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Abstract: Globally, cigarette smoking is widespread among all ages, and smokers struggle to quit.
The design of effective cessation interventions requires an accurate and objective assessment of
smoking frequency and smoke exposure metrics. Recently, wearable devices have emerged as
a means of assessing cigarette use. However, wearable technologies have inherent limitations,
and their sensor responses are often influenced by wearers’ behavior, motion and environmental
factors. This paper presents a systematic review of current and forthcoming wearable technologies,
with a focus on sensing elements, body placement, detection accuracy, underlying algorithms and
applications. Full-texts of 86 scientific articles were reviewed in accordance with the Preferred
Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines to address three
research questions oriented to cigarette smoking, in order to: (1) Investigate the behavioral and
physiological manifestations of cigarette smoking targeted by wearable sensors for smoking detection;
(2) explore sensor modalities employed for detecting these manifestations; (3) evaluate underlying
signal processing and pattern recognition methodologies and key performance metrics. The review
identified five specific smoking manifestations targeted by sensors. The results suggested that no
system reached 100% accuracy in the detection or evaluation of smoking-related features. Also,
the testing of these sensors was mostly limited to laboratory settings. For a realistic evaluation of
accuracy metrics, wearable devices require thorough testing under free-living conditions.

Keywords: cigarette smoking; ECG; IMU; respiration; RIP; signal processing; smoke exposure;
wearable sensor

1. Introduction

Worldwide, tobacco use is a major risk factor for disease and death. Tobacco dependence, which is
classified in the International Classification of Diseases (ICD-10) [1], causes several types of pulmonary
and cardiovascular illness (emphysema, chronic bronchitis, heart attacks and strokes), lethal cancers
(lung, colorectal, mouth, larynx, liver, cervix, etc.), and is known to affect the reproductive and immune
systems [2–4]. It also increases the chance of severe health issues like diabetes, duodenal ulcers, loss of
appetite, atherosclerosis, age-related macular degeneration and vision loss, premature birth and even
miscarriages in pregnant women [5]. Cigarette smoking is the predominant form of tobacco use.

In 2017, an estimated 47.4 million U.S. adults (19.3%) were reported as using tobacco products,
including cigarettes (14.0%; 34.3 million); cigars, cigarillos, or filtered little cigars (3.8%; 9.3 million);
electronic cigarettes (e-cigarettes) (2.8%; 6.9 million); smokeless tobacco (2.1%; 5.1 million); and pipes,
water pipes, or hookahs (1.0%; 2.6 million) [6]. Research shows that the lifespan of cigarette smokers
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is generally reduced by 13–14 years [7]. Also, the toxicants in second-hand smoke (smoke inhaled
by people in the surroundings of tobacco smokers), such as carbon monoxide (CO), tobacco-specific
nitrosamines (TSNA), formaldehyde (CH2O), and hydrogen cyanide (HCN), have a deadly impact
upon chronic obstructive pulmonary diseases (COPD) and asthma [8]. According to the United States
Centers for Disease Control and Prevention (CDC, Atlanta, GA, USA) estimation, every year about
480,000 deaths are related to first-hand smoking (direct smoke inhalations) and 41,000 to second-hand
smoke [9]. The World Health Organization (WHO) has estimated that annual deaths related to smoking
will be 10% (more than 8 million people per year) by 2030 worldwide [10]. Of those deaths, 75% will be
in low- and middle-income countries. There are also substantial economic consequences of smoking.
In the United States alone, an annual cost of more than $300 billion, including $170 billion for direct
medical care and $156 billion in lost productivity, is generated by 34.3 million adult smokers [11].

Despite these statistics, “smoking cessation is often hindered by the low perceivability of health
risks and the unawareness of habits in day-to-day life” [12]. Data from the National Health Interview
Survey (NHIS [13]) suggest that 68% of smokers are interested in quitting, and 85% have attempted
quitting at least once in their lifetime [14,15], averaging 4 quitting attempts [16], with 70% of these quit
efforts failing eventually [17]. Although there are numerous treatments available to help people quit
smoking [18–24], the overall success rates of smoking cessation interventions are low. A critical starting
point for these smoking cessation methods is the collection of information on the smoking habits
of the individual. Self-reports of the ‘number of cigarettes smoked’ were among the first accepted
measures of this information [25]. These approaches include self-report history methods such as
24-h/7-day retrospective smoking recall [26], immediate logging of cigarettes after consumption [27],
and instrumented methods, such as ecological momentary assessment (EMA [28]). Self-report
methods have improved in convenience and duration with the increased use of smartphones [29].
Clinical interventions (nicotine patches [30], personal counseling [31–34], etc.) mostly depend upon
these self-report methods to understand smoking habits and estimate the degree of smoke exposure.
However, these methods cannot capture detailed smoking metrics (the depth of inhalations, duration of
smoke holding, the number of puffs-smoke intake per cigarette, the duration, or other aspects
of smoke exposure [35]), which can support effective interventions and lapse monitoring. Also,
as self-report approaches rely heavily on the user’s recall and impose a burden on the smokers [25],
the accuracy of these self-reports is generally limited by memory biases and intentional or unintentional
misrepresentations or underreporting [36].

During the past decade, a wide range of technology-driven smoking assessments has been
investigated, such as expired CO monitoring [37,38], biomarkers [39] and image processing [40–42].
However, no usable pattern of inhalations or smoking habits can be drawn from expired CO- or
biomarker-based approaches [38]. A commercial handheld monitoring device, the Clinical Research
Support System (CReSS) [43], was developed to acquire and store behavioral information about
smoking in the natural environment. However, the use of this ‘smoke-through’ CReSS device may
affect the pattern of inhalations in many smokers due to its obtrusiveness and large size [44]. Moreover,
the ability of this device to capture all instances of smoking does demand that the people being
monitored smoke all their cigarettes through the device—not all smokers are compliant with these
instructions. Surveillance camera-based imaging methods require the installation of video cameras in
all possible smoking locations, which is not feasible at the community level [45].

Recently, wearable sensors [46] have drawn attention as a potential solution to the problem of the
passive detection of cigarette smoking and smoke exposure. Wearable sensors are lightweight, mobile,
convenient, with the ability for ‘collecting data anytime, anywhere and often’ [47]. These devices
are composed of varying sensing modalities, such as electrical, inertial (individual or multi-axis
combinations of precision gyroscopes, accelerometers, magnetometers), acoustic, etc. Some approaches
have used a combination of sensors. However, no single wearable method has been found to be 100%
accurate for detecting smoking events in all circumstances, isolating puffs and smoke inhalations,
or evaluating the metrics of smoke exposure. Some technologies suit certain environments, while others
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fail to provide good results in the same context. The sensor responses are often influenced by ambient
factors, such as motion and clothing. To date, no in-depth survey or comparison (trade-off) study
of these approaches has yet been performed highlighting the advantages and limitations of sensing
technologies or their applicability in naturalistic settings. Also, there has been little evaluation of the
underlying detection algorithms and their comparative accuracy.

This review is intended to provide a systematic evaluation of state-of-the-art wearable sensors for
monitoring cigarette smoking in free-living conditions. The primary focus of this review is an up-to-date
summary of recent novel approaches, individual and multi-sensor combinations, body locations,
processing of sensor signals, detection algorithms and assessments of comfort. To cover the full range
of the monitoring systems of cigarette smoking in this survey, research publications and commercially
available sensor systems were thoroughly studied, and a total of 314 papers (without duplication) were
found related to these topics. Following the application of inclusion and exclusion criteria, 108 papers
were selected for a full-text review.

The paper is organized as follows. First, the methodology of the systematic review is presented
in Section 2, along with the specification of the research questions (RQ). Sections 3 and 4 present
the detailed exploration of these research questions, with the identification of the behavioral and
physiological manifestations of cigarette smoking (Section 3), and the evaluation of wearable sensing
technologies (Section 4). Section 5 discusses the challenges and potential research focus in the field of
automated monitoring. Section 6 provides a summary of the review.

2. Review Methodology

This review of the monitoring of cigarette smoking in free-living conditions was conducted
according to the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) [48]
guidelines. The systematic search procedure was primarily set by three authors (MHI, SW and ES),
and was executed with the assistance of the remaining authors (RRG and ST). Two authors (MHI and
SW) independently screened the titles and abstracts of the publications retrieved through the database
search; then one author, (MHI), carried out a full-text review of all relevant studies. This methodology
used the following processes:

2.1. Identifying Research Question

Three research questions (RQs) were chosen to guide this systematic review:
(1) RQ1. What were the behavioral and physiological manifestations of cigarette smoking targeted by wearable

sensors for the detection of cigarette smoking? The answer to this question will help in understanding
the rationale behind the implementation of these sensors and aid in investigating the impact of their
placement on the body.

(2) RQ2. What were the sensor modalities employed to detect these manifestations? The answer to this
question will identify key sensor modalities used in wearable sensors for monitoring cigarette smoking.

(3) RQ3. What were signal processing and pattern recognition methods applied to the sensor signals? Further,
how was the performance of the sensors evaluated, and what accuracies were achieved? The answer to this
question will help in analyzing the adequacy of current approaches and help in identifying the research
gaps in current methodologies.

2.2. Source of Studies

Exhaustive electronic searches for relevant literature were performed across seven repositories:
PubMed, Google Scholar, Science Direct, Wiley Online Library, ACM Digital library, MDPI and IEEE
Explore from inception through to 30 September 2019.

2.3. Search Strategy

For the purpose of this review, the devices that are capable to be worn on or attached to the body,
and are capable of providing usable data to the wearer, were broadly defined as wearable technology.
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To cover all wearable technologies intended for both smoking research and general use, the following
‘free-text search terms’ and their alternative spellings and plurals were used: ‘wearable sensors’,
‘smoking detection’, ‘monitoring of smoking’, ‘inhalation assessment’, and ‘smoking cessation’.
The search results were also strictly restricted to the English language. References from the selected
primary full-text articles were further analyzed for relevant publications. All articles were subsequently
grouped based upon common themes, such as assessed wearable devices, methods, key results,
study setting and publication type. The selection was further narrowed by applying the eligibility
criteria described in Table 1. Articles fulfilling the inclusion criteria were considered in this review,
and those fulfilling the exclusion criteria were filtered out.

Table 1. Inclusion and Exclusion Criteria for the review.

Inclusion Criteria Exclusion Criteria

1. Articles published in peer-reviewed venues. 1. Articles that considered tobacco smoking,
other than using cigarettes.

2. Articles published since 1990. 2. Papers not written in English.

3. Articles must address a certain combination of
words, i.e., (cigarette smoking/ smoking detection) +
(sensor/ wearable) + (validation/ participant/ subject /
human study).

3. Detection system other than first smoke.

4. Portable systems with embedded wearable sensors. 4. Subjects under the age of 18 years.

2.4. Results

A total of 314 publications, identified through the database search, were set for the title and
abstract screening; of these, 108 articles were selected for the full-text review. However, 29 failed
to satisfy the eligibility criteria, and were excluded. A manual bibliographic search also identified
seven additional publications qualified to be included for the full-text review. Thus, 86 publications
ultimately fulfilled the eligibility criteria for this review. Figure 1 illustrates the methodology and
results of the review process.
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A total of 31 publications were found (summarized in Table 2) describing the classical methods for
smoking detection, including smoking self-reporting, pathological and technological methods such as
CO- and biomarker-based measurement, surveillance video camera-based approaches, etc. As the key
focus of this review was the detection of smoking employing wearable sensors, the detailed evaluation
of these classical methods was omitted here. For the same reason, another four papers that employed
smartphones to monitor the smoking habits of the user were omitted.
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Table 2. Summary of the publication related to classical methods for smoking detection.

Article Types Total Articles

Articles describe the self-reporting of cigarette smoking 16
Articles describe CO-measurement and biomarker-based approaches 10

Articles describe wearable and surveillance-video camera-based approaches 5

3. Behavioral and Physiological Manifestations of Cigarette Smoking

The philosophy behind the implementation of wearable sensors in smoking detection requires
a thorough comprehension of the cigarette smoking process. The frequency or pattern of cigarette
smoking generally varies between individuals or brands of the smoked cigarette; however, a few
similarities between behavioral and physiological phenomena are always present [49,50]. An average
smoker smokes a cigarette in 4–8 min [51] with 8–16 puffs [52]. The process starts with the removal of
a cigarette from a packet, generally using fingers (sometimes using the combination of teeth and lips),
putting the filtered end in the mouth, and lighting up. The number of consumed cigarettes may be
tracked from the cigarette packet or holder, if it is instrumented accordingly. Also, smokers usually
carry a personal lighter or match, and use it to light their cigarettes. The frequency of cigarette
consumption can be identified from cigarette lighting events [12].

Once the cigarette is lit, smokers inhale and move their hands away from the mouth. This step is
repeated throughout the smoking session. During puffs, the smoking hand stays vertically close to the
mouth. Specifically, for inhalations, the fingers holding the cigarette reach closer to the lips and the
wrist moves close to the chest. The positioning of these body parts can be used as a potential indicator
of smoking events [53].

When people pull their hands closer to their mouths (from the rest) for puffing, they need to
work against the pull of the acceleration due to gravity. When the hand remains stationary, close to
the lips, this gravitational acceleration stays constant. When the hand returns after puffing, it works
along with gravity. Smoking puffs can be identified from these hand-to-mouth gestures (HMGs).
Rotations or angular motions of the smoking hand during a puff sequence also have distinguishing
features. These rotations occur in a certain direction when the hand moves towards the mouth, and in
the opposite direction when the hand moves away from the mouth. These rotations can also indicate
smoking events [54].

Regarding smoke inhalations, smokers generally do not inhale during cigarette lighting [55],
and inhale a very small amount during the initial puffs. To avoid irritation in the throat in the initial
puffs, some smokers briefly hold the smoke in their mouth. Major smoke inhalations are done either
by deep breathing, and occasionally by ‘Frenching’ (pushing some smoke back into the air without
exhaling completely, and inhaling it through the nose—also referred to as a ‘Chinese Drawback’) [55].
A smoke inhalation can be summarized as a sequential process of: (a) A cessation of normal air-intake
(breathing apnea) during cigarette holding; (b) A sharp increase of tidal volume and airflow due to
smoke inhalation into the lungs; (c) Occasionally a brief period of smoke holding in the lungs, and;
(d) A slow or forced exhalation, either through nose or mouth [56]. This characteristic respiration
pattern may also be an indicator of smoking. Figure 2 illustrates a typical smoke inhalation in terms of
changes in the lung breath volume.
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Figure 2. An illustration of a smoking-specific respiration pattern (horizontal axis: Time in milliseconds,
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There is a significant difference between the acoustic properties of a smoking breath and a
non-smoking breath. By characterizing these differences in a non-invasive way, it may be possible to
detect the smoking episodes [57].

Some instantaneous changes in the physiological parameters of the smoker (such as blood
pressure [58], and heart rate [59], etc.) also occur during smoking. These parameters, if characterized
correctly, may help identify smoke inhalations.

Again, hand-oriented smoking activities (such as cigarette lighting, hand to mouth gestures and a
cigarette holding between puffs) may require smokers to frequently look at their hands. An egocentric
camera, such as a camera positioned on the head or chest of the person, naturally approximates the
visual field of the camera wearer, and offers a valuable perspective to understand the smoking activity
and their context in a naturalistic setting.

A total of 51 research studies employing wearable sensors of different modalities addressing these
behavioral and physiological manifestations associated with smoking have been reported in the last
decade. These approaches have been validated on a number of smoker subjects. Table 3 provides a
brief summary of these publications.

Table 3. Articles on smoking detection employing wearable sensors targeting the
behavioral-physiological manifestations of smoking.

Phenomena Used for
Smoking Detection

Number of Published Papers

<2007 2007–2009 2010–2011 2012–2013 2014–2015 2016–2019 Total

Cigarette Packet - - - - - - 0

Lighting Event - - - 1 1 2 4

Hand to Mouth
Proximity - - 1 5 1 1 8

Smoking Hand
Gestures - - - 4 4 11 19

Smoking-specific
respiration pattern 3 - 2 5 2 4 16

Breathing Sound - - - - - 2 2

Egocentric Vision - - - - - 2 2

Total Publications
(By year) 3 - 3 15 8 22 51
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4. Evaluation of Sensing Methodologies

4.1. Individual Sensor Approach

A brief evaluation of wearable sensor modalities is provided below, with the sequential responses
to RQ2 and RQ3, grouping by their accomplishments in detecting smoking-related features.

4.1.1. Detection of Smoking Frequency from Cigarette Lighting

Sensor modalities: Unlike matches, the cigarette lighter allows for further instrumentation. Hence,
a data logging system and a real-time clock may be integrated into the personal lighter to allow
measurements of the frequency of cigarette consumption from ignition counts and recordings of
accurate timestamps of the smoking episodes.

Embedding sensors in commercially available cigarette lighters was introduced by Scholl et al. [12]
to detect lighting events prior to cigarette smoking. Three successive versions of an augmented lighter
named UbiLighter [60] were introduced with an interfaced microcontroller configured to record lighter
ignition events (with timestamps) in its internal memory. UbiLighter v1 (Figure 3a) was a modified
electronic lighter in which closing electric contacts (by a slide down switch) triggered an interrupt to
the microcontroller and heated the electric coil to ignite the lighter. UbiLighter v2 (Figure 3b) was a
modified gas lighter where the microcontroller was connected to contacts that closed upon a press
on the ignition button. UbiLighter v3 (Figure 3c) was based on a piezo-ignition concept where a
copper contact, connected to a microcontroller, was placed in the vicinity of piezo-element to pick up
a voltage when the lighter was ignited. Imtiaz et al. [61] proposed another augmented gas-lighter
approach (shown in Figure 3d), employing a low-power Hall Effect sensor. The button of this lighter
was instrumented by a magnet that triggered proximity events in the Hall Sensor upon button press.
The details of these lighters are tabulated in Table 4. Among other commercially available electronic
lighters, Quitbit [62], an internet-enabled special e-lighter, is similarly capable of measuring cigarette
counts using integrated electronics in its heating coil.
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Table 4. A summary of instrumented lighters employed to detect cigarette lighting events.

Type Versions Type Lighting
Mechanism Features/Limitation Microcontroller Interface Battery Validation Study

Ubi-Lighter [60]

V1 Electric Coil Slide Down
Switch

Often hard to
light up Atmega32U2

Universal
Serial

Bus (USB)
200 mAh

3 subjects
(11.36 ± 8.15 days),

Free-living

V2 Gas Lighter Push Switch One-time
usage device Atmega32U2 USB 30 mAh

8 subjects
(11.36 ± 8.15 days),

Free-living

V3 Piezo-Ignition
based Push Switch

Contact-less data
transmission via
Bluetooth Low
Energy (BLE)

Atmega32U2 USB, BLE 48 mAh -

PACT [61] Gas Lighter Push Switch Hall sensor based MSP430G2452 USB 210 mAh
40 subjects
(24 h each),
Free-living

Signal Processing and Pattern recognition: The recorded timestamps from lighter ignition events
have been used as indicators of cigarette consumption with minimal processing. In some of these
approaches, closely spaced lighting events (a few seconds apart) were merged and considered as a
single lighting event for two purposes: First, to debounce the ignition contact, and second, to filter
incidents of the multiple ignitions sometimes needed to light a cigarette.

Evaluation: A bench test on the accuracy of lighter records was reported by Imtiaz et al. [61] with
a root-mean-squared error (RMSE) value of 0.68 sec for the timestamp of ignition events over 168 h
(one week) vs. the true timestamp. Validation (field) study details of these instrumented lighters are
also tabulated in Table 4.

4.1.2. Detection of HMG Preceding Smoking Based on Hand to Mouth Proximity

Sensor modality: Specific hand-to-mouth gestures of the arm during smoking have successfully
been detected using Radio Frequency (RF) proximity sensors [53,61].

These electrical RF proximity sensors detected hand-to-mouth gestures preceding smoke puffs
utilizing an∞–shaped directional propagation pattern of rectangular loop antennas. This sensor used
two battery-powered circuits. In the implementation [45], a small, low power RF transmitter (125 kHz)
was placed onto the wrist or the inner side of the lower arm of the subject’s dominant hand, and a large
receiving antenna was attached to the chest. A rectified proximity signal proportional to the distance
between the transmitter–receiver antennas was generated employing a conditioning electronic circuit.
In Scholl and van Laerhoven [54], another proximity sensor was proposed employing a miniature
antenna at both transmitter and receiver ends (Figure 4). In this approach, the receiving antenna and
embedded electronics were placed at the center of the thoracic area instead of a vest pocket (employed
by Wu et al. [45]). A comparison of these two approaches is provided in Table 5.

Signal Processing and Pattern recognition: The sensor signal recorded from the RF proximity
receiver was pre-processed by Imtiaz et al. [61] by applying an average Gaussian filter of 50 points;
however, no smoothing methods were explicitly mentioned by Wu et al. [45]. The signals were marked
as a valid hand-to-mouth movement if the amplitude was greater than the threshold of 100 mV [45]
and 70 mV [61], well above their mean noise amplitudes of 90 mV and 7.31 mV respectively. A pattern
recognition approach was reported by Lopez-Meyer (2013) [63], as an extension of the work done by
Wu et al. [45], where the thresholds on amplitude, duration and time separation of hand gestures were
empirically set for artifact rejection and gesture merging.

Evaluation: The amplitude and duration of HMGs preceding smoking were measured by
Wu et al. [45]. The average gesture was found to be 3.78 (± 5.42) sec for smoking, and 6.82 (± 21.08)
sec for non-smoking activities. Similarly, the average amplitude was found to be 81 (± 21.5) % and
49.3 (42.0) % of maximum amplitude, respectively. In a study on twenty subjects performing a variety
of different activities in the lab [63], the RF proximity sensor demonstrated a high recall of 0.90 in
detecting hand-to-mouth gestures that precede smoking puffs. In a statistical test of artifact rejection
(t-test with 95% confidence interval), smoking while sitting and smoking while standing achieved a
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p-value of 0.000 and 0.004, respectively. Recall before and after artifact rejection was also reported to
be 0.09 and 0.30, respectively.
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Table 5. Comparison of two versions of Radio Frequency (RF) Proximity sensors employed in
smoking research.

Ref Transmitter Circuit Receiver Transmitter
Antenna Receiver Antenna Data Storage Validation Study

[53]

Simple sine wave
oscillator with a

rectangular
loop antenna

Large
receiver
module

40 × 15 × 5 mm,
860 uH ± 10%,

13 ohms (Sonmicro)

100 × 110 × 5 mm,
1080 uH,

and 8.3 ohms
(Sonmicro)

Logomatic V2.0,
Sparkfun

Electronics
(commercial
data-logger)

20 subjects in
the lab

[61]

Tank circuit, opposite
ends of the series

antenna are connected
to an MCU, two 180◦

phase shifted PWM
outputs (50%
duty cycle)

Compa-ratively
small

receiver
module

7.2 mH ± 2%,
91-ohm transponder

coil (Coilcraft)

7.2 mH ± 2%,
91-ohm transponder

coil (Coilcraft)

Embedded data
logger with STM32

MCU

40 subjects both in
the lab and
free-living

4.1.3. Detection of Smoking Events and Associated HMGs Based on Linear and Angular Movements
of the Hand

Sensor modality: Inertial Measurement Units (IMUs) that measure the inclination of the smoking
hand [64], i.e., the transitions of arm/wrist positions or the angular/linear velocity of the hand during
smoking, have been used for the detection of the hand to mouth gestures (Figure 5). Table 6 provides
a summary of inertial sensor systems (individual or combination of accelerometer, gyroscope or
magnetometer) employed in smoking research.Sensors 2018, 18, x FOR PEER REVIEW  10 of 30 
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Recently, IMUs embedded in smartwatches have been employed as substitutes for wrist worn
IMUs. Cole et al. (2017) [65] and Cole et al. (Dec. 2017) [66] proposed methods to employ the
accelerometers of the Apple Watch (v.2.1) with the PowerSense iOS application installed on a nearby
smartphone. This same study described the alternative use of Pebble’s Time Steel smartwatch with the
AccelTool application. In the work by Shoaib et al. [67], the 6D IMU of a smart watch (LG Watch R). and
by Añazco et al. in [68] a 6D IMU of MbientLab, were paired with smartphones and developed smoking
detection applications. SmokeBeat is a similar commercial platform [69]. Further, StopWatch [70] used
a standalone Android watch (LG G-Watch) to eliminate the need for a smartphone for data processing.

Table 6. Comparison of Inertial sensors employed in smoking research. IMU = Inertial Measurement Unit.

Ref IMU Type Sensor Chip Employed IMU
Range MCU Sampling

Frequency Data Access Validation
Study

[54] 3D
ADXL345 on the

‘Hedgehog’
platform

± 2g PIC18F 20 Hz Embedded SD card 4 subjects

[69] 6D
MMA7260Q on the

ShimmerTM
Platform

± 6g and
± 500 degree/s

ShimmerTM
Platform 50 Hz Wirelessly

Transmitted 6 subjects

[70] 9D MPU-9150 - - 50 Hz Wirelessly
Transmitted 19 subjects

[61] 6D LSM6DS3 ± 8g and 2000 dps STM32L151RD 100 Hz Embedded SD card 40 subjects

Signal Processing and Pattern Recognition: The first step towards processing inertial sensor data
was the filtering of high-frequency noises embedded in the raw signal (although the process was not
explicitly mentioned in all algorithms). Table 7 provides a brief overview of the signal processing
approaches (including pre-processing) of the reported smoking detection algorithms.

Employing 3D custom IMUs, Scholl and van Laerhoven [54] detected smoking events and
Tang et al. [64] both puff and smoking events by applying the simple Gaussian-based and random forest
classifiers used by Scholl and van Laerhoven [54] and Tang et al. [64], respectively. Bhandari et al. [71]
presented a KStar classifier (from Weka Toolkit with default parameters) on 3D IMU data to detect
smoking events. From the 6D IMU signal seen in the work by Raiff et al. [72], the authors applied
an SVM-based learning method followed by an edge-detection algorithm to detect both smoking
events and inter-puff-intervals. Lu et al. [73] developed a Random Forest-based classifier for detecting
smoking events with concurrent and confound activities. Parate et al. [74] preprocessed a 9D IMU signal
as a quaternion format [75] and a probabilistic model, combining the random forest and conditional
random field classifier to detect both smoking events and puffs.

In this algorithm, a relative trajectory computation method was applied to the quaternion data to
discriminate, recognize and classify the different types of hand gestures.

Smart watch based approaches were reported by Cole et al. (2017) [65] and Akyazi et al. [76]
employing 3D IMU sensors, and Shoaib et al. [67] and Skinner et al. [70] employing 6D sensors.
To identify smoking events, these approaches applied various methods, such as artificial neural
network-based classification as in Cole et al. (2017) [65] and Añazco et al. [68], a combination
of Cross-word Reference Template algorithm and Dynamic Time Warping with Akyazi et al. [76],
a two-layer hierarchical lazy based classification by Ramakrishnan et al. in [59], and two decision
tree-based classification by Skinner et al. [70]. A detailed review of current smartwatch-based smoking
detection methods is presented by Parate and Ganesan [77].

Evaluation: Table 8 provides an overview of the validation studies of the wrist IMUs. Most of these
validation approaches were limited to controlled laboratory settings, only Scholl and van Laerhoven [54],
Parate et al. [74] and Imtiaz et al. [61] tested subjects under free-living conditions. The study reported
by Skinner et al. [70] employed the highest number of participants (38) for validation, whereas only
two participants were involved in the study reported by Cole et al. (2017) [65]. Unlike other studies,
the studies reported by Echebarria et al. [57], Raiff et al. [72] and Parate et al. [74] applied multiple
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IMUs on different body positions and identified hand to mouth gestures related to puffs as well as
smoking sessions. The highest detection accuracy was reported by Parate et al. [74], employing 9D
IMUs on the wrist and elbow of the dominant hand of smoking. Here, the F1-score was 0.85 and the
precision and recall were 0.95 and 0.81, respectively. The minimum accuracy was reported by Scholl
and van Laerhoven [54], with a precision of 0.51 and a recall of 0.70 in detecting smoking events.

4.1.4. Detection of Smoking and Puffs Based on Respiratory Signals

Sensor modality: Among different lung function measurement approaches [78–82], at present,
only Respiratory Inductance Plethysmography (RIP) [83] technology has extensively been employed
to identify smoking-specific breathing patterns. An example of RIP breathing sensor implementation
is provided in Figure 6. Electrical Bio-impedance (BEI) Measurement-based breathing measurement
has also been introduced in Imtiaz et al. [61]. The RIP sensor, which consists of a conductive thread
or wire sewn, has current applied to a conductive loop, and an opposing magnetic field is generated
with strength proportional to the loop’s area, according to Lenz’s law [84]. The RIP belt, when placed
around the abdominal or thoracic area, obtains respiration signals by measuring changes in the belt’s
inductance caused by contraction and expansion of the lungs. This measurement is independent of the
tension in the band, and not susceptible to any trapping of the RIP band to the body (unlike piezoelectric
sensors [85]) or associated artifacts. Also, the bands are normally made of elastic materials, so they
exert comfortable pressure and do not interfere with breathing patterns.

RIP sensors have been extensively explored to characterize the inhalation patterns associated
with smoking. Initial studies [86–88] were performed only in laboratory settings (with thoracic and
abdominal elastic respiratory bands) with bulky instrumentations and a computer-oriented Respitrace®

RIP module [89]. Sazonov et al. [90] conducted a laboratory study employing a commercially available,
portable RIP module fed to a commercial acquisition module. The module was kept in a vest pocket of
the participant and captured respiration patterns from two bands. Ali et al. [91] successfully employed
the single RIP band of the AutoSense sensor suite [92] over the thoracic area to mimic the breathing
pattern. Similarly, in Imtiaz et al. [61], a single RIP band was implemented by sewing the device at
chest level on a T-shirt to maintain higher calibration stability [93]. A summary of wearable RIP sensor
systems is presented in Table 9.
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Table 7. Signal Processing and Pattern recognition techniques applied to the Inertial Measurement Unit (IMU).

Ref IMU Type Pre-processing Candidate Selection Window Size
No of

Extracted
Feature

No of
Selected
Feature

Classifier Detection Validation

[54] 3D
equalized ripple (equi-
ripple) FIR low-pass

filter (fc = 1 Hz)
Y-axis accelerometer 5.4 sec 4 4 Gaussian Mixture Smoking K-fold

validation

[64] 3D - RF threshold 25 sec 50%
overlap 5 5 Random Forest (RF),

Thresholding
Hand-to-mouth gesture

(HMG), Smoking 5-fold

[69] 6D low-pass filter
(fc = 5 Hz) Moving window 10 sec 10 10

Support- vector
machine (SVM),
Edge detector

HMG, Smoking -

[70] 9D - Distance calculation
Moving window - 34 34 Conditional

Random Forest HMG, Smoking 10-fold & leave one out
cross validation (LOOS)

[66] 6D in
smartwatch - Moving window 30 sec 6

4
(Empirically

chosen)
Hierarchical 2 layer Smoking LOOS

[65] 3D in
smartwatch - Euler transformation - 3 3 Artificial Neural

Network Smoking K-fold
validation

[68] 6D in
smartwatch - Hand movement - 3 3

3 stage analytical
pipeline using Decision

Tree
Smoking LOOS

[72] 3D in
smartwatch - sliding window

x-axis accelerometer 10 s 1 1
Dynamic Time

wrapping algorithm
(CWRT)

Smoking LOOS
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Table 8. Summary of detection algorithms employed on inertial sensors.

Ref No of IMU IMU
Placement Dataset Subject Activities Study Type Detection Performance

[54] 1 (3D) wrist Data of 23 days 4 Smoking-standing Free- living Smoking Precision 0.51, Recall 0.70

[64] 4 (3D)

Dominant wrist and
upper arm,

non-domin-ant wrist,
ankle

11.8 Hour (34 smoking,
481 puff) 6 Smoking-eating, walk, Talk,

Drink, Stand Lab HMG, Smoking F1-score 0.70 for HMG, 0.79
for smoking

[69] 4 (6D)
Wrist, upper arm near the
shoulder, upper arm near

elbow, elbow
21 Hour 6

Smoking-sitting, walk,
Smoking-resting,

cellphone use
Lab HMG, Smoking False Positive Rate

0.07–0.2

[70] 1 (9D) Wrist, elbow 28 Hour, 369 puffs (48 h
for wild)

15-lab,
4-free-living

Smoking-stand,
Smoking-talking,

Smoking-walking, eat, drink
Lab, Free-living HMG, Smoking F1-score 0.85, Precision 0.95,

Recall 0.81

[66] 1 (6D) in Smart watch wrist 45 Hour, 17 h smoking of
230 cigarettes 11

Smoking-stand,
Smoking-sitting, Eat, Drink,
Group conversation, Sitting,

Lab Smoking

F1-score 0.83–0.94
(person-independent)

F1-score 0.90–0.97
(person-dependent)

[65] 1 (3D) in smartwatch wrist
35 smoking,

155 non-smoking
sessions,

2 Not mentioned Lab Smoking Accuracy 0.85–0.95

[67] 1 (6D) in band wrist 1584 epochs of
hand gestures 1 Sitting, Walking, Eating Lab Smoking Accuracy 0.94

Recall 0.91

[68] 1 (6D) in smartwatch wrist - 38 Smoking-sitting, Drink, Eat Lab, Free-living Smoking Precision 0.86,
Recall 0.71

[72] 1 (3D) in smartwatch wrist - 26 Smoking-stand, Eat, Drink Lab Smoking F1-score 0.96
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Table 9. A summary of wearable Respiratory Inductance Plethysmography (RIP) sensors employed in
smoking research.

Ref Belt Placement RIP Belt/ Module Signal Output Data storage Validation Study

[85] Thoracic and abdominal

DuraBelt Pro-Tech Inc.
connected to zRIP,

Philips Respironics,
Murrysville, PA

Analog Data
Commercial data logger:

Logomatic V2.0,
Sparkfun Electronics

20 subjects in the lab

[86] Thoracic AutoSense RIP belts Analog Data Wireless transmission to
smartphone 35 in lab and free-living

[61] Thoracic
SleepSense Inductive

Plethysmography,
S.L.P Inc.

Pulse Data Embedded data logger
with STM32 MCU

40 both in the lab and
free-living

The principle of Bioimpedance measurement is significantly different from the RIP sensor. When an
alternating current pass through biological tissue, the tissue impedes the flow and causes a phase shift
between the sinusoidal current and the sinusoidal voltage. Using Ohm’s law, the tissue impedance can
be passively calculated from the magnitude of this signal and the phase shift that is generated. Generally,
high-frequency signals (20~100 kHz) can pass through the cell membrane and enable the measurement
of dynamic parameters, such as intracellular and extracellular impedances. Following this principle,
equivalent changes in impedance due to the modification of tidal volume can be measured by placing
electrodes close to the armpits with external high-frequency excitation. This tidal volume corresponds
to the amount of air flowing into and out of the lungs, which eventually mimics the instantaneous
respiration waveform. Such a bio-impedance measurement was proposed by Wang et al. [94] to capture
the respiration pattern from the thorax area. The study [61] introduced a bio-impedance measurement
sensor into the smoking study. Here, ADS1292R, a commercially available BioZ measurement chip,
was interfaced with a microcontroller to sample and record breathing at 1 kHz.Sensors 2018, 18, x FOR PEER REVIEW  14 of 30 
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Signal Processing and Pattern Recognition: An overview of smoking detection approaches
employing respiratory signals is provided in Table 10. Preprocessing of these sensor signals were
necessary for the de-noising and removal of motion artifacts. The first attempt to analyze these
de-noised breathing signals associated with smoking was the automatic breath segmentation [95].
In this approach, a simple breathing peak detection approach was employed for the identification of
the beginning and end of a breath segment from the tidal volume (the average between the signals
received from Thoracic and Abdominal breathing bands).

Recognition of daily activities that included smoking was also performed through
Ramos-Garcia et al. [96] employing left-to-right hidden Markov models on tidal volume and airflow
signals (the first derivate of tidal volume). A combination of a supervised and semi-supervised support
vector model was proposed in Ali et al. [91] to further classify the respiration cycles obtained from a
single band RIP signal into puff or non-puff events. Senyurek et al. [97] presented a Convolutional Neural
Network (CNN)- and Long-Term Short Memory (LSTM)-based approach to detect smoke inhalations
from RIP breathing signal and compared with a traditional machine learning (SVM)-based classifier.

In a paper under submission [98], the traditional metrics of puff duration, inhale-exhale cycle
duration, smoke holding duration, inter-puff interval and novel Respiratory Smoke Exposure Metrics
(RSEMs), such as inhale-exhale cycle volume and inhale-exhale volume over time were computed from
the RIP breathing signal.

In the study by Imtiaz et al. [61], the generated respiration waveforms of BEI and RIP were
only statistically compared with the spirometer measurements. However, BEI based method was not
individually tested for the detection of smoking events.

Evaluation: Table 10 provides a summary of validation studies oriented to RIP sensors.
These validations were only performed in a controlled laboratory environment with 20 subjects
in Lopez-Meyer and Sazonov [95] and Ramos-Garcia, Tiffany and Sazonov [96] and 10 subjects in
Ali et al. [91] mimicking daily activities. The algorithm used by Lopez-Meyer and Sazonov [95]
generated an F1-score of 0.62 in identifying smoking among daily activities, whereas the algorithm
used by in Ali et al. [91] found a further accuracy of 0.91 in identifying puff events. In the presence
of confounding events such as stress, speaking and writing, the algorithm used by Ali et al. [91]
achieved an accuracy of 0.86 in identifying smoking puffs. Also, unlike Lopez-Meyer and Sazonov
in [95] and Ramos-Garcia, Tiffany and Sazonov in [96] the algorithm used by Ali et al. [91] was based
on respiratory signals captured by a single band RIP sensor. In the smoking event detection by
Senyurek et al. [97], the authors showed that this CNN-LSTM approach achieved an F1-score of 0.72 in
leave-k-subject-out-cross-validation method whereas the classical SVM approach scored 0.63.

For puff duration, the proposed RSEM algorithm of a paper under submission [98] achieved
interclass correlations (ICCs) of 0.85 and 0.87 and Pearson’s correlations of 0.97 and 0.77 with video
observation and CReSS, respectively. Similarly, for the inhale-exhale duration, an ICC of 0.84 and
Pearson’s correlation of 0.81 was obtained with video observation. The results suggest that the
breathing signal may be used to compute smoke exposure metrics.

From the spirometer SVC test in Imtiaz et al. [61], the mean cross-correlation coefficient was
obtained as 0.5438 between the bio-impedance and spirometer signal and 0.6275 between the RIP and
spirometer. These BEI and RIP signals were also shown to be similar while the smokers performed
multiple activities: standing, walking, resting idly in a chair, eating, and smoking cigarettes.
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Table 10. A summary of detection algorithms employed on RIP sensors.

Ref No of RIPBand Pre-processing De-noising Artifact Removal Feature Extracted Classifier
Employed Signal Classification Validation Study Type Performance

Matrices

[89]

2
(Thoracic TC,

Abdominal AB)

1. Tidal Volume and
Airflow measurement
from TC, AB signals

2. Signal
Normalization to the

range of -1 and 1

-

An ideal band pass
filter,

fc = 0.0001–10 Hz

-
Simple

Peak-Valley
Detection

4 activities
(resting, reading

aloud, food intake
and smoking)

Train- 5 fold
cross-val;

Test-LOOS

Lab, 20
subject

Accuracy:
Resting-0.96,
Reading-0.89,

Food
intake-0.91,

Smoking-0.89

[90] Average Gaussian
filter of 25 points

Z-norm
16 features

Using
Window 0.5s, 50%

overlap

Left-to-right
hidden
Markov
models

5 activities (sedentary,
walking, eating,

talking, and cigarette
smoking)

LOOS Lab, 20
subject

Precision
0.60, Recall

0.67
F1-score 0.62

[86] 1
(Thoracic TC) - - 17 features from each

30s window

Supervised
and

semi-supervised
support
vector

Puff or non-puff LOOS Lab, 10
subject

Accuracy
0.91
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4.1.5. Detection of Smoking Events Based on Acoustic Signals

Sensor modality: Smoke-related breaths can be detected by non-invasive acoustic sensors applied
to the throat. Figure 7 illustrates the concept of external detection of breathing sounds.
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Signal Processing and Pattern Recognition: A simple threshold-based classifier was presented
by Echebarria et al. [57] for automatic identification of smoking breaths from acoustic signals.
In Cui et al. [99], a hierarchical processing framework was proposed where the sub-movements
of smoking from the recorded acoustic signal were detected in the lower level, and smoking puffs
and sessions were detected on the higher level using a temporal sequence analysis technique. In both
approaches [57,99], no de-noising method of the raw acoustic signal was explicitly mentioned.

Evaluation: The validation details of both approaches are presented in Table 11. The validation
of the algorithm used by Echebarria et al. [57] involved six smoking events of 2 subjects in a lab
environment, whereas the validation of [99] involved 143 smoking events of 16 subjects over a week of
free-living conditions. The average recall of the algorithm used in [57] was 0.66 for the detection of
smoking breaths. The algorithm applied in [99] achieved an accuracy F1-score of 0.93 and 0.92 in the
detection of both the smoking puff and smoking frequency, respectively.

Table 11. A summary of acoustic sensor and validation study involved in smoking detection.

Ref Sensor Details Subject Involved Study Details Total Smoking Events

[57] WADD 3,74 × 2.4 × 2.1 cm, 17 g 2 In lab
(1 session) 6

[91] Smart neckband: dual-core 1.5 GHz
CPU, 1 GB RAM, Android 4.2 OS 16 Free-living

(1 week) 143

4.1.6. Detection of Smoking Events Based on Egocentric Camera

Sensor modality: The smoking behavior can be monitored by a wearable egocentric camera,
as the captured scenes contain details of the smoking event, smoking environment, body posture and
activities during smoking. Figure 8 shows an egocentric camera-based sensor implementation.

In a paper under review [100], a laboratory test was reported for identifying the best position
of camera placement on the body and maximizing the capture of images of smoking events. A low
power, lightweight (11g) and tiny (6.5 × 1.9 × 1.5cm) sensor system were developed which composed
of a wide-angle (120◦) five-megapixel camera interfaced with an ultra-low-power microcontroller to
capture and store a high resolution (2592 × 1944) image at every second up to 26 h on a single charge.
Following the sensor placement test, the enclosure of the system was gaze-aligned with a provision
on one side to facilitate the attachment to the temple of an eyeglass frame using 5mm double-sided
acrylic tape. The DC supply of the wearable system was routed from outside the primary enclosure
and placed into another enclosure and kept in an armband while wearing the sensor system.

Signal Processing and Pattern Recognition: Captured images by the egocentric camera were
manually annotated in the paper under review [100] to obtain behavioral metrics of smoking, including
daily smoking frequency, smoking environment and puffs per cigarette.
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For an automatic extraction of behavioral metrics from captured images, two Faster R-CNN-based
deep-learning models were developed and compared in the other paper under review [101] to (1) detect
smoking events from images of lighting up a cigarette, and (2) smoking images that show a cigarette
was being held in hand or mouth. Smoking information was next extracted from the detected smoking
events, including the smoking time of day, frequency and inter-cigarette interval, etc.

Evaluation: The feasibility of the wearable egocentric camera was evaluated by a study performed
on ten smokers to monitor full-day smoking under free-living conditions. Statistical tests (chi-square and
t-test performed in the paper under review [100]) found significant differences between the information
of smoking environment and puff count captured by the camera and self-reports. The computer model
presented in the paper under review [101] for automatic detection of smoking events from cigarette
lighting achieved higher F1-score (0.86) and recall (0.88) than the detection from smoking images
(0.76 and 0.80, respectively). This study illustrated the applicability of camera-based wearable sensors
for extracting an objective summary of daily smoking.

4.2. Multi-Sensor Fusion Approach

Generally, the fusion approach combines two or more wearable approaches in one platform to
increase accuracy, synchronize utilization and simplify signal processing by eliminating the drawbacks
of single-sensor approaches (presented in Table 12). Currently, three fusion sensor platforms have been
introduced to enable the state-of-the-art research on smoking behavior. A summary of these platforms
and the achievements of fusion approaches are presented below (with a comparison chart in Table 13):

Table 12. The comparison of key sensing modalities employed in smoking research.

Features of Wearable
Systems

Respiratory Inductance
Plethysmography

Electrical Proximity
Sensing Inertial Approach Egocentric Camera

Body Positions Abdominal or Thoracic
area

Transmitter on wrist and
Receiver on the chest

surface

Mostly on wrist or lower
elbow

Eye, chest or Wrist.
Eye-level camera was

explored.

Comfort Moderate, worn as a belt Moderate
High, flexible to

implement in body
locations

High, however a privacy
concern exists

Applications Characteristic breathing
pattern detection

Characteristic hand to
mouth proximity

Characteristic hand
gesture of smoking

Smoking puff,
environment, context

detection

Highest Performance Accuracy of 0.81 in
detecting puff events [86]

Recall of 0.90 in detecting
hand to mouth gestures
preceding smoking [63]

Precision 0.95 and F1-score
0.85 in detecting smoking

events [70]

Recall of 1 in detecting
smoking events (manual

image review)

Advantages Indirect monitoring
Good tolerance to
electromagnetic

interference

Able to be embedded in a
highly wearable wristband

or smartwatch
Direct monitoring

Challenges Accuracy needs
improvement

Combination of other
sensors is necessary to
improve applicability

Detected gestures often
confused with eating;
limited by concurrent

activity and confounding
gestures

Privacy concern for both
wearer and people in

surroundings

Applicable to free-living
settings Thoroughly tested Moderately tested Thoroughly tested Feasibility tested

Obtrusiveness Unobtrusive Unobtrusive Unobtrusive Unobtrusive

Contact with Skin Not mandatory, can be
worn over clothing Not required Not required if wristband

employed Not required.
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4.2.1. PACT

Sensor modality: The first evident fusion approach was the combination of breathing and hand
gesture detection sensors in a platform called Personal Automatic Cigarette Tracker (PACT [90]).
PACT contained RIP module respiratory bands, an RF proximity transmitter coil, a custom-made
receiver antenna and a portable data logger. PACT was able to monitor smoking by following the
characteristic hand-to-mouth gestures preceding the breathing patterns specific to smoke inhalations.

Table 13. The comparison of multi-sensor approaches on a fusion platform.

Fusion Platform AutoSense PACT PACT v2

Sensing element
employed in smoking research

RIP sensing, 6-axis IMU
(other sensors not utilized yet in

smoking research)
RIP, Proximity

RIP, Bioimpedance sensor, ECG,
6-axis IMU and

Instrument lighter
(other sensors not utilized yet in

smoking research)

Sampling Frequency 21.3 Hz for RIP,
16 Hz for Inertial Sensor 100 Hz 100 Hz for IMU, RIP, Proximity;

1 KHz for Physiological sensor

Device Storage N/A
Portable Datalogger (Logomatic

V2, Sparkfun Electronics,
Boulder, CO)

On Board 4-GB Micro SD card

Sensor data
Transmission Method To smartphone via ANT Radio. N/A N/A

Data
analysis/processing method Published Published Published

Clinical or Validation Survey Performed over more than 100
subjects in different studies

Performed over 20 regular
smokers.

Performed over 40 regular
smokers.

Tested in Free-living Tested over 61 regular smokers
in different studies Not tested Tested over 40 regular smokers.

Gold Standard Comparison Manual annotation by
an observer.

Push Button based manual
annotation

Manual Video Annotation and
cellphone registration

System longevity (Battery Life) More than a day More than a day More than a day

Signal Processing and Pattern Recognition: Several algorithms were proposed in a series of
publications [102–105] based on the combination of RIP breathing and Proximity sensors of the PACT
system. A comparison of these detection approaches is provided in Table 14.

Similar signal pre-processing steps were followed in these algorithms, including signal
normalization and de-noising of tidal volume using a Gaussian average filter and a bandpass
filter. Detection methods with all these approaches started by applying thresholds to detect HMGs,
forming feature vectors from both sensor signals adjacent to the beginning of HMGs, and then applying
machine learning classification methods, including SVM or ensemble algorithms, such as boosting
(AdaBoost), bootstrap aggregating (bagging), and Random Forests.
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Evaluation: The validity of the PACT system was tested by a study on 20 regular smokers
performing 12 different activities in a controlled laboratory environment. The highest accuracy of
the proposed algorithms for detecting hand to mouth gestures related to smoking was reported as
0.81 (F1-score) [103] for the subject-independent model and 0.94 (F1-score) for the subject-dependent
model [103]. The minimum accuracies were reported as 0.41 [104] and 0.68 [103], respectively. In a
comparative study [106], it was shown that the ensemble approaches outperformed the SVM classifier
in both models. The “impact of subjects’ anthropometric characteristics on the quality of sensor
signals” was evaluated by Patil et al. in [104], which found that subjects with medium BMI, high BMI,
and standing posture were 1.91, 4.74 and 4.32 times more likely, respectively, to have their breathing
signal quality affected.

4.2.2. AutoSense

Sensor modality: AutoSense is an unobtrusive wearable wireless sensor suite [92] that measures
several physiological and activity signals to monitor cardiovascular, respiratory and thermoregulatory
systems. AutoSense combines six sensors into a wearable chest band—two ECG leads, a custom-made
RIP band, a galvanic skin response (GSR) measurement system, a thermistor to measure skin
temperature under the arm, an ambient temperature sensor, and a three-axis accelerometer to
assess motion. AutoSense has been employed in a smoking study [107] with an additional
wristband comprising a three-axis accelerometer, a 3-axis gyroscope, a 3-axis magnetometer, and two
ambient-light sensors.

Signal Processing and Pattern Recognition: Data from the respiration sensor of AutoSense and
wrist IMU were analyzed by Charles et al. in [88] with an algorithm tailored for recognizing smoking
gestures with considerably reduced computational complexity. Preprocessing of the sensor data was
done by outlier removal, i.e., discarding data when the sensors were not worn, and ignoring the
segment of data packet loss in wireless transmission. From the preprocessed data, characteristic hand
gestures were first identified; features were next computed from these hand gestures and corresponding
respiration cycles; finally, an SVM was trained. A smoking episode was predicted in this algorithm if a
cluster of smoking puffs were detected in the close temporal vicinity.

Evaluation: The validity of AutoSense sensors was tested on more than a hundred subjects both
in a real-life behavioral science lab and field studies. The smoking detection algorithm proposed
by Charles et al. [88] was validated on 40 h of data from six subjects in a laboratory environment.
In a 10-fold cross-validation procedure, the proposed model achieved a recall rate of 0.96 and a false
positive rate of 0.01 in detecting smoking events. This model was applied to three days of post-quit
data from 32 smoking lapsers, and it correctly pinpointed the timing of the first lapse in 28 subjects.
Only two false-positive episodes were detected during 20 days of abstinence. When tested on 28
subjects for the same 84 abstinent days, the occurrence of false episodes per day was limited to ~16%.



Sensors 2019, 19, 4678 21 of 31

Table 14. Summary of detection algorithms employed on the combination of respiration and
proximity sensors.

Ref De-noising and
Artifact Removal

Pre-processing Approach Key Points Performance Matrices
Validation

Subject-Independent Subject-Dependent

[92]

1. Gaussian
Average Filter of
25-point sliding

window
2. Ideal Band

Pass Filter:
fc = 0.0001–10 Hz

Normalization
on both

Proximity Signal
and tidal Volume

SVM - Precision 0.87,
Recall 0.80

Precision 0.90,
Recall 0.90 LOOS

[93] SVM

1503 Feature Vectors F1-score: 0.81 F1-score: 0.90

LOOS
27 Empirical

Feature Vectors F1-score: 0.65 F1-score: 0.68

16 Forward Feature
Selected Feature

Vectors
F1-score: 0.67 F1-score: 0.94

[94] SVM

Employing Thoracic
Signal (TC) F1-score: 0.41 F1-score: 0.85

LOOS

Employing
Abdominal Signal

(AB)
F1-score: 0.46 F1-score: 0.88

Employing
Proximity Signal

(PS)
F1-score: 0.59 F1-score: 0.90

[93] Ensemble
Adaboost F1-score: 0.71 F1-score: 0.77

LOOSBagging F1-score: 0.70 F1-score: 0.82

Random Forest F1-score: 0.69 F1-score: 0.84

4.2.3. PACT2.0

Sensor modality: An improved version of the PACT system called PACT2.0 was proposed by
Imtiaz et al. [61], consisting of three devices: A miniature chest module to be placed at the center of the
chest and attached to the RIP belt; a hand module to be worn on the wrist or forearm of the dominant
hand; and an instrumented cigarette lighter. PACT2.0 contains several wearable sensors (Inertial, RIP,
Electrical Proximity, physiological sensors such as Bioimpedance measurement and an ECG sensor)
to monitor breathing, respiration rate, heart rate variability, hand-to-mouth gestures, posture and
motion. In addition, PACT2.0 acquires and stores GPS location data, allowing the geospatial analysis
of smoking events. Finally, the instrumented lighter keeps a log of all lighting events to increase the
overall reliability of the system by an independent measurement of smoking behavior.

Signal Processing and Pattern Recognition: Senyurek et al. (Jan. 2019) [108] proposed an
algorithm to identify the smoking session and smoking-related HMGs, integrating two PACT2.0
sensors: The instrumented lighter and the 6D wrist IMU. In the preprocessing steps, the raw IMU
sensor signal was filtered by a 2nd order low pass Butterworth filter. Candidate HMGs were then
detected from wavelet-filtered accelerometer 1D x-axis data, and an SVM classifier was trained.
A two-level correction method was finally applied: A kernel-based smoothing and the identification of
the start of the smoking session from the records of the instrumented lighter.

Using a similar combination of wrist IMU and instrumented lighter, Senyurek et al. (May 2019) [109]
proposed to detect smoking events from the regularity of hand gestures estimated from a single axis of
the accelerometer. In this approach, an unbiased autocorrelation method was applied to process the
temporal sequence of hand gestures and to quantify the regularity score. A smoking episode (the start
of smoking and duration) was predicted in this algorithm from lighting events and regularity scores.

In the paper under review [110], cycles of smoking inhalation were detected from RIP and IMU
sensor signals employing deep learning models. CNN was first employed to automate feature learning
from raw sensor streams. LSTM network layers were then used to capture the temporal dynamics of
sensor signals and classify time segmented sequences.

Imtiaz et al. (2019) [111] proposed a smoking detection method using associated changes in
metrics derived from the heart rate. To differentiate these changes from the impact of intense physical
activities, the proposed system captured breathing (employing the bioimpedance sensor of PACT
2.0) and body motion (PACT 2.0 accelerometer placed on chest) along with heart rate (ECG sensor
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of PACT 2.0). A support vector machine-based classifier was developed on fifteen features of these
sensor signals selected by a forward-feature selection method. A Gaussian kernel smoothing method
was applied to the classifier outputs to identify the individual smoking session.

Evaluation: The smoking detection algorithms proposed in Senyurek et al. (Jan 2019) [108] were
validated on 35 subjects in a controlled laboratory setting for three hours and free-living settings for
~24 h. In a leave-one-out-cross-validation on ~55 h of laboratory data, the combined approach [108]
reached accuracies of 0.97 and 0.93, and F1-scores 0.98 and 0.86 for detecting smoking activity and
individual HMGs, respectively. This model was also validated on ~816 h of free-living data with a
reported accuracy of 0.82 in detecting smoked cigarettes in naturalistic settings. A comparable accuracy
of 0.83 (F1-score: 0.91) was reported by Senyurek et al. (May 2019) [109] in identifying free-living
cigarette smoking from the regularity of hand gesture and lighting events. Also, in Senyurek et al.
(Jan. 2019) [108], authors identified that smokers under surveillance consumed cigarettes much faster
(~5.6 min), with a higher number of hand to mouth gestures (15.04 gestures/cigarette) than under
free-living conditions (~7.5 min, 8.9 gestures/cigarette).

The detection model of smoking inhalation presented in the paper under review [110] was
evaluated on 467 free-living smoking events collected from 45 subjects over 42.7 h. This model achieved
an F1-score of 0.78 in Leave-One-Subject-Out (LOSO) cross-validation.

In other LOSO validation, the physiological sensor-based approach [111] detected smoking events
(187 out of total 232) with the recall and F1-score accuracy of 0.87 and 0.79, respectively, in the laboratory
setting (known activities) and 0.77 and 0.61, respectively, under free-living conditions.

5. Discussion

This review was intended to provide a systematic evaluation of existing wearable sensors for the
objective detection of behavioral and physiological manifestations associated with cigarette smoking.
This review identified five specific phenomena related to cigarette smoking that were targeted in
the development of wearable sensors. The review also explored 51 research publications describing
methods to identify and evaluate smoking-related features assessed through individual sensor systems
or their combinations.

The review found evidence that instrumented lighters can capture the initiation of a smoking
sequence, and are capable of collecting data on smoking frequency in an unobtrusive way. Further,
the lighter can be used in multi-sensor approaches for establishing the beginning of a smoking session.
However, if the smoker uses a different lighter than this instrumented one, those particular smoking
events will not be detected.

Studies covered in this review suggested that RF Proximity sensors can be effective tools for
determining the frequency and duration of hand gestures preceding smoking. In a typical cigarette
holding gesture, RF antennas were reported by Sazonov et al. [53] to produce the highest magnitude of
signal strength relative to hand gestures associated with other activities (such as eating). However,
these differences in signal amplitude may not be sufficient to differentiate among general hand-to-mouth
gestures [63], but may be capable of providing supportive features to be used for the analysis of
smoking patterns in multi-sensor approaches. Furthermore, this approach is typically used to detect
gestures of the dominant hand; any smoking using a non-dominant hand (e.g., while driving) will
also go undetected. The effectiveness of this method might be limited if a subject generates more
frequent hand movements (not related to smoking) near the face. Also, the method will not be able
to distinguish whether a person is smoking or resting/reading while supporting his chin with the
smoking arm or hand.

IMUs were also found useful for detecting transitions of arm positions during smoking.
Initial research with this approach involved the placement of multiple IMUs (3D or 6D) on different
hand positions. However, recent research has focused on single IMUs. The 9D IMUs were also
employed where concerns of battery longevity were not present. However, IMUs cannot provide
information about the absolute position of the arm and its proximity to the mouth. The central
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challenge of the IMU-based approach is to recognize a smoking gesture ‘in the wild’ without any
explicit information from the plethora of other gestures that a user performs each day. Furthermore,
there are significant signal variations due to the changes in the users’ body orientation. When people
swing their hands during smoking or in conversation, smoking hand gestures are difficult to identify.
In some cases, wrist-worn sensors may not remain fixed in the initial placement position, and the
sensor responses may vary under free-living conditions. Also, concurrent activities (e.g., walking,
talking) while smoking modifies the characteristic pattern of the smoking gesture. Smartwatches also
have these inherent limitations; however, they might facilitate real-time intervention (with or without
pairing with smartphones).

RIP sensors are effective in capturing variations in the volume of inhaled smoke, the duration
of inhalation and breath-holding time, and in bronchial reactivity. The breathing patterns measured
through RIP sensors are highly susceptible to artifacts caused by hand and body motions. Stress,
speaking, walking or other confounding events also had some effects on respiration measurements [91].
Processing of RIP sensor signals and robust classification algorithms are required to detect smoking
patterns. RIP devices may also be cumbersome if worn for an extended period. Unlike initial
implementations, recent RIP approaches contain miniature data logging modules with more comfortable
elastic bands. Nevertheless, there are ongoing concerns and issues with clothing integration, cleaning
and obtrusiveness of the devices.

Bio-impedance measurement systems are free of the limitations of integration with clothing,
however, they require electrode attachment to the body. A combination of Bio-impedance based
breathing sensor, ECG sensor and accelerometer placed on the chest was employed by Imtiaz et al.
(2019) [111] for the detection of smoking events. However, the model suffered from many false positives,
especially in free-living conditions. This study assumed that changes in heart rate parameters during the
study period were either due to cigarette smoking or intense physical activities. Any physiological or
ambient factors (with light physical activities) that could lead to a change in heart rate parameters might
have caused false positives with this approach. Also, the impact of smoking on physiological signals
or the influence of concurrent activities would likely vary greatly among people. Wattal et al. [112]
presented textile electrodes and connectors, which can be evaluated to ease the data collection of the
ECG and bioimpedance signals.

Smoking detection based upon acoustic signals is susceptible to ambient noise, hence robust signal
processing methods for speech and artifact rejection are necessary for high accuracy. The visibility of
this sensor system to others might limit the mass implementation of this approach.

Despite the limitations of wearable sensors and the failure of sensor systems to be 100% accurate
in the detection of smoking events in all circumstances, extant systems have identified interesting
smoking-oriented phenomena. For example, research using instrumented lighters substantiated the
idea that smokers tend to overestimate their smoking consumption, and may be unaware of many
instances of their daily smoking [12]. The instrumented lighter has also identified daily recurrent
patterns of smoking incidents on an individual basis [12]. Work with the breathing sensor has verified
that smoking displays a specific breathing pattern [58]. Further, the combination of breathing and
proximity sensors identified individual traits in breathing patterns [102]. This combination of sensors
also demonstrated that anthropometric characteristics (such as obesity, gestures) of the person affect
the quality of smoking-specific breathing signals [104]. Finally, a combination of inertial sensors and
instrumented lighters revealed that smokers under surveillance consume cigarettes much faster with a
higher number of hand to mouth gestures than when in free-living conditions [108].

Additional successes with wearable sensors in smoking research are likely to be achieved if factors
such as size and comfort of wearable systems, applicability in daily usage and inconspicuous monitoring
are addressed. Due to their form factors, custom wrist-worn inertial sensors or smart-watches
might be relatively easier to adopt for daily usage. RIP breathing or acoustic sensors tend to be
obtrusive and somewhat cumbersome if worn for an extended period. Hence, the miniaturization and
commercialization of these sensor systems will foster their acceptance by all types of smokers.
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The camera-based system provides a direct way (from images of lit cigarettes) to detect
smoking. Unlike other sensor systems, this sensor could identify the smoking environment, social
interaction and locations that may promote smoking. This information related to activity and context
during/immediately prior to smoking could play an important role in developing smoking intervention
methods. The timestamp embedded in these images can provide additional information on the smoking
time of day, duration and frequency. In the feasibility study involving 10 participants, all smoking
events were correctly detected; however, it requires further validation, involving many participants of
varying age and demographic profiles.

Most of the validation of the above-mentioned systems was limited to laboratory settings.
These systems need systematic evaluation under extended free-living conditions. These evaluations
need to gather more detailed information about intrusion and comfort. Also, these methodologies need
to be tested for significantly longer periods of time (weeks/months) to fully examine their operation
before they can be employed for general use.

The number of participant’s involvement varied between validation studies. Out of 51 reviewed
articles, 40 studies involved more than 10 smoker subjects (two studies involving instrumented lighter,
eight involving RF proximity sensor, 12 involving inertial sensors, 16 involving breathing sensor, one
involving acoustic sensor, one involving egocentric camera). However, the remaining 11 studies had
tests conducted in very small populations (less than 10, as low as two participants). Since the focus of
this review was the presentation of all proposed sensors for smoking detection and characterization,
no papers were excluded due to the small study size. However, the strength of the conclusions drawn
from such studies is limited.

Individual smoking patterns can be influenced by a variety of factors such as location
(e.g., smoking zones, automobiles), ambient conditions, and physical postures (walking, standing,
sitting, and relaxing). However, no study on wearable sensors has systematically analyzed the impact
of these contextual factors on smoking. Hence, the available mobility sensors in the PACT 2.0 platform
(GPS or pedometer) can be evaluated to investigate their impact on improving the accuracy of current
smoking detection methods.

Data recording is another important aspect of the available systems. Custom-made sensor
systems have either onboard flash storage or the capability of wireless transmission to a nearby
receiver or smartphone. In most of these approaches, data can only be accessed offline for computer
analysis and cannot assist smokers to react immediately to their smoking situations. The smartwatch
based IMU approach [65], [113], introduced methods to implement real-time detection algorithms
at the smartphone to facilitate real-time interventions. The study reported by Skinner et al. [70]
provided an approach to eliminate the necessity of smartphones and integrated everything into a
single node (a wristwatch). McClernon and Choudhury [114] and Qin et al. [115] proposed methods
to use only smartphone sensors (Wi-Fi, GPS, and Accelerometer) data to detect smoking events.
These above-mentioned approaches may be capable of recruiting social support groups to inhibit
smoking behavior. For more robust interventions, a blend of a Smartwatch platform with other fusion
modules could be explored. These systems could even relate to devices on an Internet of Things (IoT)
network to develop new intervention strategies.

6. Future Directions

This review demonstrates that the monitoring of cigarette smoking by wearable systems is
still in an early stage of development and requires considerable research before it is suitable
for general usage. No single sensor system provides a complete and accurate solution for the
detection of smoking, the characterization of smoke exposure and other behavioral characteristics of
smoking. This systematic review has addressed some successes of wearables in revealing interesting
smoking-related phenomena. However, the review has identified a variety of challenges and obstacles
to be addressed in future research.
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First, no wearable sensor system reached an accuracy of 100% (even in controlled laboratory
settings) in the detection of smoking-related features. Existing research targeted all major behavioral and
physiological manifestations of cigarette smoking (e.g., lighting, hand gestures); however, body-worn
or intraoral chemical sensors could be explored for the detection of smoking and the measurement of
smoke exposure. Direct targeting of key chemicals, such as nicotine, may offer a universal approach for
monitoring traditional and electronic cigarettes. To improve detection accuracy, further methodological
improvements targeting signal processing and pattern recognition should be explored for the sensors
currently in use.

Second, very few studies provide quantifiable evidence of user comfort, acceptability and
adherence during the studies. These should be assessed in a standardized manner by developing
a psychometrically validated questionnaire directed specifically to sensors for monitoring cigarette
smoking. Future studies should pay special attention to the objective measurement of adherence,
which is critical for the reliability of measurements. Additional sensors may need to be integrated into
the wearable sensors, specifically with the purpose of identifying if the wearable is being used.

Third, most wearables have been tested in research settings, and only a few prototypes have
been tested for accuracy or applicability under real-life conditions. The huge variability of unscripted
human behavior and the impact of a myriad of contextual factors may present significant challenges to
some of the sensor systems that test well in the laboratory. Future studies should focus on realistic
evaluations under free-living conditions.

Fourth, many of the presented devices operate off-line. The development of real-time detection and
notification capabilities may pave the way for the development of sensor-based smoking interventions.

7. Conclusions

This paper presents a systematic review of the state-of-the-art wearable technologies for an objective
monitoring of smoking, a crucial process for timely interventions to curb smoking. Existing approaches
were thoroughly examined in this review, and upcoming technologies were also identified. The review
found that present-day research is now focusing upon improving accuracy, testing outside of restricted
laboratory conditions, enhancing the comfort level of sensor systems, determining efficient classification
methods, and improving signal processing procedures. If these existing challenges can be addressed,
wearable sensors may substantially contribute to reducing the mortality rate due to cigarette smoking.
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