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Abstract: This article presents the full analytical derivations of the attitude error kinematics equations.
This is done for several attitude error representations, obtaining compact closed-forms expressions.
Attitude error is defined as the rotation between true and estimated orientations. Two distinct
approaches to attitude error kinematics are developed. In the first, the estimated angular velocity is
defined in the true attitude axes frame, while in the second, it is defined in the estimated attitude
axes frame. The first approach is of interest in simulations where the true attitude is known, while
the second approach is for real estimation/control applications. Two nonlinear kinematic models
are derived that are valid for arbitrarily large rotations and rotation rates. The results presented
are expected to be broadly useful to nonlinear attitude estimation/control filtering formulations.
A discussion of the benefits of the derived error kinematic models is included.
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1. Introduction

Many attitude representations are available for modeling problems in science and
engineering [1–9]. Nonlinearity of the representation of a given physical motion and location of
geometric singularities are dependant on (1) the true motion, (2) the attitude representation selected,
and (3) the particular choice of estimated axes. Selecting the appropriate representation is highly
linked with the kind of problem being considered. The most popular attitude parameterizations are as
follows [1,10–12]:

• Direction Cosine Matrix (DCM): nine-parameter matrix representation subject to orthogonal
constraint, non-singular;

• Principal axis and angle: three-parameter representation (the axis is a unit vector), singular (axis
undefined when the angle is zero);

• Euler–Rodrigues parameters (quaternion): four-parameter vector representation subject to unit
norm, non-singular;

• Rodrigues parameters (RP; Gibbs vector): three-parameter representation, singular (infinite values
for π rotations);

• Modified Rodrigues parameters (MRP): three-parameter representation; and
• Cayley–Klein parameters: 2× 2 complex matrix representation subject to unitary constraint.

Definitions, characteristics, and transformations between these representations can be found
in many references [1,4–6,8,10,13]. For applications requiring large and rapid rotational dynamics,
there exists a need for developing attitude error kinematic models that exactly describe arbitrary
large rotational motions. In particular, for control problems, Markley [8] has considered different
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attitude error representations for estimating the state of a maneuvering spacecraft. He has clarified the
relationship between the four-component quaternion and the Multiplicative Extended Kalman Filter.
Cao et al. [14] developed an unscented predictive filter for satellite formation. Later, Cao et al. [15]
proposed a huber-based Kalman filter for the attitude estimation problem of small satellites. Batch
and Paielli [16] investigated the rigid-body attitude error using inversion techniques to obtain a robust
linearized model of attitude control error dynamics. Sun et al. have derived relative rotational and
transnational dynamics error for spacecraft rendezvous control [17]. Crassidis et al. [18] studied a
variable-structure control strategy for maneuvering vehicles. In their work, they used a feedback
linearizing technique and added an additional term to the spacecraft maneuvers to deal with model
uncertainties, which they demonstrated always provides an optimal response. Ahmed et al. [19]
extended previous work to consider adaptive asymptotic tracking during maneuvers while estimating
inertia properties. They used a Lyapunov argument to generate an unconditionally robust control law
with respect to their assumed parametric uncertainty. Bani Younes et al. [20,21] considered generalized
optimal control formulations that handle nonlinear system dynamics and enable the development
of control gain sensitivities to handle plant model uncertainties during maneuvers. Sharma and
Tiwari [22] introduced MRP for parameterization of the orientation error. They defined the attitude
error as an additive quantity. Their work is extended by retaining a rigorous nonlinear MRP-based
error equation. Schaub et al. [23] developed a new penalty function for optimal control formulation
of spacecraft attitude control problems. This function returns the same scalar penalty for a given
physical attitude regardless of the attitude coordinate choice. A recent work by Tanygi investigated
the projective geometry of vectorial attitude parameterizations with applications for control [24] and
estimation [25]. Junkins [26] discussed the link between designing a good controller and the choice
of coordinates to represent the attitude kinematics. He linearized the attitude error equations by
defining the departure motion as an additive error from a nominal trajectory. Unfortunately, the error
in orientation cannot be rigorously represented as additive (linear) because of the nonlinear behavior
of underlying kinematical descriptions [2].

Error equations are challenging to define for quaternion variables because of the implied coupling
effects between the quaternion components and the implicit norm constraint. The position error is
linear and, therefore, can be described by the distance between the two vectors representing the true
and the estimated position states. Unfortunately, the error in orientation in not linear and, therefore,
must be described by a matrix product (corrective attitude matrix [2]). An exact quaternion error
equation is defined as the quaternion product between the true quaternion and the inverse quaternion
of the estimated (or reference) state. The significant advantage of this approach is that the norm
constraint is preserved and, most importantly, that the quaternion error product remains valid for
arbitrarily large relative rotations. This fact is exploited to develop equivalent arbitrarily large relative
rotational representations for the vehicle attitude motion. The resulting expressions are compact,
accurate, and computationally efficient.

The primary goal of this paper is to develop uniformly valid kinematics equations to describe
the time-evolution of the attitude error. References [1,3–5,10] contain good review for the attitude
kinematics equations. This paper presents compact nonlinear attitude error kinematics equations that
can be used in attitude control and/or estimation dynamics problems. Exact analytical (closed-form
and no approximations) attitude error kinematic equations are derived for most popular and known
attitude representations. This paper extends previous work originally initiated by the authors on
developing attitude error kinematics [27–30], where the estimated angular velocity is defined in the
true attitude axes frame. It builds on our initial findings and extends the formulations to address more
detailed developments and to present two distinct error kinematics approaches treated with more
compact depth and insights in the derivations. It also presents simulation examples that demonstrate
the applications in attitude filtering and tracking control. The multiplicative Kalman filter is discussed
to enable the use of these attitude error kinematics for two different coordinate choices. The resulting
expressions have been optimized to obtain the most compact and computationally efficient forms.
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Also, the applications of these formulations are discussed by solving the open-loop optimal spacecraft
tracking control problem.

The major contribution of this paper is the complete development of attitude error kinematics
equations where the estimated angular velocity is defined in either the true attitude axes frame or in
the estimated attitude axes frame. These equations can be used for arbitrarily large relative rotations
and rotation rates. These attitude errors represent rotations between estimated and true attitudes.
Numerical integrations of these kinematic equations are performed to validate the machine error
accuracy for each attitude representation. Singularities and constraints are discussed for minimum and
non-minimum attitude parameter representations, respectively. Applications are expected in rotational
dynamics problems for both nonlinear attitude estimation filtering and attitude tracking.

2. Attitude Error Kinematics

With reference to Figure 1, let C be the true attitude matrix (DCM) of which the axes are [x, y, z]
(dashed, black) and let Ĉ be the estimated attitude matrix of which the axes are [x̂, ŷ, ẑ] (dashed, red).

Figure 1. True and estimated (•̂) attitude frames and angular velocities

The relationships between the DCM with the corresponding Euler’s angles associated with the
rotation axes and sequences are given in Table A1. The attitude error is described by the corrective
attitude matrix:

δC = C Ĉ T. (1)

In fact, the product between δC and the estimated attitude Ĉ provides the true attitude:

δC Ĉ = (C Ĉ T) Ĉ = C.

In particular, matrix δC is the transformation matrix for vectors from the estimated [x̂, ŷ, ẑ] frame
to the true [x, y, z] frame.

Let ω be the true angular velocity vector (black solid in Figure 1) of which the elements are defined
in the [x, y, z] axes of the true attitude. Now, consider ω̂ to be the estimate of the true angular velocity
vector (red solid in Figure 1). Two distinct cases appears:

(1) The estimated ω̂ is defined in the true body axes frame (x, y, z). In this case, ω and ω̂ are defined
in the same reference frame. Therefore, the angular velocity error vector is as follows:

δω = ω− ω̂. (2)

This case finds application in simulations when the true attitude is known.
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(2) The estimated ω̂ is defined in the estimated body axes frame (x̂, ŷ, ẑ). In this case, ω and ω̂

are defined in two different reference frames. Therefore, the angular velocity error vector is as
follows:

δω = ω− δC ω̂, (3)

where δC is provided by Equation (1). This case is important in real applications as the true
attitude is always unknown and the estimated angular velocity can be defined in the estimated
attitude frame only.

The true attitude dynamics is defined by ω and C. They satisfy the DCM kinematic equations:

[ω×] = −Ċ C T.

The estimated angular velocity satisfies the dynamic equation:

I ˙̂ω = −[ ω̂×] I ω̂ + u,

where I ∈ <3×3 is the moments of inertia tensor and u ∈ <3 is the torque acting on the system. We
assume that the system parameters are deterministic.

To develop the attitude error kinematics equations, two distinct analysis must be performed.
These two derivations are associated to the two angular velocity errors definitions provided in
Equations (2) and (3), respectively. The following two sections derive the attitude error kinematics
equations valid for arbitrarily large angles and rate errors.

2.1. Simulation Case: Estimated Angular Velocity Given in the True Attitude Frame

In this section, the estimated and the true angular velocities are expressed in same coordinate
frames, δω = ω− ω̂. This approach is suitable in simulations where the true body attitude is known.
When using the same reference frame for true and estimated angular velocities, the angular velocity
error dynamics equation is written as follows [21,27,28]:

δω̇ = −I−1{[ ω̂×]I − [(Iω̂)×]}δω− I−1[(δω)×]Iδω + I−1u− ˙̂ω− I−1[ ω̂×]Iω̂. (4)

In the following subsections, the attitude error kinematic equations are derived for the most
important attitude representations and for arbitrarily large rotational angles and angular rates. These
equations are mathematically simple and compact. They can be used, for instance, to validate novel
control theories and/or attitude estimation filtering techniques.

2.1.1. Quaternion Error Kinematics

The quaternion error is a four-dimensional vector defined as follows:

δq =

{
δqv

δq4

}
,

where δqv = {δq1, δq2, δq3}T = e sin
(

φ

2

)
, δq4 = cos

(
φ

2

)
, e is the principal axis, and φ is the

principal angle. The kinematic solution for the true quaternion trajectory defines the desired relative
rotational motion for the spacecraft. Equation (1) written in term of quaternion is as follows:

δq = q⊗ q̂−1, (5)

where q̂−1 is the inverse of the estimated quaternion rotation and ⊗ represents the quaternion product.
Note that the error, δq, is also a quaternion, that is, a unit vector representing the rotation from the
estimated axes to the true axes. This expression is valid for arbitrarily large rational motions and
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provides a foundation for developing all other kinematic variable generalizations presented. We follow
reference [1] in writing the quaternion product as follows:

q′ ⊗ q =

{
q′4qv + q′vq4 − q′v × qv

q′4q4 − q′v · qv

}
,

where q′ and q represent two arbitrary quaternions. The quaternion error rate is as follows:

δq̇ = q̇⊗ q̂−1 + q⊗ ˙̂q−1. (6)

Quaternion kinematics evolves according to the kinematic equation:

q̇ =
1
2

{
ω

0

}
⊗ q =

1
2

[
−[ω×] ω

−ωT 0

]
q =

1
2

Ω(ω)q. (7)

The derivative of the identity q̂⊗ q̂−1 = {0, 0, 0, 1}T leads to ˙̂q⊗ q̂−1 + q̂⊗ ˙̂q−1 = 0. Hence, the
inverse quaternion evolves:

˙̂q−1 = −1
2

q̂−1 ⊗
{

ω̂

0

}
= −1

2

[
[ω̂×] ω̂

−ω̂T 0

]
q̂−1 = −1

2
Γ(ω̂)q̂−1, (8)

where Γ(ω̂) is the estimated angular velocity matrix. Substituting Equation (7) and Equation (8) into
Equation (6), yields the following:

δq̇ =
1
2

Ω(ω)δq− 1
2

q⊗ q̂−1 ⊗
{

ω̂

0

}
=

1
2

Ω(ω)δq− 1
2

δq⊗
{

ω̂

0

}
.

This allows us to write the following:

δq⊗
{

ω̂

0

}
= Γ(ω̂)δq.

The quaternion error rate equation becomes the following:

δq̇ =
1
2
[Ω(ω)− Γ(ω̂)]δq. (9)

Now, by substituting the angular velocity error given in Equation (2) into Equation (9), the bilinear
differential equation for the tracking error kinematics becomes the following:

δq̇ =
1
2
[Ω(δω + ω̂)− Γ(ω̂)]δq =

1
2
[Ω(δω) + Γ̃(ω̂)]δq, (10)

where Γ̃(ω̂) is a matrix defined as follows:

Γ̃(ω̂) = Ω(ω̂)− Γ(ω̂) =

[
−2[ω̂×] 03×1

01×3 0

]
.

Equation (10) can be rewritten in the following compact form:

δq̇ =
1
2

[
−([δω×] + 2[ω̂×]) δω

−δωT 0

]{
δqv

δq4

}
. (11)
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This equation can be split into the scalar and vector part of the quaternion as follows [28]:

δq̇v =
1
2
{− ([δω×] + 2[ω̂×]) δqv + δq4δω}

δq̇4 = −1
2

δωTδqv

. (12)

These above equations are exact for arbitrarily large and rapid relative rotational motions.

2.1.2. Rodrigues Parameter Error Kinematics

Rodrigues parameters are a minimum attitude parametrization. The RP vector is defined in terms
of quaternion parameters as follows [10]:

ρ =
qv

q4
= e tan

(
φ

2

)
, (13)

where the inverse transformation is given as follows:

q4 =
1√

1 + ρ2
and qv =

ρ√
1 + ρ2

,

where ρ2 = ρTρ. Note that the attitude error given in Equation (12) is represented in the quaternion
form. An exact nonlinear model for the quaternions with no approximation is used to preserve the
quaternion unit norm. This implies that the quaternion error still represents a finite orientation that can
be mapped to any other attitude representations. Here, the quaternion error to RP using Equation (13)
is mapped. Thus, the RP error vector is simply expressed as follows:

δρ =
δqv

δq4
. (14)

The inverse mapping for quaternion variables follows:

δq4 =
1√

1 + δρ2
and δqv =

δρ√
1 + δρ2

, (15)

where δρ2 = δρTδρ. The RP error differential equation is obtained by taking the derivative of
Equation (14) and substituting Equations (12) and (15), which yields the following [28]:

δρ̇ =
1
2
[− ([δω×] + 2[ω̂×]) δρ + δω] +

1
2
(δωTδρ) δρ. (16)

Equation (16) provides the desired RP attitude error nonlinear kinematic differential equation.

2.1.3. Modified Rodrigues Parameter Error Kinematics

Modified Rodrigues parameters are an elegant addition to the family of attitude representations.
MRP vector is defined in terms of the quaternion parameters by the following [10]

σ =
qv

1 + q4
= e tan

(
φ

4

)
. (17)

The inverse transformation is given by the following:

q4 =
1− σ2

1 + σ2 and qv =
2σ

1 + σ2 .
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Similarly, since the attitude error in Equation (12) is expressed by quaternion, the mapping into
MRP can be performed using Equation (17). Thus, MRP error vector is expressed as follows:

δσ =
δqv

1 + δq4
. (18)

The inverse mapping for quaternion variables follows:

δq4 =
1− δσ2

1 + δσ2 and δqv =
2δσ

1 + δσ2 . (19)

The MRP error differential equation is obtained by taking the derivative of Equation (18)
and substituting Equation (12) and Equation (19), which yields the following compact, nonlinear,
third-order form [28]:

δσ̇ =
1
4

[
−2 ([δω×] + 2[ω̂×]) δσ + (1− δσ2)δω

]
+

1
2
(δωTδσ) δσ. (20)

Equation (20) provides the exact MRP attitude error kinematic differential equation.

2.1.4. Euler Angles Error Kinematics

The most famous attitude representation is described by three angles, known as Euler angles,
(θ1, θ2, θ3) associated with subsequent rotations about three coordinate axes. The variations of these
angles represent the attitude error of δC. There are several conventions for Euler angles, depending on
the axes about which the rotations are carried out. In the following, we assume the rotation is 3-1-3
(yaw-roll-yaw) sequences, then we generalize the expression for arbitrary rotation sequence. We start
from the mapping equations from quaternion to Euler angles [6]. For the 3-1-3 set, the transformation is
as follows:

{
δqv

δq4

}
=


sin( δθ2

2 ) cos( δθ1−δθ3
2 )

sin( δθ2
2 ) sin( δθ1−δθ3

2 )

cos( δθ2
2 ) sin( δθ1+δθ3

2 )

cos( δθ2
2 ) cos( δθ1+δθ3

2 )


313

= Θ313(δθ1, δθ2, δθ3). (21)

Differentiating Equation (21), we obtain the following:

{
δq̇v

δq̇4

}
= H313(δθ1, δθ2, δθ3)


δθ̇1

δθ̇2

δθ̇3


313

,

where H313(δθ1, δθ2, δθ3) is a 4× 3 matrix. Thus, Euler angle rates can be written in the following
least-squares solution: 

δθ̇1

δθ̇2

δθ̇3


313

= (HT
313 H313)

−1 HT
313

{
δq̇v

δq̇4

}
.

Substituting Equation (12) and making use of Equation (21), we obtain the following:
δθ̇1

δθ̇2

δθ̇3


313

= 1
2 (HT

313H313)
−1HT

313

[
−([δω×] + 2[ω̂×]) δω

−δωT 0

]
Θ313(δθ1, δθ2, δθ3).
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In general, for the generic i-j-k Euler angles sequence, the formula is as follows [28]:
δθ̇i
δθ̇j
δθ̇k


ijk

= 1
2 (HT

ijk Hijk)
−1HT

ijk

[
−([δω×] + 2[ω̂×]) δω

−δωT 0

]
Θijk(δθ1, δθ2, δθ3). (22)

Equation (22) represents the attitude error kinematic equation using any Euler angle sequence.

2.1.5. Principal Axis and Angle Error Kinematics

Any rigid-body rotation can be obtained by a single rotation about a principal axis, e, by a
principal angle, φ. To derive the kinematics of the principal axis/angle for attitude error, we start from
the definition of the quaternion:

δq4 = cos(δφ/2) and δqv = δe sin(δφ/2). (23)

Taking the derivative of Equation (23), substituting Equation (12), and solving for δφ̇ and δė, we
obtain the following [28]:

δφ̇ = δωTδê, (24)

where δê = δe√
δeTδe

and

δė = −1
2

(
([δω×] + 2[ω̂×]) δê + [(δωTδê)δê− δω] cot(δφ/2)

)
. (25)

Equations (24) and (25) are the desired nonlinear kinematic differential equation of the attitude
error using principal axis and principal angle.

2.1.6. Direction Cosine Matrix Error Kinematics

The DCM error can be written as follows:

δC = C Ĉ T. (26)

Performing the derivative of Equation (26) and making use of the attitude kinematics,
Ċ = − [ω×] C, and the DCM inverse identity, ˙̂C T = −Ĉ T ˙̂C Ĉ T, we obtain the following [28]:

δĊ = −[δω×]δC− [ω̂×]δC + δC[ω̂×]. (27)

2.1.7. Cayley–Klein Error Parameters Kinematics

Cayley–Klein parameters is an attitude representation provided by a 2× 2 complex matrix. This
matrix is as follows:

δK = δq4 I2×2 + i (δq1σ1 + δq2σ2 + δq3σ3) =

[
δq4 + iδq3 δq2 + iδq1

−δq2 + iδq1 δq4 − iδq3

]
, (28)

where σ1 =

[
0 1
1 0

]
, σ2 =

[
0 i
−i 0

]
, and σ3 =

[
1 0
0 −1

]
are the three Pauli spin matrices. The principal

angle can be computed from the following:

δφ = 2 cos−1
[

1
2

tr (δK)
]

.
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Rewriting Equation (28) in column form, we obtain the following:

col(δK) =


δK1,1

δK2,1

δK1,2

δK2,2

 =


δq4 + iδq3

−δq2 + iδq1

δq2 + iδq1

δq4 − iδq3

 =


0 0 i 1
i −1 0 0
i 1 0 0
0 0 −i 1


{

δqv

δq4

}
= Ψ0δq, (29)

where Ψ0 is a non-singular constant matrix. Differentiating Equation (29), substituting Equation (12),
and using qv = Ψ−1

0 col(δK), we obtain the following [28]:

col(δK̇) =
Ψ0

2

[
−[δω×] + 2[ω̂×] δω

−δωT 0

]
Ψ−1

0 col(δK), (30)

where the col(δK) has to satisfy the constraint equation δqTδq = 1 that leads to
col(δK)TΨ−T

0 Ψ−1
0 col(δK) = 1 or col(δK)Tcol(δK) = 2.

2.2. Estimation/Control Case: Angular Velocity Estimated in the Estimated Attitude Frame

In this section, the estimated and the true angular velocities are expressed in different coordinate
frames: δω = ω− δCω̂.

This equation explicitly accounts for the obvious truth that the estimated and true angular velocity
vectors are expressed in different coordinate frames. This definition explicitly computes the angular
velocity error in the current body frame. This kinematic variable definition leads to the following
angular velocity error dynamics equation:

δω̇ =− I−1 ([δCω̂×]I − [IδCω̂×]) δω− I−1[δω×]Iδω + I−1u+

+ [δω×]δCω̂− ˙̂ω− I−1[δCω̂×]IδCω̂.
(31)

It is clear that the angular velocity error dynamics equation is coupled with the attitude solution.
This is expected as the estimated angular velocity has to be mapped to the true frame using the attitude
corrective matrix, δC.

2.2.1. Direction Cosine Matrix Error Kinematics

To investigate the new attitude error parametrization for the estimation/control case, the direction
cosine matrix is differentiated for the attitude error given in Equation (1):

δC = C Ĉ T → δĊ = ĊĈT + C ˙̂CT. (32)

Recall the attitude kinematics of the current motion Ċ = −[ω×]C and the estimated motion
˙̂C = −[ ω̂×]Ĉ. Equation (32) can be written:

δĊ = −[ω×]δC + δC[ ω̂×]. (33)

The angular velocity error is δω = ω− δCω̂. Therefore, we obtain the following:

δĊ = −[δω×]δC− [δCω̂×]δC + δC[ ω̂×]. (34)

Using the transformation of skew-symmetric tensor identity [4], we obtain the following:

[δCω̂×] = δC[ ω̂×]δCT. (35)
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Also, since δC is an orthogonal matrix, Equation (34) reduces to the following:

δĊ = −[δω×]δC. (36)

It is interesting that the attitude error kinematics equation is similar to the attitude kinematics
equation. This result agrees with the demonstration presented in Tanygin’s work [24]. Hence, the
attitude error kinematics using other attitude parameterizations can be simply obtained.

2.2.2. Quaternion Error Kinematics

The quaternion error is a four-dimensional vector defined as follows:

δq =

{
δqv

δq4

}
=


δq1

δq2

δq3

δq4

 .

The transformation from quaternion error, δq, to DCM error, δC, is given by the following:

δC =
[
(δq2

4 − δqT
vδqv)I + 2δqvδqT

v − 2δq4[δqv×]
]

. (37)

The inverse transformations is as follows:

δq4 = ±1
2

√
1 + tr[δC] (38)

δqv =
1

4δq4


δC23 − δC32

δC31 − δC13

δC12 − δC21

 . (39)

This transformation shows the redundancy in selecting the sign of the scalar parameter, δq4. The
positive sign is associated to δφ ≤ π, while the negative is associated to π < δφ ≤ 2π.

The kinematics differential equation of the quaternion error is derived by differentiating
Equation (38):

δq̇4 =
δĊ11 + δĊ22 + δĊ33

8δq4
. (40)

Substituting the expressions of the diagonal elements

δĊ11 =− (δC23 − δC32)δω1

δĊ22 =− (δC31 − δC13)δω2

δĊ33 =− (δC12 − δC21)δω3

in Equation (40) yields the following:

δq̇4 =
1
2
(−δq1δω1 − δq2δω2 − δq3δω3) = −

1
2

δqT
vδω. (41)

Similar derivations are applied on δq̇1, δq̇2, and δq̇3 in Equation (39). The kinematic error
differential equation for quaternion is then the following:

δq̇ =
1
2

[
δq4 I3×3 + [ δqv×]

−δqT
v

]
δω =

1
2

[
−[ δω×] δω

−δωT 0

]
δq, (42)
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where I3×3 is the 3× 3 identity matrix.

2.2.3. Rodrigues Parameter Error Kinematics

Rodrigues parameters error vector is simply expressed by the following:

δρ =
δqv

δq4
= tan

(
δφ

2

)
δe, (43)

Also, the inverse mapping for quaternion variables follow:

δq4 =
1√

1 + δρ2
and δqv =

δρ√
1 + δρ2

, (44)

where δρ2 = δρTδρ. The differential equation for the RP error follows by taking the derivative
of Equation (43):

δρ̇ =
δq̇v

δq4
− δq̇4δqv

(δq4)
2 . (45)

Substituting Equation (42) into Equation (45) yields the following:

δρ̇ =
1
2

[
δq4 I3×3 + [ δqv×]

δq4
+

δqv

(δq4)
2 δqT

v

]
δω.

This equation can be further simplified by substituting Equation (44) to yield the compact
quadratic form:

δρ̇ =
1
2
[I3×3 + [ δρ×] + δρδρT] δω. (46)

Equation (46) is the RP attitude error kinematic differential equation. The above form approaches
singularity when |δφ| → ±π.

2.2.4. Modified Rodrigues Parameter Error Kinematics

Modified Rodrigues parameters error vector is expressed as follows:

δσ =
δqv

1 + δq4
= tan

(
δφ

4

)
δe, (47)

The inverse mapping to quaternion is as follows:

δq4 =
1− δσ2

1 + δσ2 and δqv =
2δσ

1 + δσ2 . (48)

The differential equation for the MRP error follows from the derivative of Equation (47):

δσ̇ =
δq̇v

1 + δq4
− δq̇4δqv

(1 + δq4)2 . (49)

Substituting Equation (42) into Equation (49) yields the following:

δσ̇ =
1
2

[
δq4 I3×3 + [ δqv×]

1 + δq4
+

δqvδqT
v

(1 + δq4)2

]
δω.

This equation is simplified by substituting Equation (48) to obtain a compact quadratic form:

δσ̇ =
1
4

[
(1− δσ2)I3×3 + 2[δσ×] + 2δσTδσ

]
δω. (50)
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Equation (50) provides the MRP attitude error kinematic differential equation. The above form
approaches singular behavior as |δφ| → ±2π.

2.2.5. Euler Angles Error Kinematics

There are 12 distinct Euler angles sequences, depending on the axes about which the rotations are
carried out. Review the development in Section 2.1.4; similar derivations are followed here that yield
to the general i-j-k Euler angle error kinematics equations:

δθ̇i
δθ̇j
δθ̇k


ijk

= 1
2 (HT

ijk Hijk)
−1HT

ijk

[
−[δω×] δω

−δωT 0

]
Θijk(δθ1, δθ2, δθ3). (51)

Equation (51) is the desired kinematic differential equation using Euler angles to represent the
attitude error.

Alternatively, the Euler angles error kinematics can be derived by writing the angular velocity
error vector in the body frame in terms of the Euler angles error rates. For example, the angular
velocity error vector for 3-1-3 rotation sequence is given by the following:

δω = R313(δθ1, δθ2, δθ3)


0
0

δθ̇1

+ R31(δθ2, δθ3)


δθ̇2

0
0

+ R3(δθ3)


0
0

δθ̇3

 , (52)

where R313(δθ1, δθ2, δθ3) = R3(δθ3)R1(δθ2)R3(δθ1) is the 3-1-3 rotation sequence, where

R1(δθ) =

1 0 0
0 cos(δθ) sin(δθ)

0 − sin(δθ) cos(δθ)

 ,

R2(δθ) =

cos(δθ) 0 − sin(δθ)

0 1 0
sin(δθ) 0 cos(δθ)

 , and

R3(δθ) =

cos(δθ) − sin(δθ) 0
sin(δθ) cos(δθ) 0

0 0 1

 .

(53)

Equation (52) can be written in the compact form:

δω =M313


δθ̇1

δθ̇2

δθ̇3

 , (54)

where

M313 =

sin(δθ2) sin(δθ3) cos(δθ3) 0
sin(δθ2) cos(δθ3) − sin(δθ3) 0

cos(δθ2) 0 1

 .

The kinematic differential equation of 3-1-3 Euler angles error is the inverse of Equation (54):
δθ̇1

δθ̇2

δθ̇3

 =M−1
313


δω1

δω2

δω3

 =M−1
313 δω. (55)
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The complete set of 12 Euler angles error kinematics in terms ofM−1
ijk and the angular velocity

error vector is provided in Appendix A.

2.2.6. Principal Axis and Angle Error Kinematics

To derive the kinematics of the principal axis/angle for attitude error, we start from the definition
of the quaternion:

δq4 = cos(δφ/2) and δqv = δe sin(δφ/2).

Taking the derivative and solving for δφ̇ and δė, we obtain the following:

δφ̇ = − 2 δq̇4

sin(δφ/2)
and δė =

δq̇v − 1
2 δeδφ̇ cos(δφ/2)
sin(δφ/2)

.

Substituting Equation (42) and making use of δqv = δê sin (δφ/2) and the identity
[δ ê×] [δ ê×] = δêδêT − I3×3, we obtain the following:

δφ̇ = δωTδê, (56)

where δê =
δe√
δeTδe

and

δė =
1
2
{[δê×]− [δê×][δê×] cot(δφ/2)} δω. (57)

Equations (56) and (57) represent the kinematic equations of the attitude error using principal
axis and principal angle.

2.2.7. Cayley–Klein Error Parameters Kinematics

Cayley–Klein parameters is an attitude representation provided by a 2× 2 complex matrix. This
matrix is as follows:

δK = δq4 I2×2 + i (δq1σ1 + δq2σ2 + δq3σ3) =

[
δq4 + iδq3 δq2 + iδq1

−δq2 + iδq1 δq4 − iδq3

]
,

where σ1, σ2, and σ3 are the three Pauli spin matrices. The principal angle can be computed from
the following:

δφ = 2 cos−1
[

1
2

tr (δK)
]

.

It has been already shown in (Section 2.1.7) that the Cayley–Klein parameters can be written in
the column form:

col(δK) =


δK1,1

δK2,1

δK1,2

δK2,2

 = Ψ0δq,

where Ψ0 =


0 0 i 1
i −1 0 0
i 1 0 0
0 0 −i 1

 is a non-singular constant matrix. The kinematics equation of the

Cayley–Klein error column vector is as follows:

col(δK̇) = Ψ0δq̇. (58)
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Substituting Equation (42) into Equation (58) and making use of col(δK) = Ψ0δq, the kinematics
equation of the Cayley–Klein error column vector yields the following:

col(δK̇) =
1
2

Ψ0

[
−[δω×] δω

−δωT 0

]
Ψ−1

0 col(δK), (59)

where the col(δK) has to satisfy the constraint equation col(δK)Tcol(δK) = 2.
Appendix B summarizes the attitude error kinematics using the two definitions of the angular

velocity error.

2.3. Numerical Validation

Numerical integrations of all the kinematic equations presented are performed for arbitrary initial
conditions to validate the machine error accuracy for each attitude representation. For this particular
example, the initial conditions are given in Table 1, where constant angular velocity is considered.
The validation test is performed as follows:

1. Integrate the true attitude kinematics for each attitude representation using the attitude
kinematics equations;

2. Transform the time history solution of the true attitude for each attitude representation to the
direction cosine matrix C or quaternion q;

3. Integrate the estimated attitude kinematics for each attitude representation using the attitude
kinematics equations;

4. Transform the time history solution of the estimated attitude for each attitude representation to
the direction cosine matrix Ĉ or quaternion q̂;

5. Calculate the attitude error of the two solutions in steps 2 and 4 using δC = CĈ T or δq = q⊗ q̂−1;
then, calculate the principal angle of the attitude error, δφ∗;

6. For approaches 1 and 2, integrate the attitude error kinematics for each attitude representation
using the attitude error kinematics equations in Appendix B (Table A1); then, calculate the
principal angle of the attitude error δφ for each approach;

7. Calculate the absolute error ∆(δφ) = |δφ∗ − δφ|, as shown in Figure 2.

Table 1. Initial conditions.

Parameter Initial Condition

ω (rad/s) {0.7972, 0.5202, 0.3064}T

ω̂ (rad/s) {0.7931, 0.5898, 0.1521}T

q {−0.3112, −0.2937, 0.5374, −0.7267}T

q̂ {−0.0104, −0.8248, 0.4319, 0.3647}T

Figure 2 represents the validation test of the two approaches (step 6) compared to the classical
approach (step 5). Figure 2a,b show the computation error, ∆(δφ) = |δφ∗ − δφ|, of the attitude error
computed using the first approach (Figure 2a) and the second approach (Figure 2b) for the following
attitude representations: direction cosine matrix, quaternion, Rodrigues parameters, and modified
Rodrigues parameters. The first approach represents the simulation case, denoted by kinematic
error 1. The second approach represents the estimation/control case, denoted by kinematic error
2. The two figures Figure 2c,d show the computation error, ∆(δφ) = |δφ∗ − δφ|, of the attitude
error computed using the first approach (Figure 2c) and the second approach (Figure 2d) for the
following attitude representations: principal axis/angle, Euler angles (3-1-3), Euler angles (1-2-3), and
Cayley–Klein parameters. The computation error retains the accuracy level of the numerical integrator
used (MATLABr function ode45).
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Figure 2. Validation test. (large angular rotation δφ = [145, 170] deg). (a) Kinematics error 1.
(b) Kinematics error 2. (c) Kinematics error 1. (d) Kinematics error 2. DCM = Direction Cosine
Matrix; RP= Rodrigues parameters; MRP= Modified Rodrigues parameters.

3. Kalman Filter

In this section, a sequential extended Kalman filter (EKF) formulation is developed and presented
for the two approaches. The development of compact forms of nonlinear attitude error kinematics
enables the applications of arbitrarily large relative rotations and rotation rates in different attitude
coordinates. Since quaternions present no singularities, it is the most popular coordinate for attitude
estimation. However, it must obey the norm constraint.

3.1. Estimated Angular Velocity Defined in the True Attitude Frame

The estimated angular velocity vector ω̂ is defined in the true body axes frame (x, y, z). In this
case, ω and ω̂ are defined in the same reference frame. Therefore, the angular velocity error vector is
as follows:

δω = ω− ω̂.

This case finds application during simulations when the true attitude is available. The quaternion
error kinematics is given by Equation (12), which can be linearized for first-order approximation to the
following [8]:

δq̇v ≈ −[ω̂×]δqv +
1
2

δω

δq̇4 ≈ 0.
(60)

Unfortunately, this linearization requires that the estimated quaternion is close to the true
quaternion to preserve the normalization constraint.
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A common sensor model to measure the angular rate is the rate-integrating gyro, which is
defined by the following:

ω = ω̃− β− ηv

β̇ = ηu,
(61)

where ηv ∼ N (0, σ2
v I3×3) and ηu ∼ N (0, σ2

u I3×3) are zero-mean Gaussian noise with variances given
by σ2

v and σ2
u , respectively; β is the gyro bias vector; and ω̃ is the measured angular velocity, which is

given by the following:
ω̃ = ω̂ + β̂, (62)

where ω̂ and β̂ are the estimated angular velocity and the estimated gyro bias vectors, respectively.
Hence, the angular velocity error is given by the following:

δω = −(δβ + ηv), (63)

where δβ = β − β̂. The multiplicative extended Kalman filter error model is now given by the
following (note: ˙̂β = 0):

δq̇v ≈ −[ω̂×]δqv −
1
2
(δβ + ηv)

δβ̇ ≈ ηu.
(64)

3.2. Estimated Angular Velocity Defined in the Estimated Attitude Frame

In this section, the estimated and the true angular velocities are expressed in different coordinate
frames, δω = ω− δCω̂. It has been discussed earlier that the attitude error kinematics equations for
this approach take the same form as the attitude kinematics equations; see Figure A1. The quaternion
error kinematics is linearized for first-order approximation to the following:

δq̇v ≈ 1
2

δω

δq̇4 ≈ 0,
(65)

where the first-order approximation of the attitude error matrix is given by the following:

δC ≈ I3×3 − 2[δqv×]. (66)

Considering the same rate-integrating gyro sensor model defined in Equation (61) and the
observed angular velocity definition in Equation (62), the angular velocity error is written as follows:

δω = (I3×3 − δC)ω̃− (δβ + ηv) = −2[(ω̂ + β̂)×]δqv − (δβ + ηv), (67)

where δβ = β − δCβ̂. The multiplicative extended Kalman filter error model is now given
by the following (note: ˙̂β = 0):

δq̇v ≈ −[(ω̂ + β̂)×]δqv − 1
2 (δβ + ηv)

δβ̇ ≈ ηu + [δω×]δCβ̂.
(68)

3.3. Extended Kalman Filter Error Model

For a single sensor, we define the true and estimated body vectors as follows:

b = C(q)r
b̂− = C(q̂−)r,

(69)
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where r = {x, y, z}T is the 3× 1 vector of the vehicle position in the earth-centered, earth-fixed (ECEF)
coordinates, the true attitude matrix is C(q) = C (δq)C(q̂−), C(δq) is defined in Equation (37), and
C(q̂) =

[
(q̂2

4 − q̂T
vq̂v)I + 2q̂vδq̂T

v − 2q̂4[q̂v×]
]
. Thus, the estimation error of the body vector is defined

as follows:
∆b ≡ b− b̂− = 2[C(q̂−)r×]δqv. (70)

The sensitivity matrix of n measurement sets is given by the following:

H =


2[C(q̂−)r1×] 03×3

2[C(q̂−)r2×] 03×3
...

...
2[C(q̂−)rn×] 03×3

 . (71)

The EKF error model is given by the following:

∆ ˙̃x = F(x̂(t), t)∆x̃(t) + G(t)w(t), (72)

where ∆x̃(t) = [δqT
v δβT]T; w = [ηT

v ηT
u]

T; and F(x̂(t), t), G(t), and Q(t) are given by Table 2:

Table 2. The extended Kalman filter (EKF) model.

δω = ω− ω̂ δω = ω− δCω̂

F =

[
−[ω̂×] − 1

2 I3×3
03×3 03×3

]
G =

[
− 1

2 I3×3 03×3
03×3 I3×3

]
Q =

[
σ2

v I3×3 03×3
03×3 σ2

v I3×3

]
F =

[
−[(ω̂ + β̂)×] − 1

2 I3×3
2[β̂×][(ω̂ + β̂)×] [β̂×]

]
G =

[
− 1

2 I3×3 03×3
[β̂×] I3×3

]
Q =

[
σ2

v I3×3 03×3
03×3 σ2

v I3×3

]

Discrete-time attitude observation n× 1 model at time tk is given by the following:

ỹk =


[C(q)r1]

[C(q)r2]
...

[C(q)rn]


tk

+


ν1

ν2
...

νn


tk

≡ hk(x̂k) + vk, (73)

where vk ∼ N (0, Rk) is zero-mean gaussian measurements noise with covariance error matrix Rk.
Thus, the error state update is given by the following:

∆ ˆ̃x+k = Kk[ỹk − hk(x̂−k )], (74)

where ∆ ˆ̃x+k = [δ ˆ̃q+k δ ˆ̃β
+

k ]
T, ỹk is the measurement output, hk(x̂−k ) is the estimate output, and Kk is

Kalman gain, as given in Equation (75).
The EKF is implemented following the below sequential steps [30,31]:

• Initialization: at t0 and for given initial states x0 = [q̂0, β0]
T and initial value of the covariance

matrix P0, the initial values are given by the following:

x̂−(0) = E{x(0)} = x0

P−(0) = E{(x(0)− x0)(x(0)− x0)
T} = P0,

(75)

where the superscript (−) denotes priori values and E{ } is the expectation operator. Assume that
x(0) ∼ N (0, P(0)).
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• Gain: compute the Kalman gain matrix:

Kk = P−k HT
k (x̂−k )

[
Hk(x̂−k )P−k HT

k (x̂−k ) + Rk

]−1
, (76)

where Hk(x̂−k ) ≡
∂h
∂x |x̂−k is given in Equation (71).

• Update: update the state estimate x̂+k and covariance P+
k at each measurement:

x̂+k = x̂−k + Kk[ỹk − hk(x̂−k )]
P+

k = [I3×3 − Kk Hk(x̂−k )]P
+
k ,

(77)

where the superscript (+) denotes posteriori values.
• Propagation: propagate both the state estimate x̂k and covariance Pk using the posteriori estimate

x̂+k and posteriori covariance P+
k . The estimated angular velocity, ω̂ = ω̃− β̂, is used to propagate

the quaternion kinematics:

˙̂q =
1
2

[
−[ω×] ω̂

−ω̂T 0

]
q̂

˙̂β = 0
Ṗ = FP + PFT + GQGT ,

(78)

where the matrices F, G, and Q are given by Table 2.

3.4. Numerical Simulation

This section presents simulation results that utilize data provided by a star tracker to estimate the
attitude of slow spinning spacecraft under the following scenario:

• Optical axis aligned with ẑ axis of the body reference frame.
• Sensor field of view: 10◦ × 12◦.
• Star catalog with magnitude threshold = 6.
• Observed stars affected by multiplicative Gaussian noise [32] due to centroid error, 3σ = 20′′.
• spacecraft is spinning about the ŷ axis with constant angular velocity 1.01 rad/s.
• Simulation time is 300 s with sampling frequency of 10 Hz.

(a) (b)

Figure 3. Stars view over the trajectory. (a) Stars sphere. (b) Observed stars by an orbiting spacecraft.
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Figure 4. Attitude estimation. (a) Attitude estimation error: principal angle. (b)Attitude estimation
error: Euler’s angles.

The directions captured by the sensor field of view during the whole trajectory is shown
in Figure 3. Figure 4 shows the attitude estimation error, which is defined as the principal angle
between estimated and true DCM and is small and within the predicted covariance (±3σ) error.

4. Optimal Tracking Control

A general scalar nonnegative attitude penalty function is utilized to formulate an optimal feedback
control for the spacecraft tracking problem. This new variable yields identical performance index
values, regardless of the attitude variables selected. The general final finite-time optimal control
formulating is given by minimizing the following performance index [29]:

= =
1
2

Φ(t f , δω(t f ), δζ(t f )) +
1
2

∫ t f

t0

L(δω, δζ, u, t) dt, (79)

which is subject to ẋ = [δω̇T δζ̇T]T = f (δω, δζ, u), where δω is the angular velocity error, δζ

is an arbitrary attitude representation of the attitude error, and the penalty functions are (using
δω(t f ) = δωt f and δζ(t f ) = δζt f ):

Φ(t f , δω(t f ), δζ(t f )) = Q1g(δζt f ) + δωT
t f

Q2δωt f

and L(δω, δζ, u, t) = Q3g(δζ) + δωTQ4δω + uTRu. (80)

The weights Q1 and Q3 are scalars, and the weights Q2, Q4, and R are 3 × 3 matrices. The
f (δω, δζ, u) is the spacecraft error dynamics. The scalar function g(δζ) is a general nonnegative
attitude penalty function. The function is chosen to produce the same cost for a given physical
orientation [23,29]:

g([δC(δê, δφ)]) =
1
4
(3− tr([δC])) = sin2(δφ/2), (81)

when using exact nonlinear attitude error kinematics, the orientation will work for large angles;
δφ = ±180◦. Therefore, the function is bounded 0 ≤ g(δC) ≤ 1 for all possible rotations. Thus,
the attitude cost reaches its highest value at the maximum rotation angle. Defining the attitude cost
function in terms of the DCM makes it universally valid for arbitrary choice of attitude coordinates.
It can be simply parameterized by any other attitude coordinate. The universal quadratic penalty
function for arbitrary attitude error representations is given in Table 3. This penalty function returns
the same cost for a given physical attitude, thereby eliminating the dependency of the optimal control
solution on the choice of the attitude coordinate.
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Table 3. Universal penalty function for attitude error.

Attitude Parameter Penalty Function

DCM g(δC) =
1
4
(3− tr(δC))

Quaternion g(δC(δq)) = δq2
1 + δq2

2 + δq2
3

CRPs g(δC(δρ)) =
δρTδρ

1 + δρTδρ

MRPs g(δC(δσ)) = 4
δσTδσ

(1 + δσTδσ)2

Euler Angles∗ g(δC(δθ)) =
1
4
[3− (1 + cos δθ2) cos(δθ1 + δθ3)− cos δθ2]

Principal angle/axis g(δC(δê, δφ)) = sin2(δφ/2)
Cayley-Klein g(δC(δK)) = 1− 1

4 tr(δK)2

∗ For the 3-1-3 rotation sequence.

4.1. Reference Angular Velocity Defined in the Body Attitude Frame

The reference ωr and current ω angular velocities are expressed in the same coordinate frames;
i.e., δω = ω−ωr. It can be shown that the general expression of the attitude error kinematics of this
set can be given as follows:

δζ̇ = [ fδζ(δζ)]δω− [ωr×]δζ, (82)

with initial state δζ(t0) = δζ0. The Hamiltonian H for this system of equations is defined, for the given
optimal control problem in Equations (79) and (80), as follows:

H =
1
2
(Q3g(δζ) + δωTQ4δω + uTRu)−

λT
δω I−1([ωr×]I − [(Iωr)×])δω + [δω×]Iδω− u + Iω̇r + [ωr×]Iωr)+

λT
δζ([ fδζ(δζ)]δω− [ωr×]δζ),

(83)

where λδω and λδζ are the co-state variables for the angular velocity error and the attitude error,
respectively. Invoking the standard necessary condition for optimality, the co-state differential
equations are given by the following:

λ̇δω = −Q4δω− [ fδζ(δζ)]Tλδζ − (I[ δω×]− [ (Iδω)×]− ([ωr×]I − [(Iωr)×])T)I−1λδω

λ̇δζ = −1
2

Q3
∂g

∂(δζ)
− ∂

∂(δζ)
([ fδζ(δζ)]δω)Tλδζ − [ωr×]λδζ ,

(84)

The two co-state differential equations are integrated backward in time with given terminal

values λδω(t f ) =
∂Φ

∂(δω)

∣∣∣
t f

and λδζ = ∂Φ
∂(δζ)

∣∣∣
t f

. The optimal control is given by the first-order necessary

conditions for an extremum, Hu = 0, leading to u = −(IR)−1λδω.

4.2. Reference Angular Velocity Defined in the Reference Attitude Frame

The reference and current angular velocities are expressed in different coordinate frames, i.e.,
δω = ω− δCωr. Therefore, this definition explicitly computes the angular velocity error in the current
body frame. As an important result of this set, the expressions of the attitude error kinematics follow
the attitude kinematics equation for any given attitude representation choice. Therefore, the general
expression of the attitude error kinematics of this set can be given as follows:

δζ̇ = [ fδζ(δζ)] δω, (85)
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with initial state δζ(t0) = δζ0. The Hamiltonian H for this system of equations is as follows:

H =
1
2
(Q3g(δζ) + δωTQ4δω + uTRu)−

λT
δω I−1(([ δCωr×]I − [ IδCωr×]) δω + [ δω×]Iδω− u−

I[ δω×]δCωr + Iω̇r + [ δCωr×]JδCωr) + λT
δζ [ fδζ(δζ)]δω.

(86)

Invoking the standard necessary condition for optimality, the co-state differential equations are
given by the following:

λ̇δω = −Q4δω− [ fδζ(δζ)]Tλδζ − (I[ δω×]− [ (Iδω)×]− ([δCωr×]I − [(IδCωr)×])T + [ δCωr×]I)I−1λδω

λ̇δζ = −1
2

Q3
∂g

∂(δζ)
− ∂

∂(δζ)
([ fδζ(δζ)]δω)Tλδζ − [ωr×]λδζ −

∂

∂(δζ)
[δ̇ω]Tλδω,

(87)

The optimal control is given by the first-order necessary conditions for an extremum, Hu = 0,
leading to u = −(IR)−1λδω. Note the last term in the (λ̇δζ) expression involves calculating the

partial derivative of the angular velocity error kinematic,
∂

∂(δζ)
[δ̇ω], which obviously leads to difficult

math. This step is also required when performing coordinate mapping between the DCM into other
attitude parameters.

4.3. Numerical Simulation

This section presents simulation results of a fixed final-time and final-state open-loop optimal
control solution for the spacecraft tracking problem. Modified Rodrigues parameters are used for the
attitude motion. The initial and final state variable conditions for this example are given in Table 4.
The spacecraft moment of inertia tensor is given in Table 5. For simplicity, the weighting matrices
are Q1 = 0, Q3 = 1, Q2 = 03×3, and Q4 = R = I3×3. However, one can sweep those penalties to
obtain different solutions sets. This example stands to solve the open-loop optimal control problem
for the spacecraft tracking problem using arbitrary attitude representation. We consider the universal
performance index given in Table 3. The state and co-state differential equations are solved in a
Boundary Value Problem (BVP) framework using a shooting method (MATLAB fsolve) [29,33]. The
optimal open-loop solution is shown in Figure 5. The time history of the optimal trajectory and control
is shown in Figure 5a for MRPs representation. The trajectory is controlled to drive the spacecraft for
a given initial state error, δω(0) and δζ(0), to rest at zero attitude error after 25 seconds. It is noted
that the optimal open-loop solution obtained for various attitude representation produces the same
angular displacement δφ and total cost, as given in Figure 5b.

Table 4. Initial/boundary conditions.

Time (s) Attitude Error (MRPs) δζ Angular Velocity Error δω (rad/s)

0 1√
3
[1, 1, 1]T [−0.1, −0.2, −0.3]T

25 [0, 0, 0]T [0, 0, 0]T

Table 5. The spacecraft principal moment of inertia components (kg·m2).

I1 86.215
I2 85.070
I3 113.565
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(a) (b)

Figure 5. Open-loop optimal solution for the tracking motion. (a) Time history of the optimal trajectory,
ω and MRPs, and control. (b) Time history of the principal angle and the total optimal cost.

5. Conclusions

Full analytical derivations of attitude error kinematics equations have been presented. Compact
forms of attitude error kinematics equations are derived for various attitude parameterizations.
The attitude error is defined as the rotation error between the true and estimated orientations. Several
attitude error representations are developed for describing the orientation error kinematics. Two
approaches to attitude error kinematics are introduced. The first one considers the estimated angular
velocity defined in the true body axes, while in the second one, the estimated angular velocity is
defined in the estimated body axes. These two angular velocity definitions are usually adopted in
simulations and in real estimation/control applications, respectively. These two nonlinear kinematic
models are valid for arbitrarily large relative rotations and rotation rates. These results are expected
to be broadly useful for generalizing extended Kalman filtering formulations and optimal control
tracking problems.
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Appendix A. Angular Velocity Error Vector and Euler Angle Error Rates Mapping

This appendix presents forward and inverse mapping between the angular velocity error vector

δω and the Euler angle error rates δθ̇ =
{

δθ̇1 δθ̇2 δθ̇3

}T

in the following form:

δθ̇ =M−1
ijk δω

Note that the shorthand notations ci = cos(δθi) and si = sin(δθi) are used in Table A1.
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Table A1. Angular velocity error vector and Euler angle error rates mapping.

i-j-k M−1
ijk Mijk i-j-k M−1

ijk Mijk

1-2-1
1
s2

 0 s3 c3
0 s2c3 −s2c3
s2 −c2s3 −c2c3

  c2 0 1
s2s3 c3 0
s2c3 −s3 0

 2-3-1
1
c2

 0 c3 −s3
0 c2s3 c2c3
c2 −s2c3 s2s3

  s2 0 1
c2c3 s3 0
−c2s3 c3 0



1-2-3
1
c2

 c3 −s3 0
c2s3 c2c3 0
−s2c3 s2s3 c2

  c2c3 s3 0
−c2s3 c3 0

s2 0 1

 2-3-2
1
s2

 c3 0 s3
−s2s3 0 s2c3
−c2c3 s2 −c2s3

 s2c3 −s3 0
c2 0 1

s2s3 c3 0



1-3-1
1
s2

 0 −c3 s3
0 s2s3 s2c3
s2 c2c3 −c2s3

  c2 0 1
−s2c3 s3 0
s2s3 c3 0

 3-1-2
1
c2

−s3 0 c3
c2c3 0 c2s3
s2s3 c2 −s2c3

 −c2s3 c3 0
s2 0 1

c2c3 s3 0



1-3-2
1
c2

 c3 0 s3
−c2s3 0 c2c3
s2c3 c2 s2s3

 c2c3 −s3 0
−s2 0 1
c2s3 c3 0

 3-1-3
1
s2

 s3 c3 0
s2c3 −s2s3 0
−c2s3 −c2c3 s2

 s3s2 c3 0
s2c3 −s3 0
c2 0 1



2-1-2
1
s2

 s3 0 −c3
s2c3 0 s2s3
−c2s3 s2 c2c3

  s2s3 c3 0
c2 0 1
−s2c3 s3 0

 3-2-1
1
c2

 0 0 c3
0 c2c3 −c2s3
c2 s2s3 s2c3

 −s2 0 1
c2s3 c3 0
c2c3 −s3 0



2-1-3
1
c2

 s3 c3 0
c2c3 −c2s3 0
s2s3 s2c3 c2

 c2s3 c3 0
c2c3 −s3 0
−s2 0 1

 3-2-3
1
s2

−c3 s3 0
s2s3 s2c3 0
c2c3 −c2s3 s2

 −s2c3 s3 0
s2s3 c3 0
c2 0 1



Appendix B. Attitude Error Kinematics

Attitude error kinematics equations for various attitude representations and for the two
approaches—estimated angular velocity defined in the true attitude frame (for simulations) or defined
in the estimated attitude frame (for real applications)—are summarized in Figure A1. These equations
are used to integrate the attitude error rate.

Figure A1. Summary of the attitude error kinematics equations. The terms in red indicate the
differences between the two forms
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