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Abstract: Nowadays, centralized energy grid systems are transitioning towards more decentralized
systems driven by the need for efficient local integration of new deployed small scale renewable
energy sources. The high limits for accessing the energy markets and also for the delivery of ancillary
services act as a barrier for small scale prosumers participation forcing the implementation of new
cooperative business models at the local level. This paper is proposing a fog computing infrastructure
for the local management of energy systems and the creation of coalitions of prosumers able to provide
ancillary services to the grid. It features an edge devices layer for energy monitoring of individual
prosumers, a fog layer providing Information and Communication Technologies (ICT) techniques for
managing local energy systems by implementing cooperative models, and a cloud layer where the
service specific technical requirements are defined. On top, a model has been defined allowing the
dynamical construction of coalitions of prosumers as Virtual Power Plants at the fog layer for the
provisioning of frequency restoration reserve services while considering both the prosumers’ local
constraints and the service ones as well as the constituents’ profit maximization. Simulation results
show our solution effectiveness in selecting the optimal coalition of prosumers to reliably deliver the
service meeting the technical constraints while featuring a low time and computation overhead being
feasible to be run closer to the edge.

Keywords: smart energy grid; virtual power plants; fog computing; modeling; simulation;
frequency restoration reserve

1. Introduction

Traditionally, energy grids are constructed around centralized broadcast-like mono-directional
energy systems, where electricity is remotely generated by power plants and transported over complex
networks and infrastructure to the consumption points, with significant costs for interconnecting
remote areas. This model is cost effective up to a point and fits well with cloud based management
infrastructure. However, with the growing deployment of small scale prosumers such as combined
heat and power plants, distributed energy generation units, electric cars, and batteries, the architecture
of grid systems needs to be decentralized to overcome the increasing complexity and new challenges of
energy management operations. The first challenge is the efficient integration of new deployed small
scale intermittent renewable energy sources (RES) while preserving continuity and security of energy
supply. In this case if the locally generated renewable energy is not self-consumed, then local problems
such as overvoltage, losses, and lifetime decay affecting the transformers and electric equipment may
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appear at the local microgrid level and could be escalated to higher management levels. The second
challenge is related to the fact that centralized energy systems do not consider the local conditions,
making it difficult to be adapt and optimize them to meet user needs, and meaning they do not provide
incentives for prosumers to reduce/increase their demand by shifting flexible energy. The third one is
the rather high limits for accessing the energy markets and also for the delivery of ancillary services,
which constitute a barrier hindering small scale prosumer participation. More significant energy
and flexibility may be offered and delivered to system operators in their respective markets, if it is
aggregated at scale driving the implementation of local cooperative models.

In this context, parts of the energy system are transitioning towards more diverse cooperative and
decentralized sub-systems, where energy management may effectively take place at the local level
by coordinating small scale prosumers to offer valuable services as a whole to the main grid, thereby
avoiding the need for additional grid reinforcement and facilitating efficient grid balancing. As a
result, local energy systems have been increasingly researched in the last few years. State of the art
literature [1-4] converge towards the decentralized local-level coordination and management of local
energy resources, which are located within a well-defined limited geographical boundary and include
a variety of local electricity (RES or conventional generation), energy storage and/or flexible loads,
including EVs and cross-resource integration. Also, several models have been defined for realizing the
decentralized coordination of local energy resources, such as prosumer community groups, energy
cooperatives, Virtual Power Plants (VPPs), [5] and multi-energy hubs [6,7].

The main technological challenge that limits adoption of such models is the is the lack of
finer grained ICT infrastructure for enabling near real time scalable decentralized management and
operational control of the local energy systems. Cloud based solutions are not effective in this case,
especially for the provisioning of near real time ancillary services (such as frequency restoration
reserve) as this kind of infrastructure features high latency associated with centralization, meaning
it is unable to consider localized constraints and conditions. Usually in this case all the energy data
collected from monitoring devices are sent to the cloud for processing, thus generating high costs in
terms of bandwidth, storage and low reactivity. To address these issues, fog computing infrastructure
has been proposed, encouraging the processing of monitored data closer to the edge components [8,9].
In addition, in the context of smart energy grid management, very few approaches may be found in
literature, with most of them providing general architecture and failing to identify what kind of energy
analytics can be shifted towards the edge, especially for near real time ancillary services.

In this paper, we address the on the fly construction of VPPs, which usually combine and
coordinate local energy production sources with energy storage systems and flexible assets featuring
controllable loads, to deliver frequency restoration reserve service. Such local coordination helps
to utilize the full potential of the decentralized energy systems through the use of local resources
and wider engagement of prosumers, regardless of their scale, in energy management processes.
We propose a fog based infrastructure and model allowing the aggregation of energy resources in
VPPs to deliver frequency restoration reserve services to the main grid while increasing the profit and
reducing the energy costs for the constituent members. As result, the local and grid level value streams
can be combined to obtain a more profitable and optimal management of local energy systems, while
actively contributing to the energy grid sustainability objectives.

The main contributions of this paper are the following:

e  The definition of a decentralized infrastructure for smart energy grid management featuring a
hierarchy of three layers: the energy monitoring edge devices layer, the fog layer providing ICT
resources for managing local energy systems to deliver near real time ancillary services for the
main grid, and the cloud layer including the specific services for the management of the whole
distribution energy system;

e A VPP model for dynamically construction of prosumer coalitions at the fog layer that might be
extended and customized to the specificity of the ancillary service type to be delivered, while
maximizing the profit of the prosumers.
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e A model extension for frequency restoration reserve service provisioning based on constraints
satisfaction of local prosumers and mixed integers non-linear optimization.

The rest of the paper is structured as follows: Section 2 details the state of the art processes
regarding VPPs and decentralized energy grid management, Section 3 presents the proposed fog based
architecture and VPP model, Section 4 describes the model extension for the provisioning of frequency
restoration reserve service, Section 5 presents simulation based results considering a relevant data set,
while Section 6 concludes the paper.

2. Related Work

The state-of-the-art literature investigation conducted showed that only a few approaches are
addressing VPP modeling, creation, and optimal decentralized management in relation to different
smart energy grid sustainability objectives [10-13]. Most of the literature approaches address day-ahead
or intra-day markets which feature more relaxed time constraints, with their associated optimization
problems being solved under the latency of cloud-based solutions.

In reference [14], VPPs are constructed and managed to minimize the operational cost of their
constituent energy resources while considering the energy loss and energy price for the day-ahead.
The optimization problem is formalized as a constraint satisfaction problem which is solved using an
Imperialist Competitive Algorithm under technical constraints. In reference [12], the VPP day-ahead
and intra-day optimal generation schedule is addressed in relation with Demand Response (DR)
programs. The stochastic parameters of the optimization problem considered are the forecasted
wind energy production and energy price. A profit based VPP scheduling model is proposed using
the Conditional Value-at-Risk [15] as a form of risk management in decision making. The solution
is effective in providing the feedback needed for DR programs selection, with the results showing
a 30% improvement of VPP profit. Similarly, stochastic programming models for optimal VPP
participation in the day-ahead energy market and intra-day market are proposed in references [16-18].
The authors model the uncertainty in energy prices, generation, and consumption by using different
risk management strategies: conditional value at risk, second-order stochastic dominance constraints,
and the Point Estimate Method. In reference [19], the problem of trading the VPP’s aggregated energy
to maximize the expected profit is modeled as a two-stage stochastic mixed-integer linear programming
model. The results show that the proposed model can maximize the VPP’s short term profit when most
of the energy trading decisions take place in the day-ahead market. In a similar manner, the energy
aggregators’ opportunities to manipulate the energy price in electricity markets are discussed in detail
in references [20,21]. The authors study the problem of estimating the profit that an aggregator may
obtain and show that even if it is computationally difficult, efficient algorithms exist when the topology
of the network is acyclic. In reference [22], the authors analyze the aggregation of stochastic and
deterministic renewable energy sources in a VPP to reliable generate energy which can be traded in the
European Power Exchange (EPEX)/European Energy Exchange (EEX) using existing market products,
while in reference [23], novel decentralization scenarios like vehicle to grid are investigated and an
energy trading framework is proposed based on blockchain, contract theory, and edge computing.

The decentralized VPP optimization and coordination is only partially addressed and discussed.
A VPP construction model leveraging on decision area variables is proposed in reference [24], aiming to
establish a distributed coordinated control of the distributed energy resources. Regional load density,
power consumption levels, administrative ranks, economic levels, and user importance are considered
as criteria for determining the VPP decision area. An architecture which aims to aggregate distributed
energy resources with the physical domain limited to single Points of Delivery of the distribution
network is introduced in reference [25]. The advantage brought about by this approach is the level of
decentralization, with the control being moved to the energy resources side. In reference [26], a critical
review of literature approaches in relation to VPP and multi-energy systems is conducted. The authors
propose the adoption of holonic energy systems as a new management paradigm targeting efficient
decentralization through adaptive control topologies and demand responsive energy management
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while adding features such as local autonomy and global energy balance. The authors of reference [27]
identify the need for decentralized decision support systems for the VPP coordinators which have
to consider huge amounts of data such as individual resource thermal [28] and electrical power
production, size, efficiency, typology, and remuneration. VPP coalitions of wind generators and electric
vehicles are considered in reference [29]. The vehicles are modeled using distributed software agents
and used as energy storage devices.

Some approaches are leveraging on game theory to address the problem of optimal energy
distribution by dynamically changing the size of the coalition of prosumers [30,31]. An optimal
coalition formation mechanism of distributed energy sources using a game theoretical perspective
is described in reference [32]. A hierarchical coalition formation is proposed to achieve a state of
cooperative equilibrium among the distributed energy sources while providing the best possible
response to Distributed System Operator (DSO) requests. The authors show that their proposed
scheme provides optimal outcomes and it is scalable enough to participate in real-time operation.
In reference [16], the authors propose the use of cooperative game theory approaches to split and
allocate a VPP’s profit among the aggregated distributed energy resources. Similarly in reference [33],
a methodology for creating coalitions of distributed generation units based on game theory is proposed.
It features a classification model of distributed energy resources considering fourteen parameters
including technical, economic and behavioral ones. The VPPs constructed in this way can participate
in demand response programs in both Medium and Low Voltage distribution networks. Finally,
in reference [31], a game-theoretic peer-to-peer energy trading scheme is developed, with the authors
showing that the coalition among different prosumers is a stable coalition, and managing to reduce the
cost of energy by more than 25%.

In reference [34], the authors investigate the possibility of applying edge computing principles
for smart grid management and identify challenges and open issues in this context. By using a
distributed decentralized architecture provided by the edge computing paradigm, scheduling and
fault tolerance aspects of a smart grid can be addressed while also solving problems related to
distributed generators and prosumers interaction. Similarly, in reference [35] an analysis of edge
computing solutions for the smart grid is conducted. The authors focus on modeling smart homes
integration in smart grids when dealing with a limited power budget, highlighting privacy as the
main advantage. An approach for time-series analytics with the edge computing applied to the
smart grid and manufacturing industries is presented in reference [36], but the focus lies more on
integrating the wired/wireless communication networks that will use real time computing at the edge
of the network. Reference [37] describes the energy lattices as fog computing architecture applied for
smart grids. In this architecture, devices such as smart meters and micro-grids will achieve energy
efficient management using availability and price as the main criteria. Authors of reference [8] discuss
the existing fog computing approaches and identify important functionalities for such platforms in
the area of sustainable smart cities. The smart power grid is identified as an important use case
for fog computing especially for reducing operational costs, integrating renewable energy systems,
balancing the system, and monitoring power generation, demand, and storage. In reference [38],
an energy management-as-a-service over fog computing platform is introduced for both home energy
management and microgrid-level energy management. The approach uses low-power and low-cost
devices for computation, storage, and communication to build a service oriented fog computing
platform. In reference [39], an arbitrage strategy is defined for VPPs participation in ancillary services
market targeting the spinning reserve and frequency restoration reserve services. The optimization
model considers the supply—demand balancing, transmission network topology, and security targeting
the VPP’s profit maximization. In reference [40] a two-stage stochastic programming approach is used
to address the problem of VPP trading in a market of ancillary services. It incorporates a risk-averse
optimal offering model based on conditional value-at-risk while considering the uncertainty regarding
energy generation/consumption and energy prices in balancing markets.
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By analyzing the state of the art research, it can be seen that there are few approaches addressing
the problem of dynamic construction of coalitions of energy resources to provide management services
for energy players such as the DSO. They are not considering the fog infrastructure for addressing the
VPP management and optimal construction problem as close as possible towards the edge components.
Also, the localization and near real time constraints of specific type of ancillary services such as
frequency restoration reserve is not properly addressed. The solution proposed in this paper goes
beyond the state of the art research by providing a generic VPP construction and optimization model
over a fog computing based infrastructure, allowing the definition, formalization, and provisioning of
near real time frequency restoration reserve service as close as possible to the edge. Regarding VPPs
and decentralized management of frequency restoration reserve, we could not identify any relevant
state-of-the-art approach addressing it by using a fog computing based infrastructure.

3. Fog Based VPP Model

The proposed model is based on a hierarchy of three layers (Figure 1):

e Anedge layer contains the physical IoT energy metering devices associated with each individual
prosumer (or Distributed Energy Resource (DER)) from the smart grid;

e A fog layer contains computational resources associated with a local geographical area (i.e., the
microgrid area) enabling the construction of virtual coalitions of prosumers in VPPs to provide various
services for the main grid, while maximizing the revenue of the local constituent energy resources;

e A cloud layer represented by cloud server on which the DSO runs its analytics to define specific
services for optimal management of grid resources, which can be addressed by an individual
prosumer (if it is large enough) or by a virtual coalition of prosumers.
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Figure 1. Fog computing and Virtual Power Plant (VPP) model in smart grids.
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This approach provides the following advantages:

Proximity to the prosumers—the analytics for solving the optimization problems are run closer to
the prosumers, thus minimizing the decision time and providing the opportunity for selecting
prosumers to participate in VPP coalitions regardless of their size or scale;

Increased Locality—the virtual coalitions can be associated with a local microgrid and, as a result,
locally address the potential management problems and avoid their escalation to higher grid levels;
Reduced Latency—in the data traffic from the lower edge level to the higher fog level (where the
VPPs are constructed) and vice-versa. This is also an important condition of the availability of a
high amount of data from the smart meters.

In the next paragraphs, we provide the underlying model to create the fog level dynamic coalitions,

which will aggregate in VPPs the following types of prosumers (see Figure 2):

Distributed Energy Generators (DEG) such as small-scale wind power plants, photovoltaic units,
Combined Heat and Power (CHP) systems, or diesel generators;

Energy Storage Systems (EES), such as batteries or UPSs;

Flexible Energy Demand Assets (FDA).
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Figure 2. The VPP model considered.

The prosumer is modeled as a tuple consisting of its predicted energy profile over a future time

interval T in which the VPP is constructed and the prosumer type is:

Prosumer[k] = (Ex[T], type = {DEG, EES,FDA}). 1)

The energy profile of the prosumer is represented as a set of energy values sampled at equidistant

time stamps during the time interval T over which the VPP coalition is created to provide a specific service:

Ex(T) = {Ex(i)]i€{0...T}, ke {1...N}}. 2)



Sensors 2019, 19, 4688 7 of 20

We consider that the local grid includes N prosumers of different types and energy profiles, each
of them having their own specific local constraints which need to be met:

N=C+P+S 3)

where C is the number of flexible energy assets, P is the number of energy producers, and S is the
number of energy storage devices.

The goal of the coalition of prosumers construction process is to select a subset of the energy
prosumers from the local grid portfolio which best fulfils the optimization objectives defined for the
type of ancillary service that needs to be delivered by the VPP, while meeting each energy prosumer
local constraints and maximizing their profit. The VPP coalition is represented as a binary array of
length N, where a value of 0 on position k means that prosumer k is not part of the coalition, while a
value of 1 means that the prosumer is included (taken) into the coalition.

VPP = {(takeny, Prosumer[k])|k € {1...N}, taken; € {0,1}}
takenn, — 0, Prosumerl[k| is not part of the VPP 4)
k= 1, Prosumer|k] is part of the VPP

The search space of the optimization problem is 2V where the set of all subsets that can be formed
has the elements of a set of cardinality N, thus making the search problem NP-complete.

In the following, each prosumer type, as VPP main constituents, will be represented at the Fog
Level in terms of their parameters and operational constraints.

The Distributed Energy Generators are modeled by the following parameters and local
operational constraints:

e  Ex—the forecasted energy generation values;

e U, Uy € [0,1]—the lower and upper levels of uncertainty considered in the forecasting process;

E generation

° MAX

—the maximum energy generation;

The lower and upper limit of uncertainty give the lower and upper bounds of the energy predictions
considering the potential prediction errors reported to the actual value that will be monitored in the future:

uncerntainty

K (i) < Uy » Ex (i) < ESpy™, Vi €{0...T) 5)

UL*EK<i) <E MAX

The total energy generated by the producers selected in a VPP can be computed as the sum of
each individual prosumer energy generation:

P
Eie;;ratzon(t) _ Z taken(k) " Ezncerntumty(t) (6)
k=1

Furthermore, the coalition is created by considering the risk management in the optimization decision
making generated by the uncertainty in the energy generation forecasting processes. This is computed as
the weighted difference (p) between the forecasted value of the prosumer energy profile Ex and the actual
values during delivery and represents the cost function in the optimization problem. When the difference
is high, the probability of not meeting the forecasted energy values increases, thus increasing the risk of
not being able to supply the energy desired, directly impacting the value of profit estimated:

N T
riSkuncertainity =p* Z Z
k=1 t=1

The Energy Storage Sources, is modeled by the following parameters and local operational constraints:

E]Lgrzcerntainty (t) —Ex (t) (7)

e  Maximum capacity: MAXE[kWh], ke {1...5}
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e  Depth of Discharge: DoDy, ke {1...5}

e Initial state: ESS}"![kWh] , k€ {1...5)

e  Maximum Charging Rate on time interval: MAXIC(the [kWh], ke {1...S}

e Maximum Discharging Rate on time interval: MAXII?iSChmge [kWh], ke{l1...5}
[kWh], ke{1...5}

kWh], ke {1...5}

e  Actual Charging Rate on a time interval: Ck ESS

e  Actual Discharging Rate on a time interval: DES sl

e Actual Loaded Capacity: ESSi[kWh], k€ {1...5}
e  Charge loss factor: pc € [0,1]
e  Discharge loss factor: ¢p € [0,1]

e  Discharge Cost per unit: COSTP [ ke{l...S}

TEWT] ]

e  Charge Cost per unit: COSTC[ TV ] kefl...S)

The battery actual loaded capacity must be bounded by the maximum capacity and by the depth
of discharge (DoDk). Furthermore, the charge and discharge values also must be bounded.

DoDg * MAXE™ < ESSy(t) < MAXK™ ke {1...S),te{1...T) 8)
0 < Crss(f) < MAXY™S, ke (1...S)te {1...T) )

0 < Dgss(t) < MAX """ ke {1...S),t € {1...T) (10)
ESSi(0) = ESSi, Yk e {1...S},te{1...T} (11)

When the battery is dlscharged over a time interval with DESS kWh, its actual loaded capacity
decreases with (pp + 1) *D ESS, due to the dlscharge losses. Furthermore, when a battery is charged,
the actual loaded capacity increases with (1 — ¢c¢) * Cr..., due to the charging losses. A battery cannot
be charged and discharged simultaneously.

ESS’

ESS(t) = ESSk(t=1) + (1= @c) * Cgs(t) = (p + 1) * Digs(t), k € {1....5) (12)

Chog(t)+ Do (t) =0, ke {1...8),tef1...T) 13)

The charge and discharge of a battery increase its operating costs due to wear and thus decrease
the overall VPP profit. As a result, the operating cost of the battery over a time interval [0...T] is
computed as the negative cost due to battery charge and discharge:

OPcost (CESS’ Diss: prlce)

T 14
2((1- )+ Ches(6) «COSTE + (g -+ 1)+ Ds(1) » COSTY) o

The overall energy charged and discharged by the batteries over a time interval can be computed
as the sum of the energy charged or discharged by each individual battery from the grid:

S

CESS Z ESS DESS Z DESS (15)

k=1

The overall cost of charging and discharging the batteries over the optimization interval [0... T] is
computed as the sum of the costs for each battery usage.

S
OPcost(CESS/ Dkss, Price) = Z OPcost(C’ESS/ DII(ESS’ price) (16)
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The reward of operating the batteries selected in a VPP by selling and buying energy from the
energy marketplace considering that the energy price is defined as:

Ress(Cess, Dgss, price) =

T
El(DEss (t) = Cgss(t)) * price(t) | = OPcost (CEss, DEss, price)

(17)

The Flexible Enerqy Demand Assets, are modeled by the following parameters and local
operational constraints:

J E?Sd"”e—the baseline energy consumption of the flexible asset;

o APCéZﬁZWy —the lower bound of average energy consumption defined as the values of the actual

energy measured that are below the baseline;

o APCIJZZ;(ZMy—the upper bound of the average energy consumption defined as the actual energy

measured that are below the baseline;
pflexibility

vax  —the maximum energy consumption of the flexible asset.

The constraints defined for the flexible assets state the amount of flexibility they might provide
either for increasing or decreasing their energy profile, being bounded by their adaptability power
curve parameters (above or below):

OsAPCflexibleSEuncemtainty(t) SAPC.flexible <

Eflexibility
below K

above — TMAX (18)

The total energy flexibility that can be potentially supplied by the selected prosumers in a VPP is
defined as the sum of the energy profiles of the selected prosumers.

C
E‘f/llialc)zbzlzty(t) _ Z taken(k) . E[u(ncerntamty (19)
k=1

Each different generation type exposes the coalition to various risks due to weather conditions,
thus diversity of generation types is an important feature of the coalition. Hence, we define a risk
measure to increase the diversity of the prosumers, in terms of type generation, selected in a coalition.
We consider the total number of different prosumer types as VPPryy.s, while the number of selected
prosumers in a solution is denoted as VPP, = ZkN:1 takeny. If each prosumer would be evenly
distributed, then the ratio of the total number of prosumers in the VPP (VPPg;,,) and the total type of
prosumers V‘;,I;,I;Sy‘;; should be equal to 1. So, we define the diversity measure as the Euclidean distance

between the number for each selected prosumers’ type and the ratio VVPI;A

Types ’
rlSkdiversity =

VPPTwes pp. N
o * p;l (WTSZZS - kgl taken (k) = (Prosumerg.type = p))

2 (20)

4. VPP Creation for Frequency Restoration Reserve

We aim at identifying the unused generation capacity that can be activated and aggregated in
a VPP to offer frequency balancing by injecting inductive reactive power in the grid and correcting
the power imbalances. Thus, the above Fog enabled VPP model is extended to allow the dynamic
creation of prosumer coalitions around a point in the local grid where an imbalance of reactive power is
identified, such that the new constructed VPP may address locally, in an optimal manner, the reactive
power fluctuation, and stabilize the grid voltage.

To create these kinds of coalitions, we have extended the prosumer model to incorporate both
active and reactive power components which are correlated through the prosumer power factor PF.
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The power factor is defined as the ratio between the active and apparent power, and it is a value
between 0 and 1 (closer to 1 means less reactive power):

Prosumer[k] = (E%"[T), X! [T|, PFyypg, {DEG, EES, FDAY}) 1)
The loads in the Smart Grid can have either a lagging power factor, or a leading power factor:
PFTYPE — (lagging, leading) (22)

A load that “supplies” reactive power is a capacitive load with a leading power factor, while a
load that “consumes” reactive power is an inductive load with a lagging power factor. A leading
power factor implies that the reactive component of the power is negative because reactive power is
supplied to the circuit and the phase angle in this case is in the fourth quadrant. A lagging power
factor means that the reactive component of the power is positive because reactive power is consumed
from the circuit, and the phase angle in this case is in the first quadrant. Furthermore, if the resource
has a constant power factor, then the bounds are given as equal. Using the general active and reactive
power formulas as well as the power factor type (leading or lagging) of a resource, the active —reactive
energy relationship determined as the following;:

_E?gtivem . (W - 1], if leading PF
E;(eactive(t) — PFy i . (23)
E?ftive(t) % (+ - 1], if lagging PF

rating2
PFapemtmg
K

The actual operating power factor PF(I’f IS of the prosumer k is limited by the power factor limits:

e MI ) e  MAX
PPlKeadmg MIN < PFoerratmg < PFZI?deg M (24)
PPZggmg—MIN SPP;)(pemtmg SPPlI?ggmg—MAX (25)

The reactive energy in the local grid sums up, and the consumed reactive energy of inductive
elements (lagging) cancels the supplied reactive energy of the (leading) capacitive elements:

N
E;ﬁﬁve(t) _ Z E;(eactive(t). (26)
k=1

The active energy of the grid can be computed as the sum of the active energy produced, and its
absolute values should be equal to the active energy consumed by the grid, to stabilize the frequency.

N

N
E;ﬁz;e(t) _ Z | Ez;ctwe—genemtwn ( t)| _ Z | E%tive—demand(t)l 27)
k=1 k=1

The power factor over the grid can be computed as the ratio between the reactive energy from the
grid and the apparent energy in the grid, and it should be kept constant, at around 0.95.

Ereactive Ereuctive
_ grid . grid
PFgrid B Eap parent B active\2 reactive\2 (28)
grid (Egrid ) + (Egrid )

The optimization problem is summarized in Figure 3, and has as inputs the set of prosumers available
to be considered in the VPP coalition and the target PF that must be achieved at the local grid level.
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Inputs: Prosumers [N], PFyarget[T]

Outputs: VPP - subset of prosumers which met the defined objective
Determine
PFZPeT "9 ypp = {takeny|k € {1..N}, taken, € {0,1}}
Such that

2
min (\/ZLl (PFtarget(t) - PFg”-d(t)) > and max VPP;’T'Zﬁt

Considering the constraints expressed as equalities:
Cl: EgEe(t) = TR |(takeny Vv activey) * Epctivegeneration (1| =
4 = Yi-1|(taken, v activey) * Egctive—demand (1 |
C2: Ejefte(t) = Yi=q(taken, V activey) * Eg°“™e(t)

1

operating 2

- 1> ,if leading PF
PFyg

—EI%Ctive (t) * <
C3: E}éeactive(t) -
Egetive(p) « (% - 1>,if lagging PF
PFIL;peTatmg
Considering the constraints expressed as inequalities:
C4: PREAIMITMIN o ppoperating (py < ppleading=MA% i e (1..T}, k € {1..N}
C5: PRA9Img—MIN o ppoverating py < pplagging=MaXyy e (1, T}k € {1..N}

Figure 3. Optimal VPP construction for offering frequency restoration reserve service.

The solution of the optimization problem that should be solved at the Fog Level is a subset of
energy producers located close to the imbalance point that can compensate for the reactive energy. The
optimization objective aims at minimizing the distance between the actual power factor and the target
power factor, as well as minimizing the distance between the grid elements that compensate for the
imbalance and the imbalance point:

T

min Z(PFngt(t) - PFg,,-d(t))Z (29)
t=1

at the same time, the VPP should gain profit by delivering this specific service:

maxVPP’E

rofit = Servicereward — GeNcost (30)

5. Evaluation Results

We aim to show the capability of our approach on solving the VPP specific constraints satisfaction
problems at the fog level, and by generating the prosumers coalitions at different levels in the hierarchy
tailored to technical constraints of different services.

Figure 4 presents the simulated scenario in which we have considered four micro-grids (ids 1 to
4) with a various number of prosumers, the first three with a potential surplus of active energy by
activation of additional generation prosumers, while the forth one has a low PF value due to an actual
surplus of reactive energy. Table 1 presents the ranges of parameters in which the prosumers part of
each microgrid were randomly generated.
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= | Microgrid 1

No. Prosumers = 50
Active Energy

o Surplus = [95, 106] kWh

Microgrid 3

Active Energy

No. Prosumers = 36

Surplus = [72, 83] kWh |

= Microgrid 2
No. Prosumers = 44

Active Energy i
Surplus = [82, 93] kWh |

Microgrid 4

> No. Prosumers = 50
Active Energy

Surplus = [22, 26] kWh
Reactive Energy

Figure 4. The scenario considered for simulation.

Table 1. Experimental setup for prosumers generation.

Experimental Setup

Values

Prosumer Minimum Generation
Prosumer Maximum Generation

up,
Uy

0
3.34 kWh
90%
110%

Figure 5 presents the pool of prosumers generated and distributed in the 4 micro-grids considered

and shown in Figure 4.

5
Microgrid 1 Microgrid 2

Microgrid 3 Microgrid 4

45

a

H

35

3

gy TN
I

15

1 4

0.5 - “

o T

T
161 170:

Prasumers

Figure 5. Portfolio of small scale prosumers considered with minimum and maximum energy

consumption of each individual prosumer.
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We have used the model proposed in Sections 3 and 4 to address the non-optimal situation
generated at the microgrid 4 level. We have considered the provisioning of an automatic Frequency
Restoration Reserve (aFRR) service with the technical requirements summarized in Table 2.

Table 2. Load-frequency control technical requirements [41].

Load-Frequency Control Action  Activation Time  Cycle Time

aFRR 5 min-15 min 1-5s

The optimization problem is trying to identify the prosumers that may be activated to provide
additional generation from microgrid 1, 2, and 3 and to aggregate them into VPPs by combining
their power profiles such that the surplus of reactive power in microgrid 4 is compensated and the
PF improved. At the same time in the construction of VPPs based on additional generation from
microgrids 1, 2, and 3, we have considered price signals in the energy market and the provisioning of
capacity reserve services. As a result, coalitions of prosumers are constructed in VPPs organized in a
two-layer hierarchy (see Figure 6).

VPP 4
Service: Reactive Power Control
IE= 32kWh
ZE= 19kVarh
PF: 0.86
Prosumers in Coalition: 17

VPP 2

Service: Capacity Reserve ‘

Level 2

VPP 3
Service: Sell Energy
FE= 20 kWh
Prosumers in Coalition: 10

Level 1 | Service: Capacity Reserve
IE= 12 kWh

Prosumers in Coalition: 6

VPP 1 )
‘ LE=12kwh

Prosumers in Coalition: 7

Figure 6. VPP hierarchy constructed using the proposed model.

The model optimization problem is a class Mixed Integer Non-Linear Problem (MINLP), because
of the integer unknowns represented by the array taken; of length N, and the continuous variables
represented by the array PF(I)fem“ng of length T*N. This type of problem is known to be NP-hard [42],
thus heuristics and relaxations of the initial problem are used to determine an approximate solution.
To solve it we have used a genetic algorithm designed by us specifically for this type of problem,
its detailed description is available in reference [43]. In this case the chromosomes are formed by
arrays of N multi-genes containing the taken; unknown and the PF?femtmg power factor profile of the
corresponding prosumer k within the solution of length N. The fitness function is a tuple containing
the two-fold objective defined, which is minimizing the distance between the power factor of the VPP
and the optimal value and the maximization of constituent” prosumers profit.

The 1% function using the proposed model VPPs will be constructed for microgrids 1, 2, and 3
with a view of addressing the PF unbalancing by activating a surplus of active energy and selling it on
the energy market when the prices are high or by providing reservation capacity on demand. In this
way, the surplus of energy is virtually aggregated with a view of increasing the profit of the participant
part of the generated coalitions of prosumers.
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In the case of microgrid 1, a coalition of 6 prosumers is constructed from the initial pool of 50
prosumers, managing to follow the requested replacement capacity profile with a 97% increase over
the one-hour response interval, as shown in Figure 7.

Energy [kwh]
as [kwh]

4

35 — 16

s — | / \
25 I — | \

2 I

15 &

1

05

1 15 2 25 3 35 Time 4
(15 min)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Prosumers

—+—Capacity Request  =M=Active Power Delivered by the VPP

Figure 7. Prosumers in the VPP created in microgridl: [LEFT] maximum and minimum energy
consumption in the service interval and [RIGHT] Requested capacity vs. energy delivered by the VPP.

In the case of the microgrid 2, a coalition of prosumers is constructed in a VPP are also able to provide
reserve capacity on demand. In this case, eight prosumers from the microgrid are selected and aggregated,
being able to provide the requested replacement capacity with an accuracy of 98% (see Figure 8).

[kwh]
Energy [kwh]
as 20
18
4
16
35
. N 14 _/“
: 12 i
o I 10
2 — - 8
6
15 | —— |
4
1 -
H 2
= | 0 . : ‘ : . ;
o F—r—r—itim—r ==t - v ——r : - i e 1 1.5 2 2.5 3 35 Tme 4
50 60 70 30 90 94 i A y (15 min)
o —+—Capacity Request ~ -m~Active Power Delivered by the VPP

Figure 8. Prosumers in the VPP created in microgrid 2: [LEFT] maximum and minimum energy
consumption in the service interval and [RIGHT] Requested capacity vs energy delivered by VPP.

In the case of the microgrid 3, the VPP is also created to optimally combine the energy profiles of
the energy prosumers grouped in the VPP so that the aggregated amount is proportional to the energy
prices from the energy market as depicted in Figure 9 (right). In the first half hour the energy price is
high, while during the last half hour, the energy price decreases. Thus, the coalition the prosumers
generated will produce more energy in the first part of the optimization interval, leading to an increase
of their profit compared to the initial revenue received if they would sell their energy as soon as it
is produced. The details of the prosumers selected in the VPP coalition can be seen in Figure 9 (left),
while the aggregated energy generation profile of the VPP versus the energy price is shown in Figure 9
(right). The total energy generated by the power plant follows the energy price profile to maximize the
profit. A total of 10 prosumers were selected, with an average revenue of 11.25 Euro over a period of
one hour, using the energy prices from Figure 9 (right).
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Energy [kwh] [kwh]
5 30 0.3
45
M 25
4 - - — 0.25
35 l I |20
3 f——
- n 15 0.2
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Frosumers —— Active Power Delivered by the VPP ——Energy Price (15 min)

Figure 9. [LEFT] Prosumers selected in the VPP coalition from microgrid3 and [RIGHT] VPP energy
generation and energy price in the market.

Afterwards, the model will address the low power factor in microgrid 4 by constructing a second level
VPP with the aim of virtually aggregating the surplus of active power available at each microgrid level to
improve the power factor from the low level of 0.75 and get it as close as possible to the optimal value of 1.

Figure 10 shows the power factor value in the initial situation (the red line), the optimal value
targeted in the frequency restoration reserve service (the blue line) and the PF value after the new
second level VPP is created, activated, and used to compensate the reactive power from microgrid 4
(the green line). As a result, the PF value gets close to the optimal value stabilizing the voltage, thus
the potential unbalances are locally addressed and is not escalated to the main grid level.

11

1
09
038
0.7
0.6
05

0.4 T T T 1

1 2 3 4 Time
(15 min)
e PF Optimal Value ~ ==—PF Initial Value PF im proved value

Figure 10. Power factor improvement as result of VPP construction and service delivery.

The active power profiles of level one VPP2 and VPP3 (see Figure 6) consisting of 16 prosumers
activated from the micro-grids that create the higher level VPP4 to compensate for the low PF of
microgrid 4 are shown in Figure 11. Each prosumer has a different PF value, being able to compensate
together for the imbalance between the active and reactive power from the grid. The final grid situation
is shown in Figure 12. It can be seen that the reactive power has been decreased by adding additional
energy prosumers with a leading power factor. Furthermore, the active power in the grid has increased
by around 30 kW because of the new prosumers that have been activated and grouped the VPP, whose
total active power contribution is shown with the red line.
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Energy [kWh] Energy [kwh]
25 25

10

e T T 1 1 15 2 25 3 35 4
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Figure 11. VPPs in the new created hierarchical VPP: [LEFT] maximum and minimum energy
consumption in the service interval and [RIGHT] detailed energy profiles.
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Figure 12. Micro-grid total active power and VPP contributions.

Finally, we evaluate the benefits of using a fog-edge based architecture for data collection and
virtual power plant dynamic coalition creation from the perspective of optimization problem complexity
and the number of messages sent to the prosumers for services activation. We suppose that we have a
monitoring system based on smart meters deployed at the prosumer side that have a sampling rate of
5 seconds. In the classical architecture, all the data is collected to a central point (i.e., in the cloud),
while in our fog-edge architecture, data is stored at the microgrid level. At the same time, the aFRR
activation message is now sent only once from the cloud level to the fog level where the VPPs are being
created and only then distributed to all newly identified prosumers for their activation. Figure 13
presents the way in which the messages are being exchanged in our case, also following considerations
provided in reference [44] for TCP/IP communication with energy resources.

Control and Monitoring
Cloud [— R Fog - — Edge
aFRR

Activation - Data
’ — with each
each VPP -—_,_,_,_7_%"_":‘{6‘315_ - A
-~ AcK -

Figure 13. Messages exchange in our fog based approach.
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As shown in Figure 14, the number of messages in the case of a decentralized control at fog and
edge level decreases the number of data messages sent over the communication network, thereby
decongesting the networks.

Messages
140000

120000

100000

80000

60000

40000

4]

e go%‘\ gn%‘ ;o%‘\ Q\O‘; ed\l‘?'
<

mr.vﬂ% 8%

L Mes;agesperhnur

Figure 14. Number of messages sent during one hour by smart meters associated with prosumers.

Furthermore, the decentralized control also has an effect on the optimization problem, solving
time and complexity. We analyze the impact of decentralization on the optimization problem solved
using a genetic algorithm to determine an approximate solution. The solver was run on a platform
using Intel I3, 16GB of RAM, and Ubuntu 18, and was configured with 100 x N individuals (100 of
times the number of prosumers from the portfolio) and a maximum number of iterations less than 100.

As shown in Figure 15, to determine the optimal coalition for a small number of prosumers such as
when creating a hierarchical VPP in our scenario, the solving time is much smaller compared with the
nonhierarchical approach. Moreover, the time needed to compute the solution is less than 10 minutes,
making the model viable for addressing the aFRR service constraints (the time for solution generation
in the nonhierarchical case is unfeasible for aFRR implementation).

Time[s]
4000
3500
3000
2500
2000
1500
1000
500
o __——- prosumer
170 portofolio
VPP Hlerarchlcal {VPP 3) {VPPl 2) (VPP1,2,3,4) Size

M Solving Time [s]
Figure 15. Time needed to solve the optimization problem for the VPP model in our scenario.
6. Conclusions

This paper presents a fog computing-based infrastructure for smart energy grid management
decentralization and a VPP model allowing the dynamic creation of coalitions of prosumers at the
fog layer to deliver ancillary services to the main grid. The VPP model has been extended and
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specialized for the frequency restoration reserve ancillary service, which has strong response time
constraints. The results carried out in a simulated environment show our approach’s feasibility
to construct and manage virtual coalitions of prosumers on demand, by selecting and activating
additional small scale prosumers to deliver active power at the microgrid level, allowing us to locally
address potential unbalances and avoid having to escalate them to the main grid level. Moreover,
after considering the experiments estimating the number of messages and the solving time of the
optimization problem, we can conclude that a hierarchical VPP coalition formation is feasible even
for frequency restoration reserve constraints because in this case any optimization problems with a
smaller size can be solved more quickly. For future work, we aim to formalize the optimal coalition
formation to other types of ancillary services and to investigate the potential of decentralization over
blockchain-based infrastructure.
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