to a Base Station. 

The GrubiX Wireless network simulator has been used to comparatively present the results of 
two optimization heuristics for path planning, namely the Euclidean travelling salesman problem 
(ETSP) and a modified version with cluster selection rounds. For radio link modeling the IEEE 
802.11b standard has been selected in ideal propagation medium with 50 m communication range. 
The scenario in which the UAV is used as a data acquisition mule among clusters of separated ground 
sensors is handled as a specific use case of distributed data acquisition in collaborative UAV–WSN 
systems. The data mule scenario is graphically depicted in Figure 5. The interaction is handled at the 
CH level (blue node) by using an interoperable radio interface on-board the UAV. This is specified 
according to the data type and size that is to be collected, while considering the flight characteristics 
of the UAV. Optional satellite-enabled communication support can be integrated in order to provide 
synchronization services to multiple-UAV teams operating in remote areas.  

 
Figure 5. UAV data mule scenario among clusters of heterogeneous ground WSNs. 

3.5. Data Processing 

In many application scenarios, relaying the raw collected data from the local sensors to the 
central aggregation point of the integrated system poses a considerable burden on the computing and 
communication resources. In these cases, some form of processing is necessary to compress, reduce 
or intelligently extract information from the sensor measurements. The analyzed articles propose a 
wide range of methods: from basic processing (min/max thresholding, averaging and basic statistical 
features) to higher level distributed approaches such as fog computing. 

The authors of [72] point out the key areas of active research for data aggregation within IoT 
systems of which WSNs are a core building block. The potential for increasing the energy efficiency 
of the network through clustering mechanisms for data aggregation is acknowledged alongside tree-
based and centralized approaches. The respective trade-offs for each family of methods are identified 
in terms of advantages and drawbacks concerning energy, traffic load, accuracy, security, scalability 
and fault tolerance. Depending on the constraints of the application of the UAV–WSN collaborative 
network, a suitable aggregation method will be employed. This is determined by the streaming or 
event-based nature of data generation, as well as latency and energy constraints. Clustering 
approaches are generally more robust than centralized schemes, which have a single point of failure, 
with the added complexity of managing and organizing clustering hierarchies. 
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Fog computing supporting and UAV–WSN deployments are discussed by [73] in which the 
UAV plays the role of the fog node and provides services to the hierarchical ground sensor network. 
The services include data collection and relaying, local processing and cloud interfacing. Several 
relevant use cases are identified ranging from ground pipeline monitoring and control to underwater 
monitoring, large scale emergency response and military deployments. An evaluation is carried out 
by comparing the performance of local and cloud service calls in various network configurations. The 
resource discovery and integration are also enabled through the UAV fog node with additional 
benefits stemming from the inherent mobility of the UAV in assisting the ground level devices. 
Security functions are also available on the fog level with application-based protection levels. 

The fog computing paradigm applied to UAV-based large-scale monitoring systems is analyzed, 
which assumes that the path planning, flight coordination and task planning are carried out locally 
at the fog coordinator level [74]. This is reflected in comparison to the usage of a cloud platform, 
which potentially offers more computing resources and knowledge with increased data and 
command latency. A system model is provided for the throughput, power consumption and latency 
analysis with multimedia data over various mobile communication technologies such as GSM, UMTS 
(Universal Mobile Telecommunications Service) and HSPA(+) (High Speed Packet Access). A single 
UAV is denoted as fog coordinator and it decides on the trade-off between local processing and cloud 
offloading of the data streams and planning tasks, based on a genetic algorithm optimization method 
with implementation in MATLAB. The end-user application can be considered as an UAV–WSN 
collaborative monitoring scenario in which the fog computing approach is deployed at the higher 
UAV ground control station (GCS) level. 

Cloud-based support infrastructure for UAV–WSN mixed data collection platforms are 
introduced. It is argued that the increased availability of cloud resources can contribute to the 
improvement in the flying parameters and information extraction from the WSN data [50]. Emerging 
ground level events are classified according to predefined priority levels and the flying sequence is 
determined by considering several correlation factors at the node and cluster levels. Results are 
evaluated both in simulation and through experiments on an integrated testbed using a quadcopter 
UAV and CC2530 2.4 GHz radio sensor nodes with on-board GPS capabilities. The proposed method, 
denoted as cloud-assisted and weight event data collection (CWC), is compared (in a simulation 
framework) to a full collection method (FCM), event collection method (ECA) and event collection 
method with priority (ECP). CWC performs well in terms of reducing the flight time and distance as 
well as assuring a 97% data integrity compared to 60%, 63% and 26% for ECA, ECP and FCM 
respectively. Data integrity is defined in terms of the sum of the total received messages compared 
to the total messages. 

UAV-enabled WSN data aggregation is described by [59] in which the UAV platforms act as 
data mules between the CHs of the network. The routing optimization is based on genetic algorithms 
(GA). Energy consumption of data transmission based on a standard energy-per-bit transmission 
model is used as minimization objective. The OmNET++ simulation environment is also used to 
deploy a modeling scenario of the proposed approach. The evaluation is with reference to three other 
protocols: centre-based, greedy-based and clustering-based genetic algorithm (CBGA) and achieves 
an improvement in terms of system-wide energy consumption of 1–28.4%. This is due to the fact that 
the cluster member energy expenditure becomes an explicit optimization objective. Shorter data 
update periods are also listed as a secondary benefit of the approach. 

The challenge of information fusion for collected sensor data from both fixed and mobile devices 
is illustrated in [75]. The application focuses on deep supervised learning in transportation systems 
by integrating GPS, GNSS and accelerometer readings with remote sensed imagery. The solution 
covers both the management of the large data quantities as well as analytics for pre-processing and 
feature extraction. Evaluation analysis is performed for a transportation mode recognition task when 
various data sources are considered, and the best accuracy is at 97% for the combination of GPS + 
accelerometer + GIS data. The work is relevant also to the large-scale hybrid UAV–WSN monitoring 
systems for distributing the pre-processing and feature extraction modules across the nodes of the 
network and re-tasking in accordance to the mission objectives. 
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At the ground sensor level, distributed agreement schemes such as consensus algorithms can 
contribute toward intelligent data reduction and reducing the burden on the upper UAV layers for 
processing and transmissions [76]. For event detection where the integrated system has to assure the 
timely observation of mission-specific events, local analysis can improve the overall detection 
latency. In this manner each of the ground sensors periodically communicates their findings with 
neighboring nodes in order to reach a joint decision, such as the event present: yes or no, in as few as 
possible communication instances as possible. The weighting scheme accounts for the quality of the 
data as well as the reliability of the information provided by each node. Implementing consensus 
local decision algorithms in large scale UAV–WSN monitoring systems can help increase the 
reliability and robustness of the overall system. 

In Table 2 some characteristics of the joint data acquisition and processing aspects of 
collaborative UAV–WSN systems are presented. 
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Table 2. Data acquisition and processing in integrated UAV–WSN systems. 

Data Acquisition 
Mode  

Data Processing 
Characteristics 

Optimization/Intelligence Implementation/Description Reference 

UAV as relay between 
disconnected WSN 
nodes 

Local processing, Fog 
computing 

Universal Plug and Play node 
discovery; services-based approach Large scale IoT applications [73] 

WSN–UAV–Cloud Fog computing Area coverage Distributed WSN [50,74] 

UAV as mobile sink 
Local processing at UAV 
level 

Increasing reliability, maximizing 
data collection 

cUAV—multiple WSN, path model; 
UAV—ground Rician fading channel 
model; data collection model 

[77] 

WSN–UAV; UAV as 
mobile sink; WSN 
nodes with wake-up 
receivers  

UAV local processing 
A calibration step used for path 
planning, a probability map for data 
collection is built 

Small scale WSN [78,79] 

WSN–UAV; 
WSN with both normal 
and GPS sensors; 
UAV as mobile sink 

Node localization, grid 
division and path planning 
at base station UAV local 
processing 

Aerial node deployment 
Node localization 
Flying path optimization 

Large scale WSN [16,18] 

WSN–multiple wUAV 
UAV as mobile sink 

UAV local processing Path planning, CDR (Conflict 
Detection and Resolution) 

Multiple small scale WSN; 
Matlab simulations for trajectory; 
Real experiments using Megastar wUAV 

[46] 

UAV as relay between 
cluster head and GCS 

Only messaging for data 
acquisition is considered at 
WSN and UAV 

Energy consumption optimization 
Mathematic simulations evaluating the 
effect of distance between cluster head and 
base station  

[38] 

UAV as relay between 
WSN cluster heads 

Only messaging for data 
communication is 
considered at WSN and 
UAV 

Method for choosing the cluster head 
and routing protocol  

Sparse WSNs with unbalanced traffic [40] 

UAV as relay between 
WSN cluster heads 

Only messaging for data 
communication is 
considered at WSN and 
UAV 

Maximize area coverage Sparse WSNs [26] 



Sensors 2019, 19, 4690 19 of 40 

 

Multiple UAVs as 
relays between WSN 
cluster heads 

Path computing at UAV 
level 

Different messaging architectures 
Minimization of the sum of all 
distances 

Sparse WSNs; 
Mathematical simulations evaluating 
different architectures and path planning 
methods 

[39] 

Multiple UAVs as 
relays between WSN 
nodes 

Only messaging for data 
communication is 
considered at WSN and 
UAV 

UAV positioning Multiple faults in linear WSN [42] 

Multiple UAVs as 
mobile nodes 

UAV route processing Randomly selected routes 
Full area coverage 

Mathematical analysis of the area coverage 
with the proposed algorithm 

[41] 

Multiple UAV- WSN; 
UAV as mobile sink 

Data aggregation 
Path planning 
UAV energy optimization 

Large area WSN with scattered nodes; 
OmNET++Simulator 

[59] 

WSN–UAV–IoT 

Data aggregation; 
Animal movement 
prediction; UAV route 
processing 

Path planning defined by external 
factors 

Large area WSN; 
Simulations using Zebranet dataset 

[80] 

Data aggregation 
UAV route processing 

Path design to four functions: 
sensing, energy, time, and risk 

Large area WSN [60] 

Local processing, cloud 
computing 

Energy consumption 
Farm beats gateway for data collection 
from WSN, UAV; 
Azure Cloud 

[81] 

UAV for WSN node 
localization 

UAV route processing Node position estimation 
Path planning 

Large scale WSN;  
Mica2 Crossbow as WSN nodes 

[45] 

UAV for WSN node 
deployment 

Messaging for status 
communication is 
considered at WSN and 
UAV 

Node deployment reliability AVATAR Autonomous helicopter; 
Mica Motes for WSN nodes [30] 

WSN–UAV–BSN 
Messaging for status and 
data communication  

Latency, reliability, network 
dynamics OmNET++Simulator [82] 
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4. Data Communication 

Data communication performs the critical integration function of UAV–WSN large-scale 
monitoring systems. The various protocols, standards and physical interfaces have to be 
interoperable and tuned for adjusting the system performance to the (dynamic) mission objectives. 
As previously illustrated in Figure 1, these can range from low-power and low-range radio 
communication at the ground level, to higher throughput radio links for data streaming, 
complemented by satellite communication. Though implementation it is mostly wireless also, wired 
links can serve as a data communication backhaul for the integrated system. 

4.1. Requirements and Protocols 

As a preliminary step in operational deployment of integrated UAV–WSN monitoring systems, 
the deployment strategy of the ground sensor nodes can be considered [83]. DeVForce-AP algorithm 
is presented, which allows the elimination of coverage gaps in the ground network by means of 
Delaunay triangulation together with DeVForce for maintaining network connectivity. Parameter 
adjustment is realized to account for environmental factors. The method evaluation is presented in 
relation to random deployment, traditional Delaunay triangulation and virtual force deployment. 
The new method presents an improvement in the data transmission success rate, the number of alive 
sensor nodes and the number of available neighbor nodes. It is also able to maintain coverage ratio 
and increased network lifetime under varying environment conditions and obstacles. 

The trade-off between storing and transmitting WSN ground level data is discussed by [44]. The 
UAV acts as a mobile base station for the network with a novel scenario in which it harbors an energy 
harvesting module and wireless recharging for the ground nodes. Energy harvesting is based on RF 
signal energy extraction where part of the received signal is used for this and part for standard data 
collection while hovering over a CH. Based on information collected from the nodes, the UAV 
schedules appropriately the battery charging and data gathering. Visiting the nodes is based on a 
variant of the travelling salesman problem (TSP) with time windows: shortest travelling time 
trajectory (STTT). The model used for the battery level of a WSN node is a birth–death process based 
on the observed activity rates in terms of data sensing and transmissions. 

The system designed for an IoT surveillance application is presented by [84] and is based on 
visual ground sensor network with security cameras, patrolling drones and unmanned ground 
vehicles. The integration and the data and command flows are detailed using open IoT protocols such 
as MQTT and publish–subscribe data architectures. Performance of the combined system is evaluated 
based on object detection time under varying number of frames. The edge computing approach offers 
a considerable improvement over conventional cloud implementation in terms of measured detection 
latency. The scalability test shows how the integrated surveillance system performs under increased 
device numbers. The system provides a blueprint for our reference UAV–WSN large-scale 
monitoring scenario by implementing a decentralized solution based on the edge and mist computing 
paradigms. 

Paper [85] focuses on the hierarchical system architecture design for hybrid UAV–WSN 
monitoring systems. It includes a central gateway system that coordinates the UAV platforms within 
the aerial level, followed by the distributed ground sensor systems for monitored parameters data 
collection on the ground. In addition, a binary sensor level can be also added in tight connection to 
the WSN and without local processing elements. A clustering mechanism is implemented and 
evaluated under the Contiki embedded operating system for resource constrained devices, which 
considers radio link indicators such as received signal strength indicator (RSSI) and link quality 
indicator (LQI) for selecting the cluster heads. Static overpass UAV paths are simulated to obtain in 
clustering behavior of the WSN using Rime broadcast and unicast messages from the nodes. An 
application of the proposed clustering mechanism shows improvement in data collection and 
distributed agreement for physical measurements. 

Authors in [86] present a coordination approach for multiple aerial ad-hoc systems integrated 
with ground systems in order to bridge various configuration options and network dynamics. Their 
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main contribution considers the application of fuzzy bee colony optimization (fBCO) to implement 
cognitive relaying within the network. Mapping the network structure onto the optimization 
problem formulation considers the ground nodes serve as employed bees while the aerial nodes act 
as scout bees. The proposed model is evaluated against several existing approaches such as path-
aware geographical routing (TAG), energy-balancing packet scheduling (EPLA) and greedy selection 
(GS), with 10 UAVs and 10–50 ground nodes. The metrics used relate to average transfer time, 
network efficiency, average cognitive overheads and convergence time. It is argued that the new 
fBCO offers improved scalability, lower transfer times and lower cognitive overheads. 

The optimization problem for UAV–WSN data acquisition is discussed in [51] considering the 
main objectives for cluster head selection, realistic models of bit error rate (BER), node energy and 
flight time of the UAV, including weather effects. The proposed method is compared with the 
established LEACH-C (Low-Energy Adaptive Clustering. Hierarchy-centralized) for WSN clustering 
and data collection. Particle swarm optimization (PSO) is used for the multi-objective method, while 
prioritizing the average BER over energy consumption and travel time, to assure reliable 
connectivity. Various cluster sizes are analyzed, and it is found that PSO outperforms LEACH-C in 
terms of the remaining live nodes after several hundred rounds of simulations. Relative weighting of 
the objectives depends on particular system and mission objectives as well as practical judgment. As 
an example, reducing travelling time can be related to the operational cost of the UAV and support 
infrastructure and limited flight autonomy. 

4.2. Standardisation and Safety Considerations 

One of the most sensitive and restrictive issues of UAV–WSN’s integrated systems is flight 
safety, in terms of the security of people, land and of airspace objectives. There are several sources 
providing a comprehensive overview of UAV flight regulations, implementation status and forecast. 
A reliable source of information regarding UAV development, e.g., the Global Drone Regulations 
Database [87], is providing the interested researchers with free access to accurate description of 
applicable regulations in each country and standards aiming to minimize the implication in the 
civilian air traffic operations. Various studies like [88] compared the documents meant to regulate 
the UAV operations and concluded that there is no general approach of the conditions, UAV 
classification or standards. Therefore, reviewing the scientific literature presenting the characteristics 
considered by various countries enabled the authors to have realistic predictions of future trends. 
Recently, the EASA established (in February 2019) the regulation, which enables the circulation of 
UAVs within the EU based on security and on increasing development of the UAV industry [89]. 
Since there are different sizes of drones (from 10 g to 10 tones), flight levels and path lengths, three 
categories of UAVs have been identified for which specific flight rules have been established: (a) the 
‘open’ category (below 120 m level, 500 m distance—line-of-sight, and does not require a prior 
authorization), (b) the ‘specific’ category (requires an authorization by the competent national 
authority) and (c) the ‘certified’ category (requires the certification of the UAS, a licensed remote pilot 
and an operator approved by the competent authority). According to EASA, the UAVs should be 
safety integrated into the existing aviation context in a proportionate way. 

For long-distance applications, in which UAVs are flying beyond the line-of-sight, a very strict 
regulatory framework needs to be adopted so the UAV’s tracking system provides proper support 
for a safe operation of the remote command and control, telemetry communication and datalink 
transmission. The main challenge for the experts of this sector is to determine how to calculate the 
spectrum demands that most likely need to be harmonized between several entities that will share 
the same portions of spectrum while ensuring a safe and secure interconnectivity with terrestrial 
WSN for complex air-ground hybrid networks. 

Some organizations are involved in the implementation of the best strategy towards the usage 
of the spectrum dedicated to interconnect the UAVS and terrestrial WSNs into hybrid networks and, 
at the same time, to ensure a safe airspace sharing with aircrafts: International Civil Aviation 
Organization (ICAO), EASA, Joint Authorities for Rulemaking on Unmanned Systems (JARUS), 
International Telecommunications Union (ITU), etc. 
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In multi agent UAV–WSN applications, communications between agents (UAV–UAV, UAV–
WSN and WSN–WSN are mandatory. Although communication within UAV network or within 
WSN was not the subject of this paper (only communications between UAV–WSN), some 
clarifications need to be made regarding UAV–UAV communications. Two solutions can be used for 
UAV to UAV communication (U2U): direct communication [90] and via GCS (GCS as relay) 
communication [91]. Direct U2U communication is, on one hand, a difficult problem to solve in terms 
of frequency regulations versus airspace security and, on the other hand, it is a necessary solution in 
some applications of a swarm UAVs (examples: collision avoidance, operations of search and rescue). 
The authors in [90] analyzed the throughput and latency of the UHF (ultra-high frequency) radio 
link, which interconnect two UAVs. The advantages, disadvantages and important concerns for the 
U2U communication options are also presented. The indirect communication is presented in more 
research and application papers. Thus, in [91] the GCS is presented as a relay in a configuration UAV–
GCS–UAV system by using commercially available hardware (Wi-Fi) components combined with 
customized software. In [92] UAV to UAV communication for smart agriculture monitoring is 
presented using the ad-hoc WiFi infrastructure. The first UAV serves as a relay between the second 
UAV and GCS, improving the UAV communication in beyond line-of-sight and cross-obstacle 
operations. The authors present experimental results for various conditions and configurations while 
implementing the OLSR (optimized link state routing protocol) protocol for increasing the quality of 
service of the network links. Paper [93] extends this study using RTSP and RTP protocols and  
in-depth packet and bandwidth analysis for both the video processing pipeline and control functions. 
The reference UAV type is a quad copter AR drone. The average bandwidth for the UAV system is 
measured at 15.4 Mbps compared to a pc-only system at 10.91 Mbps. Georeferencing the target area 
enables precise application of herbicides leading to improved cost-effective productivity.  
Reference [94] provides a practical assessment of 2.4 GHz and 5.8 GHz UAV communication in 
emergency response settings. A dedicated system infrastructure is illustrated with GPS, embedded 
PCs and software components that support the latency constrained operations. 

A summary of the UAV–WSN communication characteristics is given in the Table 3.
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Table 3. Data communication in integrated UAV–WSN systems. 

Data Communication 
Type 

Standards (Implementation) Details Reference 

WSN–mUAV–fog GSM, UMTS, HSPA 
Standards are evaluated considering a bandwidth for sending video 
data from 1000 Kbps to 6000 Kbps 

[73] 

wUAV–WSN (CHs) ZigBee Distance between UAV and WSN below 100 m for communication [95] 
UAV–WSN UAV as 

mobile sink 
ZigBee 

Nodes in stand-by mode; WSN nodes with wake-up receivers; 
Point-to-point wake-up 

[79] 

UAV–IoT 
IEEE 802.11 (WiFi) 
For wide areas: LoRaWAN, LTE, LTE-A, IEEE 802.16 
(WiMAX) 

Data collection and energy harvesting [44] 

UAV–WSN LoRa Distance between UAV and WSN 4 km [10] 
UAV–WSN TinyMesh Distance between UAV and WSN 485 m [96] 
UAV–WSN RF Distance between UAV and WSN 1–2 km [97] 
UAV–WSN RF@902-928 MHz 200 m in NLoS conditions [62] 

UAV–WSN RF@900 MHz 
UAV broadcasts wake-up messages every 1 s. UAV speed and ground 
distance not available 

[45] 

UAV–WSN RF@916 MHz Maximum air-ground distance 13 m, median range 9 m  [30] 

UAV–WSN (single hop) BLE 
Nodes wake up each 10 s 
Distance between 10 m and 20 m 

[98] 

cUAV–mWSN CSMA/ CD/ IEEE 802.15.4 
Nodes in stand-by mode, wake up for sensing or for UAV data 
transmission, distance between 10 m and 30 m 

[22] 

cUAV–WSN 
IEEE 802.15.4g for data communications 
(920 MHz) 
IEEE 802.11n@5GHz for UAV ground control 

Different wake-up mechanisms: broadcast and unicast, nodes in stand-
by mode, a wake-up receiver installed at WSN nodes 

[78] 

UAV–WSN 
IEEE 802.15.4 for data acquisition from WSN, 
6LoWPAN for data sinking 

Dual stack single radio architecture, algorithm for improving data 
transmission reliability 

[71] 

UAV–UAV UHF band (400 MHz) 
Direct communication, in near line of sight or in non-line of sight 
conditions  

[90] 

cUAV–cUAV 
OLSR dynamic protocol, 
Ad-hoc Wi-Fi infrastructure 

One UAV serves as a relay between another UAV and GCS [92] 

cUAV–cUAV RTSP and RTP protocols Video processing pipeline and control, quad copter AR Drone [93] 

cUAV–GCS–cUAV 
4G/LTE, DR 915 MHz Radio Telemetry (UAV-GCS), 
IEEE 802.3 32-bit CRC polynomial 

Indirect communication, connectivity for low altitude UAV through a 
terrestrial 4G/LTE network 

[91] 
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5. Integrated UAV–WSN System Implementation 

There have been observed many options for system implementation over the recent years of 
development. Many research groups first validate their conceptual approaches using simulation and 
emulation environments where the main components and their interactions are modeled in software. 
Going from model to real world implementation, the ground sensor node platforms are selected 
based on their on-board sensors, computing capabilities and communication interfaces. The main 
options for the UAV platform related to its type: fixed/rotary wing, autonomy, communication 
interface and other complex sensing systems, which are not suitable for ground implementation, such 
as high resolution and special application imaging. 

Early work in the field of integrated robotic aerial platforms and ground based sensor networks 
for security applications is presented in [31]. The data processing is organized on three hierarchical 
levels ranging from target detection, localization and recognition. The ad-hoc nature of the ground 
sensor network is emphasized as well as the application of intelligent software agents that are able 
to collaborate for joint mission objectives. The decreasing cost of the hardware platforms also needed 
to achieve such a system is underlined as an element driving the development of pervasive sensing 
in large scale monitoring. Adaptive parameterization at both the UAV and the WSN levels enables 
the system to be robust to environment or mission changes while ensuring proper quality of service 
with energy efficiency and communication reliability. The combination of low-cost sensors on the 
ground and high-performance, high-cost sensors on-board UAV sensors allows for data fusion 
algorithms that can extract relevant information in an online fashion. 

Low latency operation requirements and dynamic reconfigurable network topology are 
identified as key challenges in the design of suitable architectures and algorithms for UAV–WSN 
joint cooperation [99]. Low-latency routing algorithm (LLRA) is proposed and evaluated for such 
scenarios in terms of link average delay and packet delivery ratio. It assumes an iterative process to 
identify the best relay nodes across the network with periodic route updates. This assures 
connectivity and achieving the minimum transmission delay. The simulation setup includes a layered 
UAV network with established parameters for directional antenna angle, transmission power, UAV 
speed and inter-layer separation distance under fixed radio channel assumptions. The interlayer 
performance of the algorithm is reported favorably with reference to standard routing procedures 
such as ad hoc on-demand distance vector (AODV) and greedy perimeter stateless routing (GPSR). 

Bio-inspired optimization heuristics are applied to collaborative UAV–WSN networks in order 
to maximize the value of the gathered information from the ground level while minimizing UAV 
operational costs [61]. With the ground situation known in terms of sensing cells and flying 
constraints, the authors define four utility functions for the UAV to maximize, in terms of sensing, 
energy, time and risk. The solution to the optimization problem is achieved using a combination of 
genetic algorithms (GA) and ant colony optimization (ACO). The best parametrization of the method 
is achieved while accounting for an additional metric in terms of value of sensor information (VSI) 
for planning of the flying route among sensing information gathering (SIG) ground cells. The GA and 
ACO approach also present significantly better results when compared to a classical A* bio inspired 
algorithm and a combination of A* and GA in terms of the optimal utility value. 

A priority-based frame selection scheme within IEEE 802.11 MAC  (Medium Access Control) 
packets is introduced in [100] to mitigate the effect of packet collisions on the overall UAV-assisted 
WSN network. This operates by assigning a lower contention window range to the higher priority 
frames. The proposed model assumes the operational characteristics of a fixed-wing UAV in which 
frames, which are overpassed by the UAV, receive higher priority thus reducing the risk of a data-
less overpass. Three algorithms are defined and analyzed as contributions: priority-based optimized 
frame collection (POFS), priority-based contention window adjustment scheme (PCWAS) and frame 
selection-based routing protocol (FSRP). The evaluation presented highlights the performance 
metrics of the proposed scheme in relation to the conventional IEEE 802.11 CSMA/CA MAC in terms 
of average throughput, end-to-end delay, PDR. Implementation is carried out in MATLAB for a  



Sensors 2019, 19, 4690 25 of 40 

 

300 sqm area with variable number of sensor nodes between 100–1000. By including UAV data mule 
mobility into the prioritization of the communication protocol improved results can be obtained. 

The models of UAV–WSN communication integration and data collection are reviewed in [101] 
for hierarchical, clustered WSNs where the UAV is tasked at visiting each cluster head in an efficient 
manner to collect the ground level data. The store and forward model are the reference approach in 
which non-critical data accumulates and is aggregated at the cluster head to be made available to the 
visiting UAV. Several critical infrastructure monitoring applications might require real-time data 
streaming or event-based communication, which implies mechanisms and performance constraints 
on the UAV relays. A hybrid method is also identified, which can prioritize based on the local 
processing of the collected data and operate the UAV relays in an on-demand fashion. From the UAV 
routing perspective, a classification is defined based on its capabilities: from constant speed UAV, to 
variable and adaptable speed UAV and up to hovering capabilities with either unlimited or 
maximum service times. These have an important impact on the design of the WSN communication 
windows, which are available to the network. 

The approach from the perspective of a collaborative WSN–mUAV network is described for an 
efficient utilization of the network energy resources [102]. The firefly optimization algorithm (FFOA) 
is presented for energy efficient relaying of collected data. Benefits are highlighted in terms of 
continuous connectivity, better network and node lifetime and improved coverage. The studied 
scenarios assume a single base station with the UAV role in the system model to relay data efficiently 
between the field nodes and this base station. The optimization procedure selects the best UAV for 
this based on attraction value among the set of eligible UAVs in the range of the data sink–base 
station. For performance evaluation the parameters include the followings: throughput, mean hops, 
packet delivery ratio (PDR), delays, lifetime, coverage and excessive iterations per segment. One 
example of the achieved results is that FFOA for collaborative UAV–WSN networks achieves 17.2%, 
18.01% and 31.5% better PDR when compared to reference methods EEGA, I-ERIDSR and ERIDSR. 

The authors of [103] discuss the issue of optimal wireless sensor network coverage by means of 
UAV platforms in terms of an optimization problem. This is formulated by means of the travelling 
salesman problem (TSP) to find the best routing of the UAV for data collection with regard to 
minimizing the energy needed for data transmission of the sensor nodes. The proposed TSP 
algorithm outperforms particle swarm optimization (PSO) for various flying heights, speeds and 
network sizes. The algorithm is implemented in MATLAB and simulations are carried out using the 
OmNET++ network simulator with 802.11b protocol. The reference results for the tested configuration 
show a lower than half total energy consumption at the gateway level when deploying BL-TSP as 
compared to PSO and network forwarding. A multiple UAV test shows how the incremental benefits 
are lower, in terms of cost function decrease, with the addition of new UAVs. 

An emulation platform, which serves for generic IoT scenarios, is described by [104]. Main 
components include the server-side user interface, the physical hardware nodes and the virtual 
nodes, as well as a script interpreter to handle their functionalities. The system supports both fixed 
and mobile nodes and the authors present a reference application using Raspberry Pi cards and WiFi 
communication for the networking side. For visualization a 2D mode for network analysis is 
provided alongside a rich 3D environment for more immersive views. Implementation is performed 
using the Java programming language. Running the system in simulation followed by integration 
with real embedded hardware makes it suitable also for integrated UAV–WSN systems. The 
application focus for Smart City deployments could be seen as using the ground nodes for 
environmental sensing with proper task planning of the UAV accounting for the 3D environment in 
data collection. 

The multiagent-based paradigm for developing a highly abstracted simulation model in IoT 
systems is discussed in [96]. It aims for event and data-driven networks with flexibility and large 
variety of nodes in increasing abstraction layers. The FABIoT [105] model parameters at the hardware 
level include the processing power of the nodes, configuration types, percentage of smart objects 
(SO), if the nodes are battery-powered or not. The network parameters are the time-to-live (TTL) for 
messages and the ping frequency for the smart objects. Performance is measured using the mean 
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query time (MQT) and plan success rate (PSR) over a reference system of 50 random network 
configurations of 40 heterogeneous smart objects. Heterogeneity in this case is defined by a mix of 
hardware and services. Several test scenarios are modeled to reflect the metric variation under typical 
network assumptions e.g., performance degradation with a percentage of nodes departing/failing. 

Communication systems perspective for the ground level WSN is discussed in [106] when 
dealing with radio challenges over hybrid MACs for decision fusion. The nodes transmit binary non-
coherent decisions to the fusion center and the authors analyze and prove several efficient methods 
that implement the decision fusion rule while accounting for the limited computing available on the 
nodes. The proposed hybrid MAC provides advantages for detection performance with group size 
and under low SNR conditions. By grouping ground sensors around MAC schemes, in the same 
sensor group non-orthogonal MACs are used. The reference for the optimal fusion is considered the 
likelihood ration (LR) test while three alternatives are developed in order to mitigate computational 
impact: weighted energy detector (WED), deflection–coefficient- maximization (DCM) and two-step 
(TS) rules. Evaluation revolves around the detection of a known parameter in Gaussian noise with 
zero mean and unit variance and receiver operating characteristics (ROC) for various simulation 
scenarios for the four methods are presented. 

Aspects related to the enabling of power efficient communication in WSN with external UAV 
support are discussed in [107]. A non-convex mixed-integer optimization problem is formulated to 
minimize total power consumption of the UAV while at the same time offering performance 
guarantees to the ground sensor nodes for their transmission rate. Block coordinate descent is used 
for problem decomposition into manageable sub problems. Satisfying of the sensor node quality of 
service constraints implies reducing the distance of the UAV to it. The three schemes that provide the 
evaluation imply a power-efficient scheme, propulsion efficient scheme compared to a reference 
circular flight scheme, under consideration that the UAV propulsion energy cost is dominant against 
its transmission energy cost generated by initiating or receiving radio communication from the 
ground nodes. 

In previous work we have presented the design of a collaborative UAV–WSN network for 
environmental large-scale sensing [1]. The main challenges that have been tackled relate mostly to 
the cluster-based self-organization of the ground sensor network in conjunction with the discovery 
and path planning optimization. A cluster head selection procedure has been implemented based on 
the connectivity and signal strength levels of each of the ground nodes during the UAV initial 
overpass flight. The optimized paths for improved data collection for the UAVs take into account the 
constraints of the flight zones such as physical obstacles and no-fly areas. A cluster-rebalancing 
scheme is also presented in order to relieve and balance the energy and processing burden for the 
individual ground nodes. A realistic testbed composed of an octocopter platform and TelosB-type 
sensor nodes is implemented and deployed to validate the simulation results. 

A summary of the UAV - WSN communication characteristics is given in the Table 4. 
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Table 4. Integrated UAV–WSN systems. 

System Architecture System Configuration System Implementation Reference 

UAV–WSN 

cUAV, wUAV—single WSN Quadrotor [22] 
Miniature UAV—single WSN Hero 6 UAV, Mica2 WSN nodes [45] 

UAV for WSN node deployment AVATAR helicopter, Mica Mote WSN nodes [30] 
cUAV–WSN Different simulators: OmNET++, Glomosim,SSFNet, ns2, Java-Sim [24] 
wUAV–WSN Fury UAV  [62] 

mUAV with specific functions: mobile 
sink, node deployment OmNET++ simulations [82] 

Multiple wUAV–WSN 
Simulations using Matlab and C++, real evaluation using Megastar 
wUAV [46,56] 

wUAV–WSN Matlab simulation [100] 

wUAV–WSN (single hop) 
DUNE software to communicate with X8 UAV 
Pandaboard at UAV level 
ATXMEGA192C3 for sensor node 

[97] 

wUAV–WSN (single hop) 
PIC24F PCB as sensor node 
BeagleBone Black (BBB) board as beacon node, buoy, Delta wUAV [10] 

wUAV–WSN (single hop) 
Silicon Labs EFM32 Gecko microcontroller as WSN node, 
TBR-700 receiver and X8 UAV for field tests, Phantom quadrocopter 
for off-shore tests 

[96] 

cUAV–WSN 
DJI Phantom 4 UAV, embedded controller for WSN nodes, PC with 
an Android terminal for ground control [78] 

UAV–WSN–IoT 

mUAV–WSN OmNET++Simulator  [108] 
cUAV Simulations using Arduino boards for both WSN and UAV [73] 

cUAV–WSN 
Arduino, Particle Photon or NodeMCU boards at sensor level, 
embedded Farmbeats gateway at UAV level, DJI Phantom 2, Phantom 
3 and Inspire UAVs, Raspberry Pi at base station, Azure Cloud 

[81] 
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6. Applications 

When addressing specific applications, most authors use a UAV as a mobile sink in either small 
or large scale WSN. Papers addressing specific applications usually do not detail data gathering or 
advanced path planning algorithms, but rather how such architectures respond to specific challenges 
and how a specific implementation achieved application objectives in a certain use-case. The 
implemented functions depend on each of the application’s objectives. The main applications of 
integrated UAV–WSN systems are synthesized in Table 5. More detailed characteristics of 
applications in agriculture, environment and disaster management are provided in the following 
subsections. 

6.1. Agriculture 

Traditional WSN topologies are not suitable for monitoring small, strictly delimited, dispersed 
and isolated parcels, which are commonly found in agriculture applications. WSN nodes might also 
become unreachable as the vegetation becomes denser and performance is affected by the variable 
node elevation.  

Hovering UAVs were used in real conditions for collecting data from cluster nodes in such 
applications and in [22] reliability at different flight heights is evaluated. Di Gennaroa et al. [109] and 
Primicerio [110] proposed the use of micro UAVs equipped with multispectral cameras along with 
WSN meteorological data to evaluate the correlation between grapes quality and measured values. 

In the specific domain of spraying pesticides applications, the following challenges were 
identified: 

- Some areas might not have the proper amount of chemicals, while other might have a 
higher level; 

- The efficiency of the process is highly influenced by weather conditions; 
- The chemicals must be spread only inside a predefined boundary. 

The authors in [24] and [37] developed methods for these operations, which use sensor 
measurement values to change the UAV route. The sensors are deployed in a matrix to be able to 
apply the proposed algorithm. A chemicals concentration map is designed using the available sensor 
data.  

An UAV–WSN–IoT systems in data-driven agriculture is described in [81]. The UAV flight 
planning is done in conjunction to ground level data depending on the specific parameters to be 
collected. Duty cycling is applied as well as a scheme that leverages wind speed and orientation to 
optimize UAV flight time across the fields. UAV video feeds are compared against measured sensor 
values for improving inference of specific agriculture events. A prediction model is evaluated for 
inference of precision parameter maps and compared against nearest neighbor (NN) and inverse 
distance-based interpolation schemes. 
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Table 5. Main applications of the integrated UAV–WSN systems. 

Application Domain Application Details Implementation Characteristics Reference 

Agriculture 

Data driven, IoT base station, prediction models 
Farm beats gateway for data collection from WSN, 
UAV 
Azure Cloud 

[81] 

Crop monitoring in vineyards Quadrotor [22] 
Pesticide spraying Simulations with OMNeT++ and MiXiM [24,37,58] 

Precision agriculture 
cUAV, multi-pass, grid sensor deployment, 
experimental results 

[25] 

Crop and soil monitoring in vineyards integrating environmental data with 
multispectral images 

mUAV 
WSN node: Arduino 

[23,109,110] 

Farmland environmental monitoring 
WSN sensor and relay nodes 
Octocopter 

[111] 

Environment 
monitoring 

Underwater monitoring Simulations using Arduino boards [73] 
Ambient air pollution monitoring Quadrocopter [112] 
Ambient monitoring: temperature, humidity, light intensity, wind speed Fixed-wing UAV [90] 

Marine environment monitoring 
PIC24F PCB/ ATXMEGA192C3 as sensor node, 
BeagleBone Black (BBB) board as beacon node, 
buoy, Delta mUAV 

[10,96,97] 

Animal monitoring Endangered species movement monitoring without any attached devices Simulations using Zebranet dataset [80,113] 

Disaster monitoring/ 
emergency 

Situational awareness, pre-event and post-event activity functions, 
integration with BSN 

OmNET++ Simulator [82] 

Disaster monitoring, situational awareness, pre-event and post-event 
activity functions 

Framework model [114] 

Natural disaster management Evaluation of different implementation solutions [115] 
Disaster recovery, post-event functions Quadrocopter [116] 
Situational awareness, post-event activity functions Numerical simulations of communication cases [117] 
Disaster monitoring, situational awareness Framework architecture [118] 
Flood monitoring, post-event functions Quadrocopter [119] 

Transport monitoring 
Ground pipeline monitoring and control Simulations using Arduino boards [73] 
Energy-efficient urban surveillance, Intelligent transportation system  Multicopters in LoRaWAN-like networks [120] 

Utilities Power meter reading 
Sinalgo Simulator, scenarios with up to 16000 
nodes 

[53] 

Multimedia Capturing HD/3D content with augmented reality Platform description [121] 
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A relevant application in agriculture is described by [122]. A 1.9 m wingspan fixed wing 
Skywalker UAV is used to remotely collect ground sensor reading from commercial Xbee nodes 
deployed in the field. The parameters include temperature and humidity from a Rotronic HygtoClip 
HC2-S sensor. The UAV can be equipped with either a normal camera or an infrared camera and the 
on-board embedded control platform of choice is a Raspberry Pi. Field trial run results illustrate the 
autopilot enabled operation of the UAV over the target crop while analyzing communication and 
data collection performance from the Xbee node. A salient feature of the integrated system is that the 
UAV includes a small on-board tank for deploying directly fertilizers, herbicides or insecticides based 
on the output of the decision algorithms allowing for fast response to critical conditions with a 
maximum payload of 2 kg. 

6.2. Environment 

In the environmental domain the integration of WSN with UAV devices led to the development 
of new applications, rather than increasing efficiency in existing ones, like in agriculture or disaster 
management. They cover various topics for air pollution, underwater or animal monitoring. 

In marine applications, the challenges are given by the difficult access to sensor nodes dispersed 
over extremely large areas. Thus, [10] proposes an application where several buoys are deployed in 
a marine environment, with no fixed positions. They collect environmental data like temperature, 
wind speed, pressure and humidity using the LoRa communication protocol. Subsequently, a UAV 
is used as a mobile sink to collect data from these nodes. Tests showed that a transmission range of  
4 km could be achieved with a data rate of 5.4 kbps. 

An advantage of integrating WSNs and UAVs in air pollution is the capability of obtaining a 
tridimensional sampling of physical phenomena, allowing further analysis and prediction of weather 
impact and/or pollutant propagation over large geographical areas. Orestis et al. [112] have proposed 
the architecture for such an application and used a cube map area to model each pollutant. 

In the case of wild animals monitoring, the algorithms chosen for path planning must take into 
consideration their movement over the monitored area. Authors in [80] and [113] use the metric of 
value of information (VoI) to characterize sections of a grid where animal movement was identified 
as an area where intensive data collection is required. This way, the UAV can be directed with priority 
towards the areas where animals are detected and afterwards cover the rest of the network. 
Monitored information includes the picture, sound and odor. 

6.3. Disaster Management 

Disaster management applications are characterized by the requirement of operating in harsh 
environments, where data needs to be collected from dynamic WSNs with high reliability taking into 
account the fast reaction requirements. A broad study of UAV solutions for disaster management is 
carried out [115] while considering ground sensor networks that are deployed on the premises and 
are able to leverage efficiently the aerial support. The design accounts for four stages of disasters 
ranging from disaster preparedness, assessment, response and recovery. In the first case the system 
must be optimized for data acquisition and collection while using UAVs as a data mule for relaying 
in a reliable manner the information of interest back to a central disaster management entity. In the 
second case, fixed-wing UAVs are employed to scan the affected area and identify target zones for 
more precise evaluation by means of more maneuverable rotary wing platforms. For the final stage, 
more advanced sensors and actuators are deployed for improving the successful outcome of the 
missions. In this situation, maximizing the data provided by the WSN becomes a critical factor and 
the WSN can offer support to the UAV platforms. 

WSN and multi-UAV systems working together in disaster management applications are 
reviewed [123]. The associated wireless communication technologies are identified, from low-power 
Xbee links to various types of 802.11 Wi-Fi networks that provide increased bandwidth. The disaster 
management scenarios imply the possibility of dynamic reconfiguration of the roles of both the UAV 
and WSN networks depending on changing priorities in the field. These are focused on human-life 
protection through fast response while integrating the data sources that are available by means of 
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intelligent aggregation and fusion mechanisms. WSN can be associated also with ground mobility 
platforms in the form of unmanned ground vehicles (UGV). Cloud infrastructures are able to support 
the large-scale data processing and optimization needed. 

The AWARE platform proposed in [82], where WSN, BSN and UAV collaborate to gather data 
from harsh environments using both static and mobile sensors, gives a valuable insight on the 
capabilities and leveraged possibilities in this domain. Here UAVs are used as mobile nodes and for 
sensor deployment. The solution is capable to detect emergency events and to ensure autonomous 
network repair and a fast reaction. 

6.4. Simulators for UAV–WSN Systems 

The great majority of WSN–UAV interactions are done in simulation (comparatively few papers 
show real-life implementations). The simulations go from relatively simple (proof of concept 
validation done preponderantly in Matlab or similar scripting languages) to physics-based 
simulators, which aim to give an accurate representation of the WSN/UAV model in real-life 
functioning conditions. The last category uses popular tools like ROS (robot operating system) for 
modeling a control with simulation done, e.g., in Gazebo [124]. Other options are the flight simulator 
X-Plane [125], or, for the WSN interaction, the COOJA environment [126]. 

Note that, as far as we are aware, there is no tool that provides an integrated solution (at least 
not without a fair amount of tweaking) for both WSN and UAVs. 

7. Discussion 

The motion planning strategies employed in the papers studied for this review were mostly of 
relatively reduced complexity. Whereas the underlying optimization problem, which led to them, 
can be extremely complex, the paths are most often given as a sequence of segments linking 
consecutive waypoints (whose position and passing-through time are determined a priori).  

While the complexity issues undoubtedly play a large part in the simplifications usually 
imposed (e.g., predefined types of paths), we believed that another reason for the current approaches 
is an attitude of “good enough” and “tested and true”. This is defensible in light of the currently 
available hardware resources (the UAV autopilot expects an ordered list of waypoints and the 
hardware itself is too expensive and/or dangerous to be tested on unproven strategies). Still, increases 
in the performance of inertial measuring units and the availability of global localization 
infrastructures (GPS, Galileo, etc.) mean that the practitioners can relax some of these constraints and 
propose more aggressive strategies (in the sense of reducing energy costs, operation time and  
the like). 

Foremost, using realistic UAV dynamics in the motion planning procedure will give paths that 
are more flexible and can still be tracked by the autopilot at runtime with increased performance 
(tighter collision avoidance, less conservative energy estimation, reduced operation time, etc.). This 
is challenging from the viewpoint of the planning procedure (as the waypoint selection and 
subsequent ordering can no longer be separated easily but are realistic under the expected software 
and hardware improvements). 

Another insufficiently treated aspect in the state of the art is the path planning in the multi-UAV 
context. Virtually all of the works studied first partition the tasks among the UAVs and then proceed 
to compute their paths independently. While this simplifies the analysis, it is conservative since it 
reduces the UAVs’ flexibility. Thus, computing overlapping paths or updating them online will allow 
a more flexible task allocation and will lead to an improved mission outcome. 

Keeping in mind that future applications may work in an urban environment and that increased 
WSN interactions may require a low flight level, obstacle detection and subsequent avoidance as well 
as line-of-sight communication will have greater and greater importance in the path planning 
procedures. This will not only increase the complexity but will also lead to questions about safety 
regulations, reliable functioning (even in the presence of failures) and mission performance in a 
cluttered environment. 
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Overall, we consider that the field of motion planning, in the context of UAV–WSN applications, 
has many avenues of evolution and will evolve significantly in the coming years. 

Figure 6 shows the overlapping areas of development in UAV, WSN and IoT systems by means 
of a Venn diagram. The key topics, also elaborated upon in the current articles, are highlighted. We 
consider the integrated heterogeneous monitoring systems that represent our focus to lay in the 
dashed area as illustrated in the figure. This represents the collaborative aspects of current UAV 
research topics such as: complex sensing, path planning and control over long distance links, in 
conjunction with typical WSN topics such as ground sensor deployment and coverage for data 
acquisition, energy efficiency and low power radio communication links. In addition, this core area 
is being extended to elements from the IoT domain by enabling the collaborative systems to leverage 
fog computing primitives, embedded data processing and inference mechanisms for local  
decision taking. 

 
Figure 6. Research topics overlap in collaborative UAV and WSN systems with IoT aspects. 

Regarding open research questions for integrated UAV–WSN systems, the current focus goes 
beyond optimal communication and data acquisition heuristics towards intelligent and adaptive 
systems. We predicted that this would be enabled by designing data and information flows across 
networks that allow distributed and localized inference at the network nodes. By adjusting such 
mechanisms to the specific resources and abilities of the nodes, the local decision is enabled. This 
improves the overall robustness and resilience of the large-scale monitoring system, allowing it to 
adjust to changing process dynamics and mission objectives, with minimal latency. An important 
requirement for this vision to be achieved is to make the intermediate gateways transparent at the 
upper levels of the system design in such a way that both low-level (ground) information as well as 
high level (inferred) information is available in both directions. Edge machine learning methods and 
techniques are an increasingly active field of study whose results can be successfully assessed in the 
context of integrated UAV–WSN systems. 

Furthermore, on the communication aspects that enable these collaborative systems will need to 
be integrated into heterogeneous IoT solutions that offer seamless bidirectional data and information 
flows over multiple interfaces and network layers. New low power long range radio links such as 
LoRa or NB-IoT require different systems architecture for the design of large area monitoring 
systems, potentially enabling direct sensor to UAV integration. On the other hand, emerging 
technologies such as ultra-wide band (UWB), which enables precise local positioning in constrained 
environments can offer fine grained data to improve WSN–UAV interoperability.  

One common challenge that has emerged from our study was the need for extensive scalability 
evaluations, which should prove the robustness of extended designed collaborative solutions. In 
practice that leads from current solutions with tens to hundreds of SNs and single or several UAVs 
to thousands of SNs and UAV swarms in seamless integration at the physical: sensing, 
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communication, networking and logical levels: data, information and autonomous decision-making. 
This can be done through dedicated simulation environments and suitable test-beds. 

8. Conclusions 

The intelligent collaborative UAV–WSN systems have become the cheapest, friendliest and 
precise monitoring systems in various fields of economic or human interaction (environment 
surveillance, agriculture, smart cities, security, search and rescue missions, energy and transport 
infrastructure validation, etc.). Recent applications go beyond proof of concept systems and include 
multiple sensor nodes and UAVs, integrated into a large scale, geographically distributed, WSN. Due 
to the complexity and the multiple functionalities that need to be covered (acquisition, processing, 
collaboration and communication), these systems are, in essence, systems of systems. New concepts 
such as edge, fog and cloud computing are now used in data processing. The artificial intelligence of 
the basic elements (UAVs and SNs) makes the intersection between the entities in Figure 6 (UAV–
WSN–IoT) increasingly relevant. Both UAVs and WSNs are increasingly considered as halves of a 
single multi-agent system, which functions organically as a single, indivisible unit. Not in the least, 
the nodes being part of a WSN are increasingly smart, with additional functionalities, which move 
them toward the IoT paradigm. Thus, we might conclude that systems integrating WSN, UAVs and 
IoT are on an ascendant trajectory and will become ubiquitous in commercial applications.  
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Table A1. List of acronyms and symbols used. 

Acronym/Symbol Description Acronym/Symbol Description 
ACO Ant colony optimization mUAV Multiple unmanned aerial vehicles 

AODV Ad hoc on demand distance vector NLoS Non-line of sight 
BSN Body sensor network NN Nearest neighbor 
CDR Conflict detection and resolution PCWAS Priority-based contention window adjustment scheme 
CH Cluster head of WSN POFS Priority-based optimized frame collection 

Csma/Ca Carrier sense multiple access/collision avoidance PSO Particle swarm optimization 
cUAV Unmanned aerial vehicle—multi copter type RRT* Optimal rapidly exploring random trees 

DS 
Deterministic scanning—method for AC path 
planning RRT Rapidly exploring random trees 

FPPWR Fast path planning with rules RSSI Received signal strength indicator 
FSRP Frame selection-based routing protocol SIG Sensing information gathering 
GA Genetic algorithm SN Sensor node 
GCS Ground control station STTT Shortest travelling time trajectory 

GDT Ground data terminal TDMA 
Communication through time-division multiple 
access 

GPS Global positioning system TSP Travelling salesman problem 
GPSR Greedy perimeter stateless routing TTM Threshold time minimization routing protocol 
GSM Global system for mobile communications UAV Unmanned aerial vehicle 
IoT Internet of things VSI Value of sensor information 

LLRA Low-latency routing algorithm WOS Web of science 
MI Mixed integer WSN Wireless sensor network 

MINLP Mixed integer non-linear programming wUAV Unmanned aerial vehicle—fixed wing type 
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