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Abstract: Tracking detailed hand motion is a fundamental research topic in the area of human-
computer interaction (HCI) and has been widely studied for decades. Existing solutions with
single-model inputs either require tedious calibration, are expensive or lack sufficient robustness
and accuracy due to occlusions. In this study, we present a real-time system to reconstruct the
exact hand motion by iteratively fitting a triangular mesh model to the absolute measurement of
hand from a depth camera under the robust restriction of a simple data glove. We redefine and
simplify the function of the data glove to lighten its limitations, i.e., tedious calibration, cumbersome
equipment, and hampering movement and keep our system lightweight. For accurate hand tracking,
we introduce a new set of degrees of freedom (DoFs), a shape adjustment term for personalizing the
triangular mesh model, and an adaptive collision term to prevent self-intersection. For efficiency,
we extract a strong pose-space prior to the data glove to narrow the pose searching space. We also
present a simplified approach for computing tracking correspondences without the loss of accuracy
to reduce computation cost. Quantitative experiments show the comparable or increased accuracy of
our system over the state-of-the-art with about 40% improvement in robustness. Besides, our system
runs independent of Graphic Processing Unit (GPU) and reaches 40 frames per second (FPS) at about
25% Central Processing Unit (CPU) usage.

Keywords: articulated hand tracking; multi-model; data glove; depth camera; model-fitting; real-time

1. Introduction

The articulated hand tracking has been studied for decades, due to its wide range of applications,
like computer graphics, animation, human-computer interaction, rehabilitation, and robotics.
Nowadays, with the boom of virtual reality (VR) and augmented reality (AR), more natural interaction
with the digital world is desired to increase the sense of presence and immersion. Fully articulated
hand tracking holds the potential to become a first-class input mechanism [1]. Recent works have put
more attention on the task of fully articulated hand tracking, aiming to recover the detailed motion of
a user’s hands in real-time. However, tracking detailed hand motion is still a challenge, facing many
factors like large variations in hand shapes, small hand size, viewpoint changes, many degrees of
freedom (DoFs), fast movement, self-similarity, and occlusions [2].

Judging by the input devices, we can broadly categorize existing works into the wearable-based
and the camera-based. For the wearable-based works, the data gloves that can record hand pose stably
and directly, are the most representative. When it comes to those camera-based researches, an approach
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to recover hand pose is using discriminative (appearance-based) methods [3]. These methods search
the correspondence between input images and pose parameters from a large amount of data using
deep-learning. Another approach is the use of generative (model-based) methods [4–6] that apply
iterative model-fitting optimization to camera images. Due to their heavy dependence upon the proper
initialization, recent works [7,8] utilize the appearance-based methods to provide initialization and
re-initialization. Apart from the wearable-based and camera-based methods, some researchers [9,10]
try to make improvements through multi-model input devices.

Although the methods above have made many significant contributions, there is still a long
way for fully articulated hand tracking to become the first choice of the user interface. The
following are several factors. For data-glove based systems, a complex, tedious, non-automatic
calibration is inevitable to reduce inaccuracies, especially for applications that require high levels of
accuracy [11]. Those expensive commercial gloves, i.e., 5DT Data Glove [12], Cyber Glove [13], are
always unaffordable. They also add on additional hardware which may cause discomfort to the user
for prolonged use. For camera-based works, discriminative methods still generalize poorly to unseen
hand shapes [14,15] because existing hand data-sets have many shortcomings, e.g., low variation in
hand shape, annotation accuracy, and limited in scale. Most generative methods are computationally
expensive and a top-end consumer GPU is essential for heavy parallelization to achieve real-time
performance. The inherent issue of visual occlusions also makes those camera-based works still lack
sufficient accuracy and robustness for fine manipulation, like surgical applications. As for those
multi-model researches, their systems are always burdensome because of their poor integration of
various inputs. All those factors mean there is still room to make further improvement in flexibility,
accuracy, robustness, efficiency, and cost.

In this paper, we present a system with the synergy of a simple data glove and a depth camera to
recover articulated hand motion by iterative model-based registration progress. We aim to achieve
more accurate and robust tracking results and overcome some downsides of existing works, e.g.,
tedious calibration or high dependency on GPU. The contributions of this paper are as follows:

• Design and implementation of a multi-model articulated hand tracking system that runs in
real-time without GPU and improves by about 40% of robustness with comparable or increased
accuracy over the state-of-the-art.

• The re-definition and simplification on the function of the data glove as an approximate
initialization in Section 3.2.2 and a strong pose-space regularization in Section 3.3.3 that increases
the robustness of our system and frees our data glove from tedious calibration and heavily
hampering hand movement.

• A new proposal for DoFs setting that can avoid potential artificial error in the kinematic chain;
see Section 3.1.

• The new fitting terms with a simplified approach for computing tracking correspondences that
can reduce computational cost without the loss of accuracy; see Section 3.3.1.

• A new strategy to consider the shape adjustment of the triangular mesh hand model that includes
a tailored shape integration term in Section 3.3.2 for better fitting the input images and an adoptive
collision prior consistent with the shape adjustment in Section 3.3.3 to prevent self-intersection
and produce plausible hand poses.

The following structure of the paper is: We survey related works in Section 2. In Section 3, we
introduce the components of our system, including the hand model, the setting of the kinematic chain
and DoFs, data acquirement and processing, and the objective function. In Section 4, we quantitatively
and qualitatively analyze the performance of our hand tracking system and provide comparisons with
the state-of-the-art. We conclude in Section 5 with a discussion of future works.

2. Related Works

In this section, we put our focus on the relevant introduction of the two mainstream camera-based
works, i.e., appearance-based methods and model-based methods. We also briefly introduce some
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multi-model methods. Dipietro et al. [11] have done elaborate research for all kinds of data gloves and
relevant applications. We refer the readers to [11] for a detailed review of glove-based works.

2.1. Appearance-Based Methods

Appearance-based methods train a classifier or a regressor to map image features to hand poses.
Nearest neighbor search and decision trees [16,17] are widely used in early works. In recent years,
convolutional neural network (CNN)-based discriminative methods [3,18–22] are state-of-the-art which
estimate 3D joint positions directly from depth images. Besides, kinematics and geometric constraints
are considered to avoid joint estimations violating kinematic constraints. Malik et al. [2] embedded
a novel hand pose and shape layer inside CNN to produce not only 3D joint positions but also
hand mesh information. For a more comprehensive analysis and investigation of the state-of-the-art
along-with future challenges, we refer the readers to [15]. The biggest limitation of appearance-based
methods is the training data. Existing benchmarks [17,23–26] are not perfect enough to ensure well
generalize to unseen hand shapes. We refer to [14] for a detailed analysis of the drawbacks of existing
data-sets. Considering this limitation, our system follows the model-based approaches that do not rely
on massive data-sets.

2.2. Model-Based Methods

Despite the considerable advance in learning-based hand tracking, systems that employ generative
models of explicit hand kinematics and surface geometry and fit these models to depth data using
local optimization have produced the most compelling results [1]. The most common problems for
model-based methods are a good enough initialization point, an expressive enough hand model
and a discriminative object function that minimizes the error between the 3D hand model and the
observed data.

2.2.1. Initialization

A good enough Initialization has been proven critical to the robustness [23], which enables
faster converge and better resistant to local optima. There exist many initialization methods. Some
works [5,23,27] were initialized by the fingertip detection. Besides, Tagliasacchi et al. [27] and
Tkach et al. [5] also detected a color wristband as a first alignment. The use of simple geometric
heuristics for initialization can sometimes be impractical for those gestures which contain occlusions
or difficult hand orientations. For this reason, most of the previous studies concentrated on exploiting
the given image data with the train-based methods. Taylor et al. [28] generated candidate’s hand poses
quickly by a retrieval forest [29]. Taylor et al. [1,30] trained a decision forest classifier on a synthetic
training set to generate an initial pose estimate. Sanchez-Riera et al. [7] trained a convolutional
neural network for initialization with 243,000 tuples of images. Sharp et al. [6] inferred a hierarchical
distribution over hand pose with a layered discriminative model. However, initialization errors often
occur due to imperfect training data-sets, mentioned in Section 2.1, which may cause tracking failure.
In our system, it is more reliable and robust to provide an approximate initialization by a simple
data glove.

2.2.2. Hand Model

The human hand model serves as the medium of computation and the presentation of algorithm
results. A detailed and accurate generative model tends to deepen the good local minima and widen
their basins of convergence [1]. Many hand models have been proposed, see Figure 1.
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Figure 1. Hand models. (a) Capsule model [31–33]. (b) Cylinder model [27]. (c) Sphere model [23].
(d) Convex bodies for tracking [34]. (e) Sum of an-isotropic Gaussian model [35]. (f) Sphere-mesh
model [5]. (g) Triangular hand model [4]. (h) Triangular mesh [8]. (i) Loop subdivision Surface
of a triangular control mesh [36]. (j) Articulated Signed Distance Function (SDF) for a voxelized
shape-primitive hand model [37]. (k) Articulated signed distance function for a hand model [1]. Images
reproduced from the cited papers or their supplementary videos

Early works [27,31–33] used the capsule mode made by two basic geometric primitives: a sphere
and a cylinder. Qian et al. [23] built the hand model using a number of spheres. Melax et al. [34] used
a union of convex bodies for hand tracking. Sridhar et al. [35] modeled the volumetric extent of the
hand as a 3D sum of an-isotropic Gaussian model. These approaches can model a broad spectrum
of hand shape variations and enable fast evaluation of distances and a high degree of computational
parallelism. However, they only roughly approximate hand shape even if Tkach et al. [5] proposed
the use of sphere-meshes as a novel geometric representation. An alternative is a triangulated mesh
model [4,6–8,28,30,36,38] with linear blend skinning (LBS) that is more realistic and fits image data
better. But these triangulated meshes cost more computational effort and are hard to deal with the
collision. There also exist some implicit templates except these explicit models. Schmidt et al. [37]
voxelized each shape-primitive and computed a signed distance function for the local coordinate
frame. Taylor et al. [1] constructed the hand as an articulated signed distance function that allows fast
calculation of the distance to the hand surface. To explain the input data better and explicitly visualize
the tracking result, our system uses an expressive triangular mesh hand model.

Apart from modeling the hand model detailed and realistic, hand model personalizing is a core
ingredient in model-based methods. Joseph Tan et al. [38] quantitatively demonstrated for the first
time that detailed personalized models improve the accuracy of hand tracking. In some works [7,27],
only the simple uniform scaling of the model was considered. Makris et al. [33] investigated the
calibration of a cylinder model through particle swarm optimization. Ballan et al. [4,8] reconstructed a
personalized template mesh offline with a multi-view stereo method for more detail model calibration.
Taylor et al. [30] presented a fast, practical method to acquire detailed hand models from as few as
15 frames of depth data. Moreover, their work was extended in [36], which simplifies hand shape
variation by linear shape-spaces. Joseph Tan et al. [38] went further and presented a fast, practical
method for personalizing a hand shape basis to an individual user’s detailed hand shape using only a
small set of depth images. Similarly, Remelli et al. [39] presented a robust algorithm for personalizing
a sphere-mesh tracking model to a user from a collection of depth measurements. However, those
methods suffer a major drawback: the template must be created during a controlled calibration stage,
where the hand is scanned in several static poses (i.e., offline). Tkach et al. [40] yielded a fully
automatic, real-time hand tracking system that jointly estimates pose and shape for their sphere-mesh
hand model. It remains unsolved for the triangular mesh model to adjust its shape during tracking.



Sensors 2019, 19, 4680 5 of 29

Our system tries to adapt the conclusion in [40] for the shape adjustment of our triangular mesh model
to fit the shape of input images.

2.2.3. Objective Function

The objective function measures the discrepancy between the hand model and input depth, as
well as the validity of the hand model [23]. In general, the objective function is made by fitting terms
and prior terms.

Fitting terms measure how well the hand parameters explain the input frames.
Oikonomidis et al. [31] and Sharp et al. [6] formed the fitting terms as the discrepancy between
the observed images and the rendered images from a given hand pose hypothesis. Then solutions
were searched by a slow-converge stochastic optimizer like PSO. Most works [5,7,23,27,28,30,32,36]
modeled the fitting terms as the least-squares error between the effectors and their target positions,
and solved it by gradient-based approaches, such as Gauss–Newton and Levenberg–Marquardt.
However, finding corresponding points is difficult and time-consuming, especially for triangular hand
models. Taylor et al. [28,30,36,38] subdivided the mesh to produce a smooth surface function for
evaluating both pose and corresponding points. Down-sampling the point cloud randomly is also
a good way to reduce computation effort [23,28]. Except for the 3D fitting term, a 2D registration in
most works [4,5,23,27,28,39,40] is also important, which pushes the hand model to lie within the visual
sensor hull. Our system also adopts the 3D and 2D fitting terms but deals with the time-consuming
problem of computing corresponding points to reduce the computational cost and enable our system
independent of GPU.

Prior terms regularize the solution to produce realistic hand poses. Every model-based works
adopt a joint limitation term extracted from a database to constrain the posture parameters within
plausible value ranges. Self-intersection is a big problem. Oikonomidis et al. [31] penalized
abduction–adduction angles of adjacent fingers. Some works [5,27,39,40] restricted the distance
between cylinders to solve this problem. Qian et al. [23] limited the distance of spheres in neighboring
fingers. For triangular hand models, it becomes harder. In [4], a repulsion term was computed in the
form of a 3D-3D correspondence that pushes the vertex back. Taylor et al. [28] defined a set of spheres
that approximate the volume of the fingers to simplify this question. However, these collision terms
did not consider the shape adjustment during tracking. Our system gets this point and introduces an
adaptive collision term consistent with shape adjustment. Besides, the pose-space prior in [5,27,28,38],
obtained by performing dimension reduction on the training data, provides implicitly constrains to
the recovered hand postures. In general, the pose-space prior covers a large pose space and can not
constrain the hand pose tightly. Our system integrates a data glove in it to produce a stronger implicit
restriction. There are also lots of prior terms, including temporal priors to prevent the tracked hand
to jitter [5,27,28], ARAP regularization to penalized large shape deformations [30,36], fingertips prior
term to guarantee each detected fingertip should have a model fingertip nearby [28].

2.3. Multi Model Systems

For multi-model systems, the core idea is that different input models each have their limitations,
but may complement each other. For example, wearable-based systems can fill in the data gap that
occurs with vision-based systems during camera occlusions, and the vision-based device provides
an absolute measurement of hand state [9]. Arkenbout et al. [9] integrated the hand pose of 5DT
date glove and the Nimble VR system through a Kalman filter and shows substantial improvement in
accuracy. Ponraj et al. [10] increased the accuracy of fingertips tracking in occluded cases by combining
the leap motion control with a Sensorized Glove. Tannous et al. [41] proposed a fusion scheme
between inertial and visual motion capture sensors to improve the estimation accuracy of knee joint
angles. Sun et al. [42] reached a higher gesture recognition rate using the Kinect and Electromyogram
signals. Pacchierotti et al. [43] placed a novel wearable cutaneous device on the proximal phalanx
to improve the tracking of the fingertips on commercially-available tracking systems, such as the
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Leap Motion controller or the Kinect sensor. These methods show improvement through multi-model
inputs. These multi-model systems show improvement in accuracy and robustness, but they retain
the cumbersome setting of wearable devices, e.g., calibration and uncomfortable hardware, which
makes their system more burdensome. Our system can reduce the effect of additional hardware by
re-defining and simplifying the function of the data glove to make our system lightweight.

3. Method

The overview of our system can be found in Figure 2. In this section, we will introduce our system
in detail. We first present the hand model and the setting of the kinematic chain before tracking in
Section 3.1. Then, we introduce step 1 during tracking, i.e., how we acquire and process the input data
from the depth camera and the simple data glove, in Section 3.2. Finally, we describe in detail the step 2
during tracking, i.e., the objective function constructing, in Section 3.3. The iterative optimization
step by Levenberg–Marquardt approach is not included in this Section because it is a very common
gradient-based solution.

Figure 2. Overview of our system. Before tracking, the hand model has been prepared. During tracking,
the workflow of the system is as follows: firstly, we acquire and process the inputs from the camera
and the glove. For each acquired image, we extract a 3D point cloud and a 2D silhouette from the
depth to provide the absolute measure. For the glove input, we get a rough hand pose for initialization.
Secondly, we construct the objective function to measure the discrepancy between the hand model and
the extracted 3D point cloud and 2D silhouette. Finally, we iteratively optimize the objective function
by Levenberg–Marquardt approach to get the recovered hand motion. If the optimization failed, the
input of the data glove provides a guarantee to ensure robustness.

3.1. Hand Model

We use the publicly available MANO hand model [44] for pose and shape tracking, see Figure 3a,b.
There are several reasons: (1) it is learned from around 1000 high-resolution 3D scans of hands of 31
subjects in a wide variety of hand poses. (2) As an articulated triangular model, it is more expressive
than those hand models [1,2,4,7,8,14,15] made by basic geometric primitives. It also reduces the
artifacts of LBS, i.e., mesh collapse around joints. (3) Romero et al. [44] provide not only a set of shape
offset vectors to generate different hand shapes but also the sparse linear joints locations regressor to
generate corresponding hand skeleton, which is important for shape tracking.

The general formulation M (β, θ) of MANO, taken from the original paper [44] for completeness,
is as follows:

M (β, θ) = W (T (β, θ) , J (β) , θ,W) (1)

where β and θ control the shape and pose respectively, W is a linear blend skinning function applied
to a template hand triangulated mesh T, the hand template T is obtained by deforming a mean mesh
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through β and θ, J is a sparse linear joints locations regressor learned from mesh vertices, andW is the
blend weights. For more details about MANO, please refer to [44].

Given the MANO hand joints, we build our kinematic chain, Figure 3c.

(a) (b) (c)

Figure 3. The MANO hand model and the kinematic chain. (a) The MANO hand model. (b) The
triangular mesh of MANO. (c) The kinematic chain and human hand anatomy. The explanations of
capital letters in (c) : A represents the Wrist joint. B represents the Carpometacarpal (CMC) joint. C
represents the Metacarpophalangeal (MCP) joints. D represents the Proximal Interphalangeal (PIP)
joints. E represents the Distal Interphalangeal (DIP) joints. F represents the Interphalangeal (IP) joint.

The kinematic chain is not fixed because the shape parameters θ of MANO will affect the locations
of the joints. Each joint Jk of the kinematic chain, except the wrist joint, is defined with its previous
joints Jparent

k . Moreover, each joint Jk is associated with an orthogonal frame T̄k according to which
local transformations are specified. We automatically set the local coordinate systems T̄k according to
the relationship and structure of joints in the mean shape of the hand (β is set to 0). For the sake of
simplicity, these preset local coordinate systems T̄k do not change with the location change of the joints,
considering the relatively small effect of β on hand structure. Incorrectly specified kinematic frames
can be highly detrimental to tracking quality [5]. Relaxing the restrictions on DoFs helps reduce the
impact of incorrectly setting frames, see Figure 4b.

(a) (b)

Figure 4. Fitting MANO hand model to the data set in [44]. Green one represents the data set, while
red one is the fitted MANO model. (a) The IP joint with only one degree of freedom (DoF). (b) The IP
joint with three DoFs.
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So each joint Jk in our kinematic chain has three DoFs, which results in 51 DoFs in total with the
six DoFs global transformation. However, more DoFs mean larger search space, which is dealt with in
Section 3.3.

3.2. Data Acquisition and Processing

3.2.1. Camera Data

We get the input of depth images from Intel RealSense SR300 (Intel, Santa Clara, CA, USA),
a consumer short-range RGBD camera. From the raw depth images, we obtain the segment of hand
by performing classification with standard random decision forests [25]. A 2D silhouette image Ss

is extracted directly from the segment. Besides, we extract also a 3D point cloud Xs that contains
about 200 pixels by performing a stochastic sampling, which has been proved by [28] to enable CPU
optimization without significant loss of precision.

3.2.2. Glove Data

We measure the approximate pose of the hand, using a simple and cheap prototype data
glove provided by our cooperation company [45], Figure 5a,b. The glove is affixed with 11 inertial
measurement units (IMUs) according to the anatomical structure of the hand. Figure 5c shows the
location, initial coordinate systems, and orientation of those IMUs.

(a) back-side (b) front-side (c) layout

Figure 5. Data glove. (a) The back side of the data glove. (b) The front side of the data glove. (c) The
location of inertial measurement units (IMUs) on the hand. We attach 11 IMUs on the glove made by
breathable textile lining. Two IMUs on the distal, medial phalange of thumb; two IMUs on the medial,
proximal phalanges of each of the other fingers; one IMU on the back of the hand.

The output of our glove is a 100 Hz stream of the orientation of IMUs in the form of
unit quaternions:

Qi =
[
qx

i , qy
i , qz

i , qw
i

]
, i ∈ {1...11} , (2)

where i is the index of IMUs in Figure 5c. Q11 records the global rotation information of the hand.
Q1 and Q2 represent the movements of the distal and proximal phalange of the thumb, respectively.
The rest quaternions represent the movements of the medial and proximal phalanges of other fingers.
Theoretically, all IMUs’ orientation is set to be the same in the initial pose, see Figures 5c and 6a, which
means initially:

Qinitial
i = Qinitial

j ∀i, j ∈ {1, 2, ..., 11} . (3)
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Based on this premise, we can easily measure the angular values of joints, using the relative
rotation between IMUs:

Qi,j = Qi ∗Q−1
j , (4)

where i represents the index of IMUs, j represents the index of the parent IMU of the ith IMU, Qi,j is
also a unit quaternion that contains the rotation information of the joint between the two phalanges
where the ith and jth IMU locate in. See Figure 6 for example.

(a) (b)

Figure 6. The example of how the IMUs attached on the index finger measure the rotation. (a) The
initial poses of the 3rd and 4th IMU are equal Q3 = Q4, when Index finger is stretching. (b) The relative
pose Q3,4 = Q∗3 ∗Q−1

4 of the 3rd and 4th IMU, when the index finger is blend. Q3,4 can represent the
3rd IMU rotate 90 degrade counterclockwise around axis x related to the 4th IMU.

Then we convert the quaternion Qi,j to the Euler angle in XYZ rotation order and map to the
51 DoFs pose parameters mentioned in Section 3.1 to provide an initial hand pose:

θx
ij = tan−1

 2
(

pw
ij px

ij + py
ij p

z
ij

)
1− 2

(
px

ij
2 + py

ij
2
)


θ
y
ij = sin−1

(
2
(

pw
ij py

ij − px
ij p

z
ij

))
θz

ij = tan−1

 2
(

pw
ij pz

ij + px
ij p

y
ij

)
1− 2

(
py

ij
2
+ pz

ij
2
)
 .

(5)

The movements of the metacarpal phalanx of the thumb and the distal phalanx of other fingers
are not considered independently but calculated according to the proximal phalanx of the thumb and
the medial phalanx of other fingers respectively.

Our simple data glove only provides approximate poses, see Figure 7, because the fixed positions
of IMUs may not fit everyone, and shifting of IMUs may appear when incorrect wearing the glove or
making various gestures.

We redefine and simplify the function of the data glove to be a robust initialization, re-initialization,
and a strong prior. So we think the approximate pose from our simple data glove is acceptable and do
not design a complex calibration progress for it to keep our system light-weighted and easy to use.
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Figure 7. Some hand poses given by the simple data glove.

3.3. Objective Function

Given the 2D silhouette image Ss, 3D point cloud Xs, and initialization form data glove, we aim to
find the pose θ and shape β parameters that make our hand model a good explanation of the absolute
measurement from the camera accurately and efficiently. We formulate this goal as a minimum on the
following objective function with references to recent works:

min
θ,β

E3D + E2D︸ ︷︷ ︸
Fitting terms

+Eshape + Eposespace + Etemporal + Ecollision + Ebounds︸ ︷︷ ︸
Prior terms

, (6)

where fitting terms determine the pose θ and shape β parameters in each frame, Eshape elegantly
integrates shape information β from frames in different poses, those prior terms regularize the solution
to ensure the recovered pose is plausible. We will put our focus on the novelties to meet our premise
on efficiency, accuracy, and robustness, and give only a brief introduction on the unchanged terms.

3.3.1. Fitting terms

3D Registration. The E3D registers the hand modelM to the point cloud Xs. In recent works, it is
always formulated in the spirit of ICP as:

E3D = ω3D ∑
x∈Xs

‖x−ΠM(x)‖2
2 (7)

where x represents a 3D point of the point cloud Xs, ΠM(x) is the corresponding point of x on the
hand modelM.

Finding the corresponding points is the most critical, time-consuming, and challenging step,
especially for triangular mesh models. In order to improve efficiency and reduce the computational
cost, we simplify this process and re-formulate the 3D registration without loss of accuracy as:

E3D = ω3D ∑
x∈Xs

∥∥x−ΠV̂ (x, θ, β)
∥∥2

2 (8)

where the difference is that we directly search the corresponding point ΠV̂ (x, θ, β) among the visible
vertices V̂ (about half of the original 778 vertices) for each 3D point x ∈ Xs. The reasons behind are
two-fold:

• The MANO hand model is more detailed than the hand models in [4,6–8,28,30,36,38] even though
it is made by only 778 vertices and 1554 triangular faces. We also try to produce a more detailed
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model by the Loop subdivision [36], see Figure 8. The result shows no significant improvement,
which enables the vertex v ∈ V account for these corresponding points around it.

Figure 8. The original MANO hand model, the hand model applied the Loop subdivision, and four
different views of the subdivided hand model with original MANO in wire-frame.

• We conducted another way to find more detailed corresponding points on the hand modelM
using loop subdivision and compare the performance with our simplified approach, see Figure 9.
The result shows that our approach will not decrease accuracy.

Figure 9. The comparison of two different corresponding points finding ways when we fit an input
image from the Handy/Teaser data-set [5]. Each part from left to right is the 3D image, mixed 2D
silhouette, and mixed depth image applied pseudo-color enhancement. The 3D image contains point
cloud Xs in green, hand model in red, and corresponding points on the hand model in blue. The red
part in the mixed 2D silhouette is the rendered silhouette of the hand model, while the green part is
the silhouette of input. The mixed depth shows how the rendered depth matches the original depth
map, using pseudo-color enhancement for better viewing. The Error3D and Error2D are the metrics
mentioned in Section 4.

With the down-sampled point cloud Xs, this approach dramatically reduces the amount of
calculation and allows us to search all the corresponding points for the point cloud Xs in less than 1 ms
on CPU with a single thread.
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2D Registration. The E2D provides the supplementary registration that the point cloud alignment
does not take into account. Ganapathi et al. [46] show that the depth map provides evidence not only
for the existence of a model surface in the form of point cloud Xs but also for the non-existence of
surface between the point cloud Xs and the camera. Thus, the E2D, also called “free space” constraint,
is non-trivial in registration. We adapt the formula mentioned in [27] for this “free space” constraint as:

E2D = ω2D ∑
p∈Sr(θ,β)

‖p−ΠSs(p)‖2
2 , (9)

where p is a 2D point of the projection Sr(θ, β) of the visible vertices V̂ with pose θ and shape β, which
means we need not rasterizing the model and significantly decrease the run-time complexity. ΠSs

and ΠSs(p) remain unchanged and denote the image-space distance transform [46] and the closest 2D
point in the input 2D silhouette Ss, respectively.

3.3.2. Shape Integration

To explain the full input image well, we should take shape β into account as well, which has been
shown to have a considerable impact on the accuracy [5]. Shape information β is so weakly constrained
in any given frame that sufficient information must be gathered from different frames capturing
different hand poses [40]. We refer to [40] to integrate shape information β from frames in different
poses elegantly. Tkach et al. [40] do similar work on their 112 manually designed explicit shape
parameters of the sphere-mesh model, i.e., the length of fingers and the radius of circles. However,
our shape parameters β provided by [44] are the top 10 shape principal components analysis (PCA)
components that control the shape of the hand model implicitly. In order to adapt the method in [40]
to our triangular hand model, we make the following feasibility analysis:

We imitate [40] to abstract the hand shape/pose estimation problem from a single frame into one
of a simpler 2D stick-figure, Figure 10.

Figure 10. A visualization of the co-variance estimate for simple stick model as we vary the blend angles
{θ1, θ2}. the co-variance ellipsoids are centered at the corresponding {θ1, θ2} location. The explicit
shape parameters {L1, L2, L3} are the length of each stick, and the implicit shape parameters{α, β} are
the top two principal components analysis (PCA) components extract on 1000 random generated data.

The co-variance of shape parameters is derived from the Hessian Matrix of the registration
energies. The co-variance represents the confidence or uncertainty of shape parameters. Figure 10
shows a similar conclusion in [40] that the co-variance of the implicit shape parameters is also
conditional on the pose of the current frame, and the co-variance decreases with a bent finger. Besides,
the implicit shape parameters can produce better convergence results even when the blend angle is
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small. This analysis means that we can easily adapt the joint cumulative regression scheme in [40]
without changing the form:

Eshape = ωshape

∥∥∥Σ̂−1/2
n−1 (βn − ˆβn−1)

∥∥∥2

2
, (10)

and update the shape parameters βn and the cumulative co-variance Σ̂n in the nth frame using the
kalman-like style mentioned in [40]:

β̂n = Σ∗n(Σ̂n−1 + Σ∗n)
−1 β̂n−1 + Σ̂n−1(Σ̂n−1 + Σ∗n)

−1β∗n

Σ̂n = (Σ̂−1
n−1 + Σ∗n

−1)−1.
(11)

For more details about the kalman-like shape integration, we refer the readers to [40].

3.3.3. Prior Terms

Pose Space prior. The Eposespace is a data-driven prior that limits the pose space (except the six
global components of θ) within a reasonable range. We extend the pose space prior in [27] with the
restriction of data glove to narrow the pose searching space.

We first construct the standard pose space prior in [27] on the publicly available database of [44]
by PCA, see Figure 11a, which results in a 45× 45 matrix V of eigen-vectors and a set of 45 eigenvalues
λ = (λ1, ..., λ45). Taking the top N pose components, we have:

θ̃ = CT(θ − µ)

θ̃ ∼ N(0, Σ),
(12)

where µ is the 45-dimensional mean pose, Σ is a diagonal matrix that contains the variance of the
PCA basis, C is a 45× N matrix made by the top N eigen-vectors in V corresponding to the N largest
eigenvalues. Tagliasacchi et al. [27] hold that the estimated pose should lie in this data-driven space to
take on reasonable poses.

Then we take the input of data glove θglove into account. We think that we should also search
the exact pose around θglove. Thus, we project the input glove data θglove recorded when we recover
the hand pose on the database of [44] into θ̃glove with the same 45 × N matrix C, see Figure 11b.
Moreover, we build a multivariate Gaussian model for the difference between the glove data θ̃glove and
corresponding ground truth θ̃ in the low-dimensional subspace, see Figure 11c:

θ̃di f f = θ̃glove − θ̃

θ̃di f f ∼ N(µdi f f , Σ′di f f )

Σ′di f f = Σdi f f + Σnoise,

(13)

where µdi f f is the N-dimensional mean difference, the Σdi f f is co-variance matrix and Σnoise represents
the noise of data glove.

So given a specific input of data glove θi
glove, we search the ground-truth pose in the distribution

of both N(0, Σ) and N(θ̃i
glove − µdi f f , Σ′di f f ). We thus merge the two distribution, see Figure 12:

N(µmerge, Σmerge) = N(0, Σ)N(θ̃i
glove − µdi f f , Σ′di f f ). (14)

We rewrite the PCA prior as:

Eposespace = ωposespace(CTθ − µmerge)
TΣ−1

merge(C
Tθ − µmerge) (15)
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After Cholesky decomposition on Σ−1
merge = LLT , we convert the PCA prior to a squared form:

Eposespace = ωposespace

∥∥∥L(CTθ − µmerge)
∥∥∥2

2
(16)

Temporal prior. In order to mitigate jitter of hand on time series, we adopt a very efficient and
effective prior from [27]. We build a set K that contains 50 randomly selected vertices from the hand
model, and penalize their velocity and acceleration the same as [27]:

Etemporal = ωtemporal( ∑
vi∈K
‖vi − vi−1‖2

2 + ∑
vi∈K
‖vi − 2vi−1 + vi−2‖2

2). (17)

Collision prior. The Ecollision is used to avoid self-intersections of fingers. Unlike the hand model
made by simple geometry, the MANO hand model is a triangular mesh model. It is a difficult problem
to judge whether self-crossing occurs with little cost. To solve this problem, we follow the ideas in [28]
and approximate the volume of the fingers in the MANO hand model with a set of spheres, see the
right picture in Figure 13.

(a) (b) (c)

Figure 11. An illustration of the Gaussian distribution in the two-dimensional subspace of PCA.
(a) The result θ̃ of ground-truth hand pose(except the six global components) θ on the database of [44].
(b) The projection θ̃glove of the glove data θglove into the same subspace in red dots. (c) The multivariate
Gaussian model in blue color N(µdi f f , Σ′di f f ) for the difference between the glove data θ̃glove and

corresponding ground truth θ̃ in the two-dimensional subspace.

Figure 12. An illustration of the influence of N(0, Σ) and N(µdi f f , Σ′di f f ) and their fusion on a given

glove input θi
glove. The red hand model is the initialization from our data glove, while the green one

is the ground-truth from the data-set [44]. The distribution of N(µdi f f , Σ′di f f ) is convert to N(θ̃i
glove −

µdi f f , Σ′di f f ) with the specific input of glove θi
glove. The red ellipse represents the distribution of

N(µmerge, Σmerge), which shows a smaller search area and a closer µmerge toward the ground-truth. We
also show the comparison between the initialization and convergence with the ground-truth on the
right side.
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Figure 13. The process of generating a set of collision spheres to approximate the volume of the fingers
in MANO hand model.

In order to be consistent with the pose and shape deformation of the hand model, we let those
spheres have radius rs (θ, β) and locations cs (θ, β) specified by the vertices of hand model with pose
θ and shape β. For each phalanx, we automatically set four spheres, one is root and the other three
from interpolation:

croot = J (θ, β)

rroot = min
{

di,J(θ,β)

}
i ∈ VJ


cinterpolation

i = J (θ, β) +
i ∗ ~J Jchild

N + 1

rinterpolation
i = rroot

child +
N + 1− i

N + 1
(rroot − rroot

child)

, (18)

where for the root spheres, J is the regressor of joints, J (θ, β) is the location of one joint, VJ is the
top 20 vertices that have the greatest impact on the regression of this joint in the regressor J, di,J(θ,β)
represents the Euclidean distance between the ith vertex in VJ and the joint J (θ, β); for the interpolated
spheres, N represents the number of spheres you want to interpolate, i ∈ {1, ..., N} is the index of the
interpolated sphere, Jchild is position of the child joint of J according the kinematic tree. See Figure 13
for details.

Given the set of spheres, we penalize self-intersection with:

Ecollision = ωcollision ∑
i,j

X (i, j)
∥∥pi − pj

∥∥2
2 (19)

where pi and pj are two point on the ith sphere and jth sphere and play the role as original point
and target point respectively, X (i, j) indicates whether collision between ith sphere and jth sphere
happened:

X (i, j) =

{
0 otherwise

1
(
ci, cj

)2
<
(
ri + rj

)2 (20)

Joints bounds prior. To prevent the hand from reaching an impossible posture by over-bending
the joints, we limit the angles of the hand model and adopt the same function in [27]:

Ebounds = ωbounds ∑
θi∈θ

(
X (i)

(
θi − θi

)2
+ X (i)

(
(θi − θi

)2
)

, (21)

where each hand joint is associated with limitations
[
θi, θi

]
. Because of our different settings of

DoFs, we extract the limitations for each DOF from the detailed hand database in [44]. The extracted
limitations can be see as Table 1. X (i) and X (i) are indicator functions:

X (i) =

{
0 otherwise

1 θi < θi

X (i) =

{
0 otherwise

1 θi > θi

(22)
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Table 1. The extracted limitations of pose parameters. We extract those limitations by fitting MANO
model to the database provided by [44] using our kinematic structure.

Thumb CMC_x CMC_y CMC_z DCP_x DCP_y DCP_z IP_x IP_y IP_z

Max 18.37° 29.34° 78.16° 16.36° 33.72° 21.28° 17.59° 78.29° 19.26°

Min 3.08° −33.06° −24.01° −18.85° −75.38° −19.70° −13.11° −93.88° −15.56°

Index DCP_x DCP_y DCP_z PIP_x PIP_y PIP_z DIP_x DIP_y DIP_z

Max 18.53° 22.72° 89.40° 16.74° 7.66° 101.89° 11.71° 5.96° 75.80°

Min −15.41° −31.75° 89.40° −11.08° −4.19° −34.83° −13.58° −4.43° −42.08°

Middle DCP_x DCP_y DCP_z PIP_x PIP_y PIP_z DIP_x DIP_y DIP_z

Max 16.65° 18.74° 105.90° 14.43° 4.17° 101.65° 6.98° 6.27° 77.22°

Min −13.19° −23.33° −39.66° −13.86° −6.03° −30.38° −7.28° −1.24° −28.96°

Ring DCP_x DCP_y DCP_z PIP_x PIP_y PIP_z DIP_x DIP_y DIP_z

Max 17.53° 46.82° 106.52° 16.60° 6.69° 101.61° 7.27° 6.28° 82.49°

Min −20.31° −30.92° −60.50° −19.58° −5.70° −24.83° −15.63° −5.45° −30.86°

Pinky DCP_x DCP_y DCP_z PIP_x PIP_y PIP_z DIP_x DIP_y DIP_z

Max 18.47° 31.52° 102.32° 2.48° 7.11° 103.65° 10.22° 6.63° 82.53°

Min −16.75° −19.83° −39.75° −16.44° −2.81° −29.03° −11.20° −0.12° −32.14°

4. Experiments and Discussion

In this section, we evaluate our system in many aspects, e.g., the robustness to noise and
occlusion, the accuracy on various poses and shapes, and the improvement over the-state-of-art.
The quantitatively experiments are conducted on the synthetic data-set, Handy (Teaser [5] and
GuessWho [40]) data-set, and the NYU data-set [25] for self-evaluation, the comparison with
model-based techniques [5,39,40], and the comparison with appearance-based works [2,20–22,47–49] ,
respectively. We also qualitatively show the real-time performance and comparison with [2,5,39,40].

4.1. Data-Sets

Synthetic data-set The Synthetic data-set was generated based on a sequence of real hand motion.
Firstly, we tracked a sequence of real hand motion and recorded the recovered shape and pose
parameters with the inputs of data glove synchronously. Secondly, we chose five different hand shapes
from the data-set of [44]. Then we applied those pose parameters to our hand model along with the
five different shape parameters and produced five sets of synthetic image sequences. Each sequence
contains 1129 synthetic depth images. Moreover, we applied Gaussian noise to shape 1 with a standard
deviation ranging from 0 to 12 mm. The influence of noise can be seen in Figure 14.

Figure 14. The influence of the standard deviation of noise on the point cloud from synthetic depth
images. The visible performance of our system with those noise.

Handy/Teaser and Handy/GuessWho data-set. the Handy data-set was created by [5] for the
evaluation of high-precision generative tracking algorithms. It contains the full range of hand motion
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that has been studied in previous researches. The recording device was an Intel RealSense SR300,
which was the same camera used in our system. The Teaser sequence [5] among Handy contains 2800
images of one subject with various range of hand motion. The GuessWho sequence [40] among Handy
contains hand movement sequences of 12 different users. For each subject, there are about 1000 to
3000 images in Handy/GuessWho data-set.

NYU data-set. The NYU data-set, introduced in [25], records a great amount of high noise real
data with quite an accurate annotation. It covers a good range of complex hand poses and a wide range
of viewpoints. Because the NYU data-set is full of noise and miss pixels, it is a very challenging data-set.
We only use the test set of the NYU data-set that contains 8225 images from two different actors.

4.2. Quantitative Comparison Metrics

The metrics are chosen to explain the difference between the recovered hand motion with the
original hand motion. Different data-sets offer the original hand motion in different ways. Thus the
following metrics vary with each data-set.

Metrics for the synthetic data-set. The synthetic data-set is generated from our hand model. We
record the original full 3D hand motion in terms of the location of vertices and joints of the hand model.
So, we compute the mean errors of the vertices and joints between the recovered hand model and the
ground truth to show the difference:

Verror =
∑Nv

i=1

∥∥∥Vi
recovered −Vi

groundtruth

∥∥∥
2

Nv

Jerror =
∑

Nj
i=1

∥∥∥Ji
recovered − Ji

groundtruth

∥∥∥
2

Nj
,

(23)

where Nv = 778 is the number of vertices of our hand model, Nj = 16 is the number of joints of our
hand model.

Metrics for the Handy data-set. The Handy data-set records depth and color images for the
original hand motion. Those model-based techniques [5,39,40] also provide their tracking results in
the form of rendered depth images. To compare with those methods, we choose the algorithm agnostic
metrics E3D and E2D proposed by [5] for evaluating the discrepancy between the input depth image
and the rendered depth image. The E3D can be formulated as follows:

E3D =
∑N3D

i=1

∥∥pi − pi
closest

∥∥
2

N3D
, (24)

where the pi is the ith point in the 3D point cloud from the input depth image, the pi
closest is the closest

correspondence point of pi in the 3D point cloud from the rendered depth image, the N3D is the total
number of points in the 3D point cloud from the input depth image.

The E2D is evaluated using follow equation:

E2D =
∑N2D

i=1

∥∥pi
render − pi

closest

∥∥
2

Noutside
(25)

where the pi
render is the ith point in the 2D hand image rendered from the hand model, pi

closest is the
2D closest point of pi

render in the silhouette of the input image. pi
closest = pi

render if pi
render lies inside the

silhouette of the input image, the N2D is the number of 2D rendered points, the Noutside counts only
the number of 2D rendered points outside the silhouette of the input image.

Metrics for the NYU data-set. The NYU data-set provides a quite accurate annotation of joints
as the ground truth of the original hand motion. Those appearance-based works [2,20–22,47–49] also
predict the hand joints as the tracking results. For the comparison with [2,20–22,47–49] on the NYU
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data-set, we choose the widely used metric among appearance-based methods, i.e., the mean error of
the 3D joint locations:

Emean =
∑N

i=1

∥∥∥Ji − Ji
correspond

∥∥∥
2

N
(26)

where the Ji is the ith ground truth joint, the Ji
correspond is the corresponding joint of Ji, and N is the

total number of ground truth joints.

4.3. Quantitative Experiments

Synthetic data-set. We make an overall evaluation of our system on various poses, hand shapes,
and noise. Figure 15 shows the performance of our system on the five hand shapes and various hand
poses. It is acceptable that the Verror and Jerror fluctuate within 3 mm for different hand shapes. Over
95 percent of the Verror and Jerror are within 5 mm, and almost 100 percent of the the Verror and Jerror

are within 10 mm. Few outliers appear but stay in 16 mm. Besides, the robustness of our system to
different hand shapes and poses is illustrated by the steep curves of the Verror and Jerror, and the narrow
interquartile range(IQR) in the box plots of the Verror and Jerror. Figure 16 illustrates the robustness
of our system on different noise. Our system is robust as the standard deviation of noise gradually
increases from 0 mm to 8 mm. The Verror and Jerror slightly increase but are still within 10 mm. With
more severe noise, the details of the point cloud from depth image disappear, Figure 14, and there is
no wonder that the performance declines sharply. However, we can still give an approximate hand
pose from the data glove even though the noise makes the point cloud a mess, see Figure 14.

Figure 15. The Verror and Jerror of our system on the five hand shapes and various hand poses in the
synthetic data-set.
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Figure 16. The Verror and Jerror of our system with different noise in the synthetic data-set.

Handy data-set. We compare our system with state-of-the-art generative methods [5,39,40] in the
aspects of accuracy and robustness on various hand poses and shapes. We acquire the tracking result
of [5] on the Handy/Teaser sequence though their released code on the Internet. The authors in [39,40]
provide their tracking results on the Handy/GuessWho sequence.

Figure 17 shows the comparison between our system with [5] on the Handy/Teaser sequence.
It can be seen in Figure 17 that our system achieves a visually noticeable improvement on the E3D
and a comparable result on the E2D. The numerical improvements can be found in Table 2. The
improvement of accuracy on the E3D is attributed to our hand model with the relaxed DoFs. Our
triangular hand model deformed by LBS can express the surface geometry of the human hand better
than the hand model made by sphere mesh. The relaxed DoFs introduced in Section 3.1 provide more
possibilities to register the point cloud well. The comparable result on the E2D indicates that our
system successfully tracks the hand shape in the Handy/Teaser sequence. There is an improvement
of robustness on the E3D and E2D to our data glove. We owe it to our data glove. Our data glove can
provide stable initialization and restriction, which reduces tracking failures, i.e., the outliers in the
box plot of Figure 17. The p-values of significance tests for the results in the Handy/Teaser in Table 3
validate that our improvements are statistically significant.

Figure 18 gives the comparison with [39,40] on all subjects in the Handy/GuessWho sequence.
The numerical improvements can be found in Table 4. We can draw a similar conclusion in terms of
E3D. When comes to the E2D, our system shows no significant improvement, which indicates that
our system does not track the hand shape well. We ascribe this to our implicit shape parameters
from PCA which may overly constrain the hand shape and are hard to perform as well as the explicit
114 DoFs shape parameters on the detail of hand shape. For the comparison of each subject in the
Handy/GuessWho sequence can be found in Figures 19 and 20. The p-values of significance tests
for the results in the Handy/GuessWho in Table 3 validate that our improvements of the E3D are
statistically significant, and the performance of our system and [40] on the E2D is comparable with no
statistical difference.
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Figure 17. The E3D and E2D results of comparison between our system with [5] on Handy/
Teaser sequence.

Figure 18. The E3D and E2D total results of comparison between our system with Remelli et al. [39]
and Tkach et al. [40] on Handy/GuessWho sequence.
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Table 2. The numerical improvements between our system and [5] on the Handy/Teaser sequence. We
consider the the mean value and the standard deviation (SD) of the E3D and E2D.

[5] Proposed Method Improvement on [5]

E3D
Mean (mm) 3.18 1.99 37%
SD (mm) 1.61 0.61 62%

E2D
Mean (pixel) 2.27 2.12 6%
SD (pixel) 1.06 0.64 40%

Table 3. The results of significance tests on the E3D and E2D for the Handy data-set.

Handy/Teaser on [5] Handy/GuessWho on [39] Handy/GuessWho on [40]

E3D E2D E3D E2D E3D E2D

p-value 1.53× e−262 6.57× e−12 0 8.43× e−156 0 0.1907

Table 4. The numerical improvements between our system and [39,40] on the Handy/GuessWho
sequence. We consider the the mean value and the SD of the E3D and E2D.

[39] [40] Proposed Method Improvement on [39] Inprovement on [40]

E3D
Mean (mm) 3.24 3.00 2.54 22% 15%
SD (mm) 1.02 0.97 0.50 50% 48%

E2D
Mean (pixel) 1.73 1.89 1.90 −9% −0.5%
SD (pixel) 0.71 0.71 0.68 4% 4%

Figure 19. The E3D result of comparison between our system with Remelli et al. [39] and
Tkach et al. [40] on the 12 subjects in Handy/GuessWho sequence.

Figure 20. The E2D result of comparison between our system with Remelli et al. [39] and
Tkach et al. [40] on the 12 subjects in Handy/GuessWho sequence.

NYU data-set. We compare our system with state-of-the-art appearance-based methods [2,20–22,47–49]
on the NYU data-set, see Figure 21. The results of [2,20–22,47–49] are publicly available on the Internet.
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Since the annotation scheme of NYU is different from ours, we manually choose a subset of 15 joints
from the NYU annotation for the comparisons. Figure 22 shows the difference between the chosen joints
and the joints of our hand model. Figure 21 shows the comparisons between our system with those
appearance-based methods [2,20–22,47–49]. The numerical improvements can be found in Table 5. Our
system achieves a comparable accuracy over those appearance-based methods. We expect better results for
consistent annotation schemes. Besides, our system significantly improves about 40% on robustness. The
p-values of significance tests for the results of the NYU dataset in Table 6 validate that the our improvements
are statistically significant. Malik et al. [2] evaluated not only the hand pose but also the hand shape by
deep-learning methods. We also conducted a comparison with [2] on the E3D and E2D metrics, see Figure 23.
We outperform than [2] both on E3D and E2D, which indicates the superiority of our model-based system
on recovering the hand shape.

(a) (b)

Figure 21. Experiment results on the NYU data-set. (a) The joints errors on the NYU data-set. (b) The
box plot of the joints errors on the NYU data-set.

Figure 22. The subset of 15 joints chosen from the NYU annotation and the joints of our hand model in
a simple hand pose. In this pose, the mean error of joints is 8.30 mm.
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Table 5. The numerical improvements between our system with [2,20–22,47–49] on the NYU data-set.
We consider the the mean value and the standard deviation(SD) of the joints error.

Ours [2] [20] [21] [22] [47] [48] [49]

Mean (mm) 10.45 14.42 7.44 10.08 10.89 9.47 9.05 10.78
SD (mm) 3.64 8.30 4.44 6.67 6.22 5.27 7.02 8.00

Mean
Improvement – 27% −40% −3% 4% −10% −15% 3%

SD
Improvement – 56% 18% 45% 41% 30% 48% 54%

Table 6. The results of significance tests between our system with [2,20–22,47–49] on the joints error of
the NYU data-set.

With [2] With [20] With [21] With [22] With [47] With [48] With [49]

p-value 0 0 1.07× e−5 1.74× e−8 1.13× e−43 7.39× e−58 0.0007

Figure 23. The E3D and E2D comparisons between our system with Malik et al. [2] on the NYU data-set.

4.4. Qualitative Experiments

We first qualitatively show our real-time performance in Figure 24. We can see that our system
acts well on various hand poses and the rendered depth image from the recovered hand model looks
almost the same as the input depth image of the hand. We also present the robustness of our system
with occlusion in Figure 25. We do not conduct extra segments for those small items, which means
those small items will affect the completeness of the point cloud and confuse the tracking progress.
Figure 25 shows that our system stays robust to those influences thanks to the strong prior to our
data glove. Then we exhibit the qualitative comparisons with Tkach et al. [5] on the Handy/Teaser,
Remelli et al. [39] and Tkach et al. [40] on the Handy/GuessWho, and Malik et al. [2] on the NYU
data-set, in Figures 26–28. Those qualitative comparisons also show comparable performance with
state-of-the-art.
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Figure 24. The real-time performance of our system. There are two rows. For each row, the upper
one shows the hand segment of the input depth after pseudo-color enhancement, while the lower one
shows the rendered depth image from the recovered hand model after pseudo-color enhancement.

Figure 25. The real-time performance of our system with occlusion from some small items. There are
two rows. For each row, the upper one shows the hand segment of the input depth after pseudo-color
enhancement, while the lower one shows the rendered depth image from the recovered hand model
after pseudo-color enhancement.

Figure 26. The qualitative comparison between our system with Tkach et al. [5] on Handy/Teaser.
The upper row shows the hand segment of the input depth after pseudo-color enhancement; the
middle row shows the rendered depth image from the recovered hand model of Tkach et al. [5]; the
bottom row shows the rendered depth image from the recovered hand model of our system after
pseudo-color enhancement.
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Figure 27. The qualitative comparison between our system with Remelli et al. [39] and Tkach et al. [40]
on the Handy/GuessWho sequence of user4. The first row shows the hand segment of the input depth
after pseudo-color enhancement; the second row shows the rendered depth image from the recovered
hand model of Remelli et al. [39]; the third row shows the rendered depth image from the recovered
hand model of Tkach et al. [40]; the bottom row shows the rendered depth image from the recovered
hand model of our system.

Figure 28. The qualitative comparison between our system with Malik et al. [2] on the NYU data-set.
The first row shows the hand segment of the input depth after pseudo-color enhancement; the second
row shows the rendered depth image from the recovered hand model of Malik et al. [2]; the bottom
row shows the rendered depth image from the recovered hand model of our system.

4.5. System Efficiency

The machine we use is a laptop with a 6-core Intel Core i7 2.2 GHz CPU, 8 G RAM, and one GPU
of NVIDIA GTX1050Ti. Our system does not use GPU and occupies about 25% of CPU and about
400 MB RAM, which leaves enough CPU, RAM, and GPU for other applications. Our system can
reach real-time performance at around 40 FPS. Data Acquisition and Preprocessing take less than
500 us. We solve the model-fitting of our system iteratively with a Levenberg-Marquardt approach.
In general, five iterations are enough. Each iteration costs within 5 ms. In each iteration, tracking
correspondences searching costs less than 1 ms. Comparing with those generative methods [5,39,40]
which rely on heavy parallelization and high-end GPU hardware, it is reasonable to believe that our
system is more efficient.

5. Conclusions and Future Works

In this paper, we propose a model-based system for real-time articulated hand tracking with the
synergy of a simple data glove and a depth camera. We redefine and simplify the data glove as a
strong priority to ensure robustness and keep our system light-weight and easy-to-use. To improve
accuracy and efficiency, we present several novelties to deal with DoFs setting, hand shape adjustment,
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self-interaction, tracking corresponding computation, and pose searching space constriction. These
contributions make our system take the essence of wearable-based methods and model-based
approaches, i.e., robustness and accuracy, but overcomes their downsides, i.e., tedious calibration,
occlusions, and high dependency on GPU. Experimental results demonstrate that our system performs
better than the state-of-the-art approach in the aspect of accuracy, robustness, and efficiency.

There are some factors in our system that should be considered in the future. When we compare
our system with Remelli et al. [39] and Tkach et al. [40], we find that our system does not perform well
on detailed hand shape tracking. We ascribe this weakness to the over constraints on the hand shape
with the top 10 principal components of PCA as our shape parameters. More detailed and efficient
shape parameters need to be designed for our triangular mesh model in the future. Besides, we do not
claim to have “solved” the occlusion problem completely. When the occlusion occurs, we use the hand
pose from the data glove to prevent tracking failure. The hand pose from our simple data glove is only
approximate, and we expect an adoptive auto-calibration for the simple data glove by online learning
in the future.
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Abbreviations

The following abbreviations are used in this manuscript:

HCI Human–computer interaction
DoF Degree of freedom
VR Virtual reality
AR Augmented reality
IMU Inertial measurement unit
CNN Convolutional neural network
LBS Linear blend skinning
ICP Iterative closest point
PSO Particle swarm optimization
PCA Principal components analysis
FPS Frames per second
GPU Graphics Processing Unit
CPU Central Processing Unit
SDF Signed Distance Function
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