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Abstract: The non-rigid multi-modal three-dimensional (3D) medical image registration is highly
challenging due to the difficulty in the construction of similarity measure and the solution of
non-rigid transformation parameters. A novel structural representation based registration method
is proposed to address these problems. Firstly, an improved modality independent neighborhood
descriptor (MIND) that is based on the foveated nonlocal self-similarity is designed for the effective
structural representations of 3D medical images to transform multi-modal image registration into
mono-modal one. The sum of absolute differences between structural representations is computed as
the similarity measure. Subsequently, the foveated MIND based spatial constraint is introduced into
the Markov random field (MRF) optimization to reduce the number of transformation parameters and
restrict the calculation of the energy function in the image region involving non-rigid deformation.
Finally, the accurate and efficient 3D medical image registration is realized by minimizing the
similarity measure based MRF energy function. Extensive experiments on 3D positron emission
tomography (PET), computed tomography (CT), T1, T2, and proton density (PD) weighted magnetic
resonance (MR) images with synthetic deformation demonstrate that the proposed method has higher
computational efficiency and registration accuracy in terms of target registration error (TRE) than the
registration methods that are based on the hybrid L-BFGS-B and cat swarm optimization (HLCSO),
the sum of squared differences on entropy images, the MIND, and the self-similarity context (SSC)
descriptor, except that it provides slightly bigger TRE than the HLCSO for CT-PET image registration.
Experiments on real MR and ultrasound images with unknown deformation have also be done to
demonstrate the practicality and superiority of the proposed method.

Keywords: medical image registration; similarity measure; non-rigid transformation; computational
efficiency; registration accuracy

1. Introduction

In recent years, the non-rigid three-dimensional (3D) multi-modal medical image registration
has attached significant attention [1–4]. This mainly stems from two aspects. Firstly, the different
3D imaging modalities are often fused to produce the precise diagnosis, since they can provide
complementary information for interpreting the anatomy, tissue, and organ. As the necessary
prerequisite for image fusion, multi-modal medical image registration is significant in relating clinically
significant information from the different images. However, the relationship of intensity values in
multi-modal 3D medical images might be highly complicated due to differences between the imaging
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principles, which leads to the difficulty in the construction of the appropriate similarity measure.
Secondly, non-rigid deformation generally cannot be ignored for the soft organs that are easy to
deform. Accordingly, the non-rigid transformation must be used as a deformation model in the
non-rigid multi-modal medical image registration. However, the non-rigid transformation often
involves numerous parameters, which will render accurate image registration difficult [5–8]. Therefore,
the non-rigid multi-modal 3D medical image registration has become a challenging task [9–12].

The grey information and spatial information of 3D images are generally considered at the same
time in order to construct a suitable similarity measure for non-rigid multi-modal 3D medical image
registration. The typical similarity measure construction method is to combine the mutual information
(MI) and spatial information [13]. Rueckert et al. [14] proposed using the second-order MI to encode
the local information by considering both intensity information and structural information of images.
However, this method needs to use a four-dimensional (4D) histogram to calculate the similarity
measure. The number of grey levels cannot be too large in order to avoid the curse of dimensionality of
high dimensional histograms. Pluim et al. [15] put forward a method that combines the normalized MI
with the gradient amplitude and direction for rigid multi-modal image registration. Loeckx et al. [16]
presented the image registration method that is based on the conditional MI. This method adopted the
3D joint histogram including the grey levels and the spatial information distribution of the reference
and float images. However, the MI for 3D images in itself is computationally complicated and its
combination with the spatial information will further lead to high computational complexity for the
above registration methods.

The structural representation methods have been presented to more effectively measure the
similarity between the different images [17–22]. Wachinger et al. [17] presented the entropy images
based structural representation method. In this method, the entropy images were produced by
calculating the histogram of image blocks, and then the sum of squared differences (SSD) on the
entropy images was used as the similarity measure for image registration. As this method tends to
produce the blurred entropy images, it cannot ensure the satisfactory registration results. Heinrich
et al. [18] proposed a modality independent neighborhood descriptor (MIND) for the non-rigid
multi-modal image registration. Based on the concept of image self-similarity that was introduced in
non-local means image denoising, the MIND first extracted the distinctive and multi- dimensional
features based on the intensity differences within a search region around each voxel in each modality.
Subsequently, the SSD between MIND representations of two images was used as the similarity metric
within a standard non-rigid registration framework. Although the MIND is robust to non-functional
intensity relations and image noise, it cannot provide the effective structural representation for the
complicated medical images with the weak, discontinuous, and complex details, because it only utilizes
the similarity of image intensities. The self-similarity context (SSC) descriptor, an improved version of
MIND, was proposed in [19]. The SSC descriptor was designed to find the context around the voxel of
interest. The point-wise distance between SSC descriptors was used as the metric for the deformable
registration on a minimum spanning tree while using dense displacement sampling (deeds) [20].
Zhu et al. [21] explored the self-similarity inspired local descriptor for structural representation based
on the low-order Zernike moments with good robustness to image noise. This method cannot work
well for ultrasound (US) images and positron emission tomography (PET) images with blurred features
due to the ignorance of high-order Zernike moments with better feature representation ability than the
low-order ones.

The solution of deformation parameters involved in the transformation model, as a high
dimensional optimization problem, is a very challenging task apart from the difficulty in the construction
of similarity measure for the non-rigid multi-modal 3D medical image registration. One approach to
solve this problem is to use the local optimization methods (e.g., the L-BFGS-B method [23]), the global
optimization methods (e.g., the evolutionary strategies [24] and the particle swarm optimization
(PSO) [25]), as well as the combined methods (e.g., the hybrid L-BFGS-B and cat swarm optimization
(HLCSO) method [26]). However, these methods cannot produce the satisfactory registration results
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in the case of the high-dimensional optimization problem. Another popular method is to reduce the
dimension of transformation parameters while using the geometric transform models that are based
on knowledge [27–30]. In these methods, it is required to have enough understanding of material
properties of organs or tissues to establish a suitable geometric transform. However, some organs
and tissues are so complicated that the existing methods cannot accurately characterize their material
properties. Meanwhile, when determining the geometry and the boundary conditions, it is necessary
to accurately segment the anatomy of medical images, which indeed is a very challenging task. Some
alternative methods can be adopted to address this challenging problem. For example, by means of
the mask image, the areas in the images that involve no non-rigid deformation can be covered up to
reduce the number of the deformation field variables that are involved in the optimization process.
However, the shape of such areas might often be irregular, thereby accurately leading to the difficulty
in determining the mask image.

We have proposed a novel registration method using an improved modality independent
neighborhood descriptor (MIND) based on the foveated nonlocal self-similarity to address these
problems in the construction of similarity measure and the solution of non-rigid transformation
parameters. The contributions of our work lie in the two aspects. For one thing, we have designed the
foveated MIND (FMIND) for the effective structural representations of 3D medical images, thereby
ensuring accurate image registration. One the other hand, the spatial constraint method based
on the FMIND is proposed and introduced into the Markov random field (MRF) optimization to
reduce the number of non-rigid transformation parameters and restrict the calculation of the energy
function in the image regions involving local non-rigid deformation, thereby ensuring efficient image
registration. Extensive experiments on multi-modal medical images demonstrate that the proposed
method is provided with higher registration accuracy, except for computed tomography-positron
emission tomography (CT-PET) images and higher computational efficiency than other evaluated
registration methods.

2. Methods

2.1. The Framework of the FMIND Based Image Registration Method

Figure 1 shows the flowchart of the proposed image registration based on the FMIND.
Firstly, the FMIND is constructed based on the foveated nonlocal self-similarity and it is applied to
the reference image IR and the float image IF to produce the corresponding structural representations
FMIND (IR) and FMIND (IF), respectively. Afterwards, the objective function, i.e., the energy function,
is established based on the free-from deformation (FFD) model and the similarity measure defined
as the sum of absolute differences (SAD) between FMIND(IR) and FMIND(IF). Finally, the FMIND
based spatial constraint is introduced to produce the mask image for the MRF discrete optimization.
During the iterative optimization, the deformation vector, which is a vector of parameters defining the
deformation field, is produced at each iteration. The final optimal deformation vector T’ will be obtained
once the optimization procedure is terminated, and it is utilized to produce the registration result.
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2.2. The Foveated Modality Independent Neighborhood Descriptor

The FMIND is presented based on the characteristics of human visual system (HVS). In the HVS,
the distribution of cone cells is uneven. The foveation has the highest density. If the foveation is taken
as the center, the cell density will fall fast when it is extended around. The optic nerve cells have
similar characteristics. Therefore, when we watch a point in an image, this point will have the highest
sensitivity and the sensitivity will drop with the increasing distance to the point. Inspired by the
characteristics of the HVS, Alessandro Foi et al. [31] have proposed calculating the patch similarity
based on the Euclidean distance d FOV between the the foveated patches, defined as:

d FOV(I, x1, x2) = ‖I FOV
x1

− I FOV
x2
‖

2
2 (1)

where I FOV
x1

and I FOV
x2

denote the foveated patches that were obtained by foveating the image I at the
two fixation points x1 and x2. By applying the foveation operator F to the image I, the foveated patch
I FOV
x is produced as:

I FOV
x (u) = F[I, x](u), u ∈ S (2)

where u denotes the location of any pixel in the foveated image patch S. In [31], the designed foveation
operators mainly include the isotropic and anisotropic foveation operators. As the latter has more
advantages than the former in describing the image edges and textures, it will be used as the foveation
operator. This operator is defined as:

Fρ,θ[I, x](u) =
∑
ξ∈Z2

I(ξ+ x)vρ,θ
u (ξ− u), ∀u ∈ S (3)

where vρ,θ
u denotes the blur kernel and it is mainly structured by the elliptical Gaussian probability

density function (PDF), ρ determines the elongation of the Gaussian PDF, and θ denotes the angular
offset, respectively. The blur kernel vρ,θ

u is defined as [31]:

vρ,θ
u =


√

K(0)gρ,∠u+θ

1
2
√
π

√
K(0)
K(u)

u , 0

√
K(0)g 1

2
√
π

u = 0
(4)

where
√

K(0) = ‖vu‖1,
√

K(u) = ‖vu‖2, g 1
2
√
π

denote the elliptical Gaussian PDF with the standard

deviation of 1
2
√
π

and ∠u+θ determines the orientation of the axes of the elliptical Gaussian PDF.
Figure 2 gives an example of two anisotropic foveation operators, where S is a 7 × 7 foveated

patch, θ = 0, and the different kernel elongation parameters ρ = 2 and ρ = 6 are used, respectively.
Clearly, this radial design of these anisotropic foveation operators is consistent with HVS features,
which thereby leads to the effective structural representation of images for the FMIND.
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We will propose the FMIND based on the foveated nonlocal self-similarity between different
image patches in the same image borrowing the idea of self-similarity in the non-local means denoising.
The FMIND is expressed as:

FMIND(I, x, r) =
1
n

exp
(
−

d FOV(I, x, x + r)
V FOV(I, x)

)
r ∈ R (5)

where R denotes a search window centered at x, d FOV(I, x, x + r) denotes the distance between the
foveated image patches I FOV

x and I FOV
x+r ; n is a normalization constant to ensure that the maximum of

FMIND(I, x, r) is 1; V FOV(I, x) denotes the variance of the foveated image patch I FOV
x centered at x

in the image I, and it controls the attenuation degree of this function in Equation (5). The variance
V FOV(I, x) is estimated as the mean of foveated distances for all the pixels in the foveated patch S.

V FOV(I, x) =
1
|S|

∑
m∈S

d FOV(I, x, x + m) (6)

where |S| denotes the number of pixels in S.
The structural information around the pixel x in the image I will be described by one-dimensional

vector of size |R|, where |R| denotes the number of pixels in the search window R by means of the FMIND.
After obtaining the FMIND for the reference and float images, the similarity metric SADF(I(x), J(x))
between two pixels at the same position x in the images I and J can be expressed as the mean SAD
between FMIND(I, x, r) and FMIND(J, x, r) of pixels in R.

SADF(I(x), J(x)) =
1
|R|

∑
r∈R

∣∣∣FMIND(I, x, r)−FMIND(J, x, r)
∣∣∣ (7)

where R takes a six-neighborhood in this paper.

2.3. MRF Optimization Based on the Spatial Constraint

2.3.1. Discrete Optimization Based on the MRF

After obtaining the similarity measure for the two different modal images, we will use the FFD
as the transformation model and use Markov random field (MRF) optimization [32] to obtain the
transformation parameters in the FFD. The reason for choosing this discrete optimization method is
that it does not need to calculate the gradient of the energy function in the process of optimization,
which thereby facilitates producing the good registration result by avoiding falling into the local
minimum. In this method, the image registration problem will be converted into the MRF based
discrete optimization problem.

EMRF(l) =
1
|G|

∑
p∈G

Vp
(
lp
)
+λ

∑
q∈N(p)

Vpq
(
lp, lq

) (8)

Vp
(
lp
)
=

∫
Ω

SADF
(
I(x), J ◦ Tlp(x)

)
dx (9)

Vpq
(
lp, lq

)
= ‖Tlp − Tlq‖1 (10)

where E denotes the general form of a first-order MRF, i.e., the energy function and λ is a constant;
G is the set of vertices and |G| denotes the number of vertices in G, where G can be regarded as the
vertex set in the FFD, because this method uses the FFD as the deformation model; N(p) and N(q)
refer to the neighborhood of vertices p and q, respectively; l is the discrete labelling while lp and lq are
the labels that are assigned to the vertices p and q, respectively; Vp

(
lp
)

denotes the data item of the
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energy function EMRF(l), while Vpq
(
lp, lq

)
represents its smooth regularization and it takes the L1-norm

to encourage the neighboring nodes p and q to keep the displacement.
Accordingly, the MRF optimization, actually, is to seek to assign a label that is associated with the

deformation to each vertex, so that the energy function in Equation (8) is minimized. In this paper,
the fast primal-dual (Fast-PD) [33] algorithm will be used for the MRF optimization to produce the
registration result. More details about the Fast-PD algorithm can be found in [33].

2.3.2. Spatial Constraint Based on the FMIND

When the above registration method is applied to three-dimensional (3D) medical images,
the number of deformation field variables will be large. If all pixels’ displacement along the x, y, and z
directions is considered, the number of dense deformation field variables will be 3·|Ix|·|Iy|·|Iz|, where |Ix|,
|Iy| and |Iz| denote the number of pixels in the x, y, and z dimensions of the image I, respectively.
For example, there will be 50,331,648 deformation field variables when |Ix| =|Iy|=|Iz| = 256. It is indeed
very time-consuming to address such a high dimensional optimization problem.

In the reference and float images, sometimes only some areas involve non-rigid deformation.
In addition, the non-rigid registration is unnecessary for some smooth areas. For these regions,
the mask can be used to indicate that they will be excluded from the registration process. In this
way, we can not only reduce the number of variables for describing the deformation field, but also
focus the calculation of the energy function in the image areas that indeed involve the local non-rigid
deformation. However, the shape of areas without non-rigid deformation is often irregular. Generally,
manual intervention or image segmentation is needed for obtaining the appropriate mask image.
However, these technologies cannot ensure that the satisfactory mask image can be produced for US
and PET images due to their low image contrast, blurriness, and edge discontinuousness.

We will put forward the spatial constraint method based on the FMIND to address the above
problem. From Equation (7), it can be seen that SADF(I(x), J(x)) contains the corresponding
relationship of the local spatial information at the pixel x in the images I and J. This information can be
used to reduce the number of variables for describing the deformation field and limit the control nodes
in the deformation field to move in the areas with the local non-rigid deformation. In the FMIND based
spatial constraint method, the vertex set G will be divided into the set Gs of static vertices and the set Gd
of dynamic vertices based on the local spatial information included in the FMIND. The vertices in Gs are
similar to those in the smooth areas and the areas that involve no deformation. Meanwhile, the vertices
in Gd are similar to those in the non-smooth areas involving the deformation. The calculation of
the energy function can be restricted in the areas involving the non-rigid deformation through the
movement of these dynamic vertices with the local non-rigid deformation. In this way, the number of
deformation field variables will decrease from 3·|Gx|·|Gy|·|Gz| to 3·|Gd,x|·|Gd,y|·|Gd,z|, where |Gd,x|, |Gd,y|,
and |Gd,z| denote the number of vertices in x, y, and z dimensions of Gd. By utilizing the FMIND based
spatial constraint, we can obtain the division of vertices, thereby generating the mask image without
manual intervention and image segmentation.

There will be two requirements that no vertices of the whole MRF model will be omitted and no
repeated division of vertices will be done to ensure the effective division of G in the FMIND based
spatial constraint method. Correspondingly, the logical relationship among G, Gs, and Gd can be
expressed as G = Gs ∪Gd and ∅ = Gs ∩ Gd, where ∅ denotes the empty set. We have designed the
following vertex partition algorithm according to the above requirements. For any vertex pi, j, k of the

set G in the MRF model, i.e., G =
{
pi, j, k|1 ≤ i ≤ |G x|, 1 ≤ j ≤ |G y|, 1 ≤ k ≤ |G z

∣∣∣}, we will check the
similarity metric SADF for each pixel x in the local image patch LP(pi, j, k) with radius RLP, which takes
pi, j, k in G as the center, as shown in Figure 3. Let con denote the number of pixels in LP(pi, j, k) whose
similarity 1-SADF(I(x), J(x)) is greater than a certain threshold δ. If the ratio of con to the patch size∣∣∣LP(pi, j, k)

∣∣∣ is greater than the static factor ε, pi, j, k will be regarded as a static vertex. In a similar
way, we can determine other static vertices to generate the final set Gs. Accordingly, Gd will be easily
computed as Gd = G − Gs.
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Obviously, the performance of the vertex partition algorithm depends on three key parameters
RLP, δ, and ε. Here, δ will influence the decision of whether two pixels are similar and ε is used to
adjust the probability that pi, j, k is divided into Gs. Section 3.1 discusses the choice of these parameters.
Algorithm 1 shows the detailed implementation of the proposed vertex partition algorithm.

Algorithm 1. Partition of the vertex set G

Input: FMIND(I, x, r), FMIND(J, x, r), G, δ, ε, RLP
Output: Gs, Gd
(1) Gs = ∅;
(2) for (i = 1; i ≤ |Gx|; i = i++)
(3) for (j = 1; j ≤ |Gy|; j = j++)
(4) for (k = 1; k ≤ |Gz|; k = k++)
(5) con = 0;
(6) while x ∈ LP

(
pi, j, k

)
(7) if (1-SADF(I(x), J(x))> δ)
(8) con++;
(9) end if
(10) end while
(11) if ( con∣∣∣LP(pi, j, k)

∣∣∣> ε)
(12) Gs = pi, j, k ∪Gs;
(13) end if
(14) end for
(15) end for
(16) end for
(17) Gd = G − Gs;
(18) return Gs, Gd;

3. Results

In this section, we will first discuss the selection of several key parameters in the FMIND method,
and then use the method based on the anatomical landmarks selected by doctors to compare registration
accuracy and efficiency of the proposed FMIND method with those of the entropy images based SSD
(ESSD) [17], MIND [18], SSC [19], and HLCSO [26] methods. For the appreciation of registration
performance, we have used four datasets with synthetic deformation, including simulated 3D MR
images in BrainWeb database [34], 3D CT and MR images in NA-MIC database [35], 3D CT and PET
images in NA-MIC database [36], and real 3D MR images from Retrospective Image Registration
Evaluation project [37]. Besides, we have used the real MR and US images with unknown real
deformation in the Brain Images of Tumors for Evaluation (BITE) database [38] available at [39]
to appreciate the practicality of the proposed method. Here, the implementation efficiency of the
evaluated registration methods is appreciated by their running time. For all evaluated methods,
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they are implemented on the personal computer with 2.40 GHz CPU and 4 GB RAM while using the
mixed programming of Matlab and C++.

In the case of synthetic deformation, the registration accuracy is appreciated by the target
registration error (TRE) [40], defined as:

TRE =
1
N

∑N

i=1

√
(TLx − TDx)

2 +
(
TLy−TDy

)2
+ (TLz−TDz)

2 (11)

where TL is the synthetic deformation (i.e., the ground truth generated by using a linear combination
of radial basis functions), TD is the deformation that is estimated by the registration methods, and N
denotes the number of landmarks selected manually based on doctors’ advice from the reference
images. For each pair of reference and float images, different synthetic deformations will be applied to
the float image for 25 times and we will manually select 90 (N = 90) landmarks from each 3D reference
image to compute the TRE. The mean of TREs values for registering 25 deformed images will be used
to appreciate the registration accuracy. Figure 4 gives an example of chosen landmarks in one slice of
simulated 3D PD weighted image and real 3D T1 weighted image for MR image registration, 3D CT
image for CT-MR image registration and 3D CT image for CT-PET image registration.
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3.1. Parameter Setting 

In the FMIND method, we will fix θ = 0, S to be a 5 × 5 foveated patch in Equation (3) and  
λ = 0.01 in Equation (8). The remaining parameters include the kernel elongation parameter ρ, the 
image patch radius RLP, the similarity threshold δ, and the static factor ε. We will conduct 
experiments on three pairs of simulated MR images (T2-T1, PD-T2, and PD-T1) from BrainWeb 
database in order to effectively determine these parameters, where the former and the latter will be 

Figure 4. Landmarks in one slice of three-dimensional (3D) medical images. (a) simulated proton
density (PD) weighted image; (b) real T1 weighted image; (c) abdomen computed tomography (CT)
image; and, (d) whole-body CT image.

3.1. Parameter Setting

In the FMIND method, we will fix θ = 0, S to be a 5× 5 foveated patch in Equation (3) and λ = 0.01
in Equation (8). The remaining parameters include the kernel elongation parameter ρ, the image
patch radius RLP, the similarity threshold δ, and the static factor ε. We will conduct experiments on
three pairs of simulated MR images (T2-T1, PD-T2, and PD-T1) from BrainWeb database in order to
effectively determine these parameters, where the former and the latter will be used as the reference
and float images, respectively. These simulated MR images are realistic MRI data volumes that are
produced by an MRI simulator while using three sequences (T1, T2, and PD weighted) and a variety of
slice thicknesses, noise levels, and levels of intensity non-uniformity.
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3.1.1. The Kernel Elongation Parameter ρ

Figure 5 shows the TRE values of the FMIND method using different ρ values. For the purpose
of evaluating the influence of ρ on registration accuracy, we have set the significant level α = 0.05
in one-way Analysis of Variance (ANOVA) [41]. The obtained significance value P is 0.001, which
means that ρ has a significant impact on registration accuracy of the FMIND method. From Figure 5,
we can see that the TRE achieves the minimum value when ρ = 2. Thus, we have fixed ρ = 2 in the
proposed method.
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Figure 5. The target registration error (TRE) with different ρ values.

3.1.2. The Image Patch Radius RLP

Figure 6 shows the TRE values and computational time of the FMIND method while using the
different RLP values. Likewise, one-way ANOVA with α = 0.05 is used to evaluate the influence of
RLP on the registration results. The obtained significance value P is 0.001 for registration accuracy
and P is 0.007 for registration efficiency. Therefore, RLP has the significant impact on both registration
accuracy and efficiency. It can be seen from Figure 6a that the TRE significantly declines when RLP
varies from 2 to 7, and it tends to be stable when RLP varies from 7 to 10. Besides, Figure 6b indicates
that the registration time gradually increases for the increasing RLP. The reason is that, for a larger RLP,
the more pixels need to be processed in the vertex partition algorithm. Therefore, we have set RLP as 7
to achieve the trade-off between registration accuracy and efficiency.

Sensors 2019, 19, x FOR PEER REVIEW 9 of 18 

 

used as the reference and float images, respectively. These simulated MR images are realistic MRI 
data volumes that are produced by an MRI simulator while using three sequences (T1, T2, and PD 
weighted) and a variety of slice thicknesses, noise levels, and levels of intensity non-uniformity. 

3.1.1. The Kernel Elongation Parameter ρ 

Figure 5 shows the TRE values of the FMIND method using different ρ values. For the 
purpose of evaluating the influence of ρ on registration accuracy, we have set the significant level 
α = 0.05 in one-way Analysis of Variance (ANOVA) [41]. The obtained significance value P is 
0.001, which means that ρ has a significant impact on registration accuracy of the FMIND method. 
From Figure 5, we can see that the TRE achieves the minimum value when ρ = 2. Thus, we have 
fixed ρ = 2 in the proposed method. 

 
Figure 5. The target registration error (TRE) with different ρ values. 

3.1.2. The Image Patch Radius RLP 

Figure 6 shows the TRE values and computational time of the FMIND method while using the 
different RLP values. Likewise, one-way ANOVA with α = 0.05 is used to evaluate the influence of 
RLP on the registration results. The obtained significance value P is 0.001 for registration accuracy 
and P is 0.007 for registration efficiency. Therefore, RLP has the significant impact on both 
registration accuracy and efficiency. It can be seen from Figure 6a that the TRE significantly 
declines when RLP varies from 2 to 7, and it tends to be stable when RLP varies from 7 to 10. Besides, 
Figure 6b indicates that the registration time gradually increases for the increasing RLP. The reason 
is that, for a larger RLP, the more pixels need to be processed in the vertex partition algorithm. 
Therefore, we have set RLP as 7 to achieve the trade-off between registration accuracy and efficiency. 

  
(a) (b) 

Figure 6. The TRE and computation time with different RLP. (a) TRE (voxels); (b) Time (minutes). 

 

0

1

2

3

1 2 3 4

TR
E(
vo

xe
ls)

ρ

T2-T1
PD-T2
PD-T1

0

1

2

3

2 3 4 5 6 7 8 9 10

TR
E(
vo

xe
ls)

RLP

T2-T1

PD-T2

PD-T1
0

10

20

30

40

50

60

2 3 4 5 6 7 8 9 10

Ti
m
e(
m
in
ut
es
)

RLP

T2-T1

PD-T2

PD-T1

Figure 6. The TRE and computation time with different RLP. (a) TRE (voxels); (b) Time (minutes).

3.1.3. The Similarity Threshold δ

Figure 7 shows the effect of δ. For one-way ANOVA with α = 0.05, the obtained P values are 0.001
for both registration accuracy and efficiency, which means the significant impact of δ on the registration
performance of the FMIND method. From Figure 7a, we can see that the TRE significantly declines
when δ varies from 0.3 to 0.8. The reason is that for a larger δ in this range, fewer control vertices are
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divided into the static ones and the number of dynamic control vertices increases, thereby resulting
in a smaller TRE. Meanwhile, the TRE tends to be stable when δ varies from 0.8 to 1.0. The reason is
that, for the threshold δ in this range, the number of dynamic control vertices will increase to a certain
value, so that the variation of δ will have little effect on the TRE. Besides, Figure 7b indicates that
the registration time significantly increases with the increasing δ. It is easy to understand that, for a
larger δ, the increasing dynamic control vertices will lead to more processing time. Therefore, we set δ
as 0.8 to balance the registration accuracy and efficiency.
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3.1.4. The Static Factor ε

Figure 8 shows the effect of the static factor ε on registration accuracy and efficiency. As ε is
also used to divide the control vertices, it has a similar effect on registration performance to the
similarity threshold δ. According to Figure 8a,b, ε has the opposite effect on TRE and computational
time. We have chosen ε = 0.9 for the FMIND method based on the comprehensive consideration of
registration performance.
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3.2. Comparison of Registration Performance

3.2.1. Registration Results of Simulated T1, T2 and PD Images

In order to quantitatively and qualitatively compare the registration performance of the FMIND
method and other methods on 3D T1, T2 and PD weighted MR images, we will test them on three
pairs of simulated T2-T1, PD-T2, and PD-T1 images of size 256 × 256 × 32. For all evaluated methods,
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the mean and the standard deviation (std) of TRE values as well as the P values for the t-test with
the significance level α = 0.05 are computed and are shown in Table 1. In Table 1, “/” means that no
registration is implemented. It is shown that all of the P values are less than 0.002, which indicates
that there exists significant difference between the FMIND method and any other compared method
in terms of TRE. Specifically, as regards the registration of T2-T1 images, the mean and the standard
deviation of TRE values for the MIND method are 2.2 voxel and 0.5 voxel, respectively. By comparison,
the FMIND method has the lower mean (1.8 voxel) and standard deviation (0.2 voxel) of TRE values
than the MIND method. This is mainly due to the advantage of the proposed FMIND in describing the
structural information of multi-modal MR images over the MIND method.

Table 1. The TRE for all evaluated methods and the P values for the t-test between the FMIND method
and other compared methods operating on the T2-T1, PD-T2, and PD-T1 image pairs.

Methods

TRE (Voxels)

T2-T1 PD-T2 PD-T1

Mean Std P Mean Std P Mean Std P

/ 4.8 2.7 4.8 2.7 4.9 2.9
ESSD 2.7 0.8 2.8 × 10−4 2.8 0.8 4.4 × 10−4 2.9 0.9 8.2 × 10−4

MIND 2.2 0.5 6.4 × 10−4 2.3 0.6 5.2 × 10−4 2.3 0.5 3.2 × 10−4

HLCSO 2.0 0.2 1.2 × 10−3 2.1 0.3 1.7 × 10−3 2.2 0.4 2.6 × 10−4

FMIND 1.8 0.2 1.9 0.3 2.0 0.3

Figure 9 visually shows the registration results of 3D PD-T1 images for all the evaluated methods.
Here, it should be noted that the background regions in these images are removed and the same
operation will be implemented for other experiments in the rest of this paper. The comparison among
Figures 9f and 9c–e shows that the registration result of the FMIND method is more similar to the
reference image that is shown in Figure 9a than those of the ESSD, MIND, and HLCSO methods.
Especially for the tissue indicated by the red boxes in Figure 9, the FMIND can recover its deformation
better than other evaluated methods.
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Figure 9. The registration results of all evaluated methods operating on 3D PD-T1 images. (a) PD
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swarm optimization (HLCSO); and, (f) FMIND.
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Table 2 lists the implementation time of all evaluated methods on 3D T1, T2, and PD weighted
MR images. It can be observed that the FMIND method, on average, takes approximately 44 min
to produce the registration results, and it has the highest computational efficiency among all of the
methods. The reason lies in that the FMIND method can generally reduce the number of deformation
field variables by utilizing the FMIND based spatial constraint for MRF optimization.

Table 2. Computation time for all evaluated methods operating on the T2-T1, PD-T2, and PD-T1
image pairs.

Methods

Time (Minutes)

T2-T1 PD-T2 PD-T1

Mean Std Mean Std Mean Std

ESSD 53.8 7.4 52.2 9.6 55.3 8.8
MIND 62.2 11.4 61.7 11.1 63.5 13.9

HLCSO 98.4 18.8 97.2 17.4 102.6 21.5
FMIND 44.2 7.2 45.4 6.8 46.3 8.0

3.2.2. Registration Results of CT and MR Images

To appreciate registration performance of all evaluated methods operating on CT and MR images
from NA-MIC database, these methods are implemented to correct the synthetic deformation that
is applied to the float image, where the CT and MR images will be used as the reference and float
images, respectively. Here, the liver CT and MR images of size 256 × 256 × 32 are intra-operatively and
pre-operatively acquired, respectively. Due to strong differences in image contrast between CT and
MR images, their registration is difficult.

Table 3 lists the TRE and P values of t-test for the FMIND method and other methods. As you
can see, among all the compared methods, the FMIND method has the highest registration accuracy
by providing the lower TRE than other methods. Meanwhile, all the P values are less than 0.003,
which indicates the significant difference between the FMIND method and any other method in terms
of TRE.

Table 3. The TRE for all evaluated methods and the P values for the t-test between the FMIND method
and other compared methods operating on the three-dimensional CT-magnetic resonance (3D CT–MR)
image pairs.

Methods
TRE (Voxels)

Mean Std P

/ 6.7 2.9
ESSD 3.3 1.0 4.7 × 10−4

MIND 2.7 0.8 2.9 × 10−3

HLCSO 2.5 0.7 1.6 × 10−3

FMIND 2.3 0.7

Figure 10 shows the registration results of 3D CT-MR images for all the evaluated methods.
As shown in Figure 10c,d, the ESSD and MIND method cannot effectively correct the deformation that
is involved in the MR image. The FMIND method can produce a more similar registration result to the
reference image that is shown in Figure 10a than the ESSD and MIND methods. When compared with
the most competitive HLCSO method, the proposed method performs better in that it can correct the
deformation of some tissues more effectively, as indicated by the three red boxes that are shown in
Figure 10e,f.
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Table 4 lists the implementation time of all the evaluated methods. The comparison indicates
the advantage of the FMIND method in computational efficiency. Here, it should be noted that the
implementation time for all evaluated registration methods in Table 4 is very similar to that in Table 2,
because the used CT and MR images have the same size (256 × 256 × 32) to T1, T2, and PD images.

Table 4. Computation time for all evaluated methods operating on the 3D CT–MR image pairs.

Methods
Time (Minutes)

Mean Std

ESSD 54.6 7.6
MIND 64.4 11.8

HLCSO 101.2 19.2
FMIND 45.0 7.3

3.2.3. Registration Results of CT and PET Images

The 3D whole body CT-PET images from NA-MIC database are also used to demonstrate the
advantage of the FMIND method. Here, the CT and PET images of size 168 × 168 × 149 are the
reference image and the float image, respectively. It is difficult to realize accurate registration of CT
images and blurry PET images of low resolution.

Figure 11 shows the registration results of the 3D CT-PET images for the ESSD, MIND and
HLCSO, and FMIND methods. It can be observed that the ESSD and MIND methods cannot correct
the deformation in the regions that are marked with the red boxes in Figure 11c,d well. By comparison,
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the registration results of the HLCSO and FMIND methods are more similar to the reference image
shown in Figure 11a than the ESSD and MIND methods.
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Table 5 lists the mean and standard deviation of TRE for all evaluated methods operating on 3D
CT and PET images. The comparison of TRE values shows that the HLCSO method provides the
minimum mean (2.6 voxel) and standard deviation (0.7 voxel) of TRE among all the compared methods.
However, the mean (2.8 voxel) and standard deviation (0.9 voxel) of TRE for the FMIND method are
lower than those for the ESSD and MIND methods. The reason can be explained in this way. For the
PET image, its contrast and resolution are poor and the edge features are not obvious. Therefore,
the FMIND method is slightly inferior to the HLCSO method in the registration of 3D CT-PET images.
However, the proposed FMIND method can still provide better structural representation results than
the ESSD and MIND methods, thereby leading to its improved registration accuracy than the latter.
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Table 5. TRE for all evaluated methods operating on the 3D CT–PET image pairs.

Methods
TRE (Voxels)

Mean Std

/ 5.7 2.8
ESSD 3.6 1.6
MIND 3.1 1.2

HLCSO 2.6 0.7
FMIND 2.8 0.9

Table 6 lists the calculation time of the various methods operating on CT and PET images. It can
be seen from Table 6 that, as compared with other methods, the calculation time of the FMIND
method is significantly reduced because the spatial constraint based on the FMIND, to a certain extent,
helps to reduce the number of variables that are required by the deformation model. Especially,
when compared with the HLCSO method, although the FMIND method has slightly lower registration
accuracy, its computational efficiency is more than two times higher. Besides, as compared with the
calculation time listed in Table 2, more calculation time will be involved in the registration of CT-PET
images because their size (168 × 168 × 149) is bigger than that of T1, T2, and PD images.

Table 6. Computation time for all evaluated methods operating on the 3D CT–PET image pairs.

Methods
Time (Minutes)

Mean Std

ESSD 106.2 19.4
MIND 124.8 22.2

HLCSO 198.6 30.2
FMIND 88.2 13.2

3.2.4. Registration Results of Real MR Images

The MR images from RIRE database are chosen to verify the superiority of the FMIND method in
registering the real MR images, where the T1 and PD weighted MR images are used as the reference
and float images, respectively. These MR images were acquired while using a Siemens SP Tesla scanner,
among which the T1 and PD image volumes were obtained with an echo time of 15 ms and 20 ms,
respectively [42].

Here, we will only compare the proposed method with the MIND and SSC methods, which are
most similar to our method. Table 7 lists the TRE values of the three methods. Clearly, the SSC
method generally provides slightly smaller TRE values than the MIND methods. The two methods
are outperformed by the FMIND method in terms of registration accuracy. The comparison of TRE
values indeed demonstrates the effectiveness and advantage of the FMIND method in correcting the
deformation of real MR images.

Table 7. The TRE for the MIND, self-similarity context (SSC), and FMIND methods operating on the
real T1-PD image pairs.

Methods
TRE (Voxels)

Mean Std

/ 4.0 1.8
MIND 2.4 0.4

SSC 2.3 0.4
FMIND 2.1 0.3
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3.2.5. Registration Results of Real MR and US Images

We will use the pre-operative T1 weighted MR and intra-operative post-resection US images of
13 patients [43] from BITE database for registration performance appreciation to further demonstrate
the practicality of the FMIND method. In [43], the MR images were obtained a few days before the
surgery while the post-resection 2D US images were acquired while using Philips HDI 5000 ultrasound
machine with a P7-4 MHz phased array transducer and they were reconstructed into ultrasound
volume with a voxel size of 1 mm. The used MR data contain the tumor, which is replaced by the
resection cavity, and thus will not exist in the post-resection US images. Therefore, to register 3D MR
to 3D US images is highly challenging. For each patient, 15 landmarks in average selected in [43] are
used for TRE evaluation.

Table 8 lists the TRE values of the MIND, SSC, and FMIND methods. Clearly, the SSC method
provides smaller TRE values than the MIND method. The FMIND method also performs better
than the MIND method, in that the introduction of foveated nonlocal self-similarity ensures more
effective structural representations of MR and US images. Please note that the proposed method cannot
significantly outperform the SSC method for registration of US-MR images due to the disadvantageous
influence of speckle noise that is inherent in US images.

Table 8. The TRE for the MIND, SSC, and FMIND methods operating on the real US-MR images of
13 patients.

Methods
TRE (mm)

Mean Std

/ 5.9 3.2
MIND 3.6 1.0

SSC 3.3 0.9
FMIND 3.2 0.9

4. Conclusions

In this paper, we have proposed a novel non-rigid multi-modal 3D medical image registration
method that is based on the foveated independent neighborhood descriptor. The advantages of the
proposed method lie in two aspects. Firstly, the proposed FMIND can effectively capture the structural
feature information of 3D medical images, thereby providing better structural representations than
the existing approaches. Secondly, the FMIND based spatial constraint method can help to reduce
the number of non-rigid transformation parameters because the FMIND contains the corresponding
relationship of the local spatial information at the same pixel in the reference and float images, thereby
providing an effective means for solving the high-dimensional optimization problem that is involved
in the medical image registration. Experiments on 3D ultrasound, CT, PET, T1, T2, and PD weighted
MR images demonstrate that our method can provide higher computational efficiency and higher
registration accuracy as compared with the HLCSO, ESSD, MIND and SSC methods, except that its
TRE is slightly bigger than that of the HLCSO for CT-PET image registration. Future work will be
focused on the acceleration of the method without compromising registration accuracy by using sparse
data sampling and parallel data processing strategies to facilitate its clinical applications.

Author Contributions: F.Y. performed the experiments, analyzed the data and drafted the manuscript. X.Z. and
M.D. supervised the research and contributed to the article’s revision.

Funding: This work was partly supported by the National Natural Science Foundation of China (NSFC)
(Grant No.: 61871440, 61861004), and the National Key Research and Development Program of China (Grant No.:
2017YFB1303100).

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2019, 19, 4675 17 of 18

References

1. Maintz, J.A.; Viergever, M.A. A survey of medical image registration. Med. Image Anal. 1998, 2, 1–36.
[CrossRef]

2. Zitova, B.; Flusser, J. Image registration methods: A survey. Image Vis. Comput. 2003, 21, 977–1000. [CrossRef]
3. Sotiras, A.; Davatzikos, C.; Paragios, N. Deformable medical image registration: A survey. IEEE Trans. Med.

Imaging 2013, 32, 1153–1190. [CrossRef]
4. Viergever, M.A.; Maintz, J.B.A.; Klein, S.; Murphy, K.; Staring, M.; Pluim, J.P.W. A survey of medical image

registration—under review. Med. Image Anal. 2016, 33, 140–144. [CrossRef] [PubMed]
5. Yang, F.; Ding, M.; Zhang, X.; Wu, Y.; Hu, J. Two phase non-rigid multi-modal image registration using weber

local descriptor-based similarity metrics and normalized mutual information. Sensors 2013, 13, 7599–7617.
[CrossRef] [PubMed]

6. Zhang, Z.; Han, D.; Dezert, J.; Yang, Y. A new image registration algorithm based on evidential reasoning.
Sensors 2019, 19, 1091. [CrossRef] [PubMed]

7. Ferreira, D.P.L.; Ribeiro, E.; Barcelos, C.A.Z. A variational approach to non-rigid image registration with
Bregman divergences and multiple features. Pattern Recognit. 2018, 77, 237–247. [CrossRef]

8. Darkner, S.; Pai, A.; Liptrot, M.G.; Sporring, J. Collocation for diffeomorphic deformations in medical image
registration. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 1570–1583. [CrossRef]

9. Studholme, C.; Hill, D.; Hawkes, D. An overlap invariant entropy measure of 3D medical image alignment.
Pattern Recognit. 1999, 32, 71–86. [CrossRef]

10. Zhu, X.; Ding, M.; Huang, T.; Jin, X.; Zhang, X. PCANet-based structural representation for nonrigid
multimodal medical image registration. Sensors 2018, 18, 1477. [CrossRef]

11. Öfverstedt, J.; Lindblad, J.; Sladoje, N. Fast and robust symmetric image registration based on distances
combining intensity and spatial information. IEEE Trans. Image Process. 2019, 28, 3584–3597. [CrossRef]
[PubMed]

12. Nie, Z.; Yang, X. Deformable image registration using functions of bounded deformation. IEEE Trans. Med.
Imaging 2019, 38, 1488–1500. [CrossRef] [PubMed]

13. Rohlfing, T. Image similarity and tissue overlaps as surrogates for image registration accuracy: Widely used
but unreliable. IEEE Trans. Med. Imaging 2012, 31, 153–163. [CrossRef] [PubMed]

14. Rueckert, D.; Clarkson, M.J.; Hill, D.L.G.; Hawkes, D.J. Non-rigid registration using higher-order mutual
information. In Proceedings of the SPIE Medical Imaging, San Diego, CA, USA, 16–21 February 2000;
pp. 438–447.

15. Pluim, J.P.; Maintz, J.A.; Viergever, M.A. Image registration by maximization of combined mutual information
and gradient information. IEEE Trans. Med. Imaging 2000, 19, 409–814. [CrossRef]

16. Loeckx, D.; Slagmolen, P.; Maes, F.; Vandermeulen, D.; Suetens, P. Nonrigid image registration using
conditional mutual information. IEEE Trans. Med. Imaging 2010, 29, 19–29. [CrossRef]

17. Wachinger, C.; Navab, N. Entropy and Laplacian images: Structural representations for multi-modal
registration. Med. Image Anal. 2012, 16, 1–17. [CrossRef]

18. Heinrich, M.P.; Jenkinson, M.; Bhushan, M.; Matin, T.; Gleeson, F.V.; Brady, M.; Schnabel, J.A. MIND: Modality
independent neighbourhood descriptor for multi-modal deformable registration. Med. Image Anal. 2012, 16,
1423–1435. [CrossRef]

19. Heinrich, M.P.; Jenkinson, M.; Papiez, B.W.; Brady, S.M.; Schnabel, J.A. Towards realtime multimodal fusion
for image-guided interventions using self-similarities. In Proceedings of the 16th International Conference
on Medical Image Computing and Computer-Assisted Intervention, Nagoya, Japan, 22–26 September 2013;
pp. 187–194.

20. Heinrich, M.P.; Jenkinson, M.; Brady, S.M.; Schnabel, J.A. Globally optimal deformable registration on a
minimum spanning tree using dense displacement sampling. In Proceedings of the 15th International
Conference on Medical Image Computing and Computer-Assisted Intervention, Nice, France, 1–5 October
2012; pp. 115–122.

21. Zhu, F.; Ding, M.; Zhang, X. Self-similarity inspired local descriptor for non-rigid multi- modal image
registration. Inf. Sci. 2016, 372, 16–31. [CrossRef]

22. Piella, G. Diffusion maps for multimodal registration. Sensors 2014, 14, 10562–10577. [CrossRef]

http://dx.doi.org/10.1016/S1361-8415(01)80026-8
http://dx.doi.org/10.1016/S0262-8856(03)00137-9
http://dx.doi.org/10.1109/TMI.2013.2265603
http://dx.doi.org/10.1016/j.media.2016.06.030
http://www.ncbi.nlm.nih.gov/pubmed/27427472
http://dx.doi.org/10.3390/s130607599
http://www.ncbi.nlm.nih.gov/pubmed/23765270
http://dx.doi.org/10.3390/s19051091
http://www.ncbi.nlm.nih.gov/pubmed/30836618
http://dx.doi.org/10.1016/j.patcog.2017.12.015
http://dx.doi.org/10.1109/TPAMI.2017.2730205
http://dx.doi.org/10.1016/S0031-3203(98)00091-0
http://dx.doi.org/10.3390/s18051477
http://dx.doi.org/10.1109/TIP.2019.2899947
http://www.ncbi.nlm.nih.gov/pubmed/30794174
http://dx.doi.org/10.1109/TMI.2019.2896170
http://www.ncbi.nlm.nih.gov/pubmed/30714914
http://dx.doi.org/10.1109/TMI.2011.2163944
http://www.ncbi.nlm.nih.gov/pubmed/21827972
http://dx.doi.org/10.1109/42.876307
http://dx.doi.org/10.1109/TMI.2009.2021843
http://dx.doi.org/10.1016/j.media.2011.03.001
http://dx.doi.org/10.1016/j.media.2012.05.008
http://dx.doi.org/10.1016/j.ins.2016.08.031
http://dx.doi.org/10.3390/s140610562


Sensors 2019, 19, 4675 18 of 18

23. Morales, J.L.; Nocedal, J. Remark on “algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound
constrained optimization”. ACM Trans. Math. Softw. 2011, 38, 71–74. [CrossRef]

24. Klein, S.; Staring, M.; Pluim, J.P.W. Evaluation of optimization methods for nonrigid medical image
registration using mutual information and B-splines. IEEE Trans. Image Process. 2007, 16, 2879–2890.
[CrossRef] [PubMed]

25. Wachowiak, M.P.; Smolikova, R.; Zheng, Y.; Zurada, J.M.; Elmaghraby, A.S. An approach to multimodal
biomedical image registration utilizing particle swarm optimization. IEEE Trans. Evol. Comput. 2004, 8,
289–301. [CrossRef]

26. Yang, F.; Ding, M.; Zhang, X.; Hou, W.; Zhong, C. Non-rigid multi-modal medical image registration by
combining L-BFGS-B with cat swarm optimization. Inf. Sci. 2015, 316, 440–456. [CrossRef]

27. Camara, O.; Delso, G.; Colliot, O.; Moreno-Ingelmo, A.; Bloch, I. Explicit incorporation of prior anatomical
information into a nonrigid registration of thoracic and abdominal CT and 18-FDG whole-body emission
PET images. IEEE Trans. Med. Imaging 2007, 26, 164–178. [CrossRef] [PubMed]

28. Tang, S.; Fan, Y.; Wu, G.; Kim, M.; Shen, D. RABBIT: Rapid alignment of brains by building intermediate
templates. NeuroImage 2009, 47, 1277–1287. [CrossRef]

29. Zacharaki, E.I.; Hogea, C.S.; Shen, D.; Biros, G.; Davatzikos, C. Non-diffeomorphic registration of brain
tumor images by simulating tissue loss and tumor growth. Neuroimage 2009, 46, 762–774. [CrossRef]

30. Brun, C.C.; Leporé, N.; Pennec, X.; Chou, Y.Y.; Lee, A.D.; De Zubicaray, G.; Thompson, P.M. A nonconservative
lagrangian framework for statistical fluid registration—Safira. IEEE Trans. Med. Imaging 2011, 30, 184–202.
[CrossRef]

31. Foi, A.; Boracchi, G. Foveated nonlocal self-similarity. Int. J. Comput. Vis. 2016, 120, 78–110. [CrossRef]
32. Glocker, B.; Komodakis, N.; Tziritas, G.; Navab, N.; Paragios, N. Dense image registration through MRFs

and efficient linear programming. Med. Image Anal. 2008, 12, 731–741. [CrossRef]
33. Komodakis, N.; Tziritas, G.; Paragios, N. Performance vs computational efficiency for optimizing single and

dynamic MRFs: Setting the state of the art with primal-dual strategies. Comput. Vis. Image Underst. 2008,
112, 14–29. [CrossRef]

34. Brainweb. Available online: http://www.bic.mni.mcgill.ca/brainweb/ (accessed on 10 August 2018).
35. NA-MIC Data. Available online: http://na-mic.org/Wiki/index.php/Projects:RegistrationLibrary:RegLib_C47.

(accessed on 10 August 2018).
36. NA-MIC Data. Available online: http://na-mic.org/Wiki/index.php/Projects:RegistrationLibrary:.RegLib_C20

(accessed on 10 August 2018).
37. Retrospective Image Registration Evaluation Project. Available online: https://www.insight-journal.org/rire/

(accessed on 10 August 2018).
38. Mercier, L.; Del Maestro, R.; Petrecca, K.; Araujo, D.; Haegelen, C.; Collins, D. Online database of clinical MR

and ultrasound images of brain tumors. Med. Phys. 2012, 39, 3253. [CrossRef] [PubMed]
39. BITE Database. Available online: http://nist.mni.mcgill.ca/?page_id=248 (accessed on 10 September 2019).
40. Maurer, C.R., Jr.; Fitzpatrick, J.M.; Wang, M.Y.; Galloway, R.L.; Maciunas, R.J.; Allen, G.S. Registration of head

volume images using implantable fiducial markers. IEEE Trans. Med. Imaging 1997, 16, 447–462. [CrossRef]
[PubMed]

41. Wang, C.W.; Chen, H.C. Improved image alignment method in application to X-ray images and biological
images. Bioinformatics 2013, 29, 1879–1887. [CrossRef] [PubMed]

42. West, J.; Fitzpatrick, J.M.; Wang, M.Y.; Dawant, B.M.; Maurer, C.R., Jr.; Kessler, R.M.; Maciunas, R.J.; Barillot, C.;
Lemoine, D.; Collignon, A.; et al. Comparison and evaluation of retrospective intermodality brain image
registration techniques. J. Comput. Assist. Tomogr. 1997, 21, 554–566. [CrossRef]

43. Rivaz, H.; Chen, S.; Collins, D.L. Automatic deformable MR-ultrasound registration for image- guided
neurosurgery. IEEE Trans. Med. Imaging 2015, 34, 366–380. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2049662.2049669
http://dx.doi.org/10.1109/TIP.2007.909412
http://www.ncbi.nlm.nih.gov/pubmed/18092588
http://dx.doi.org/10.1109/TEVC.2004.826068
http://dx.doi.org/10.1016/j.ins.2014.10.051
http://dx.doi.org/10.1109/TMI.2006.889712
http://www.ncbi.nlm.nih.gov/pubmed/17304731
http://dx.doi.org/10.1016/j.neuroimage.2009.02.043
http://dx.doi.org/10.1016/j.neuroimage.2009.01.051
http://dx.doi.org/10.1109/TMI.2010.2067451
http://dx.doi.org/10.1007/s11263-016-0898-1
http://dx.doi.org/10.1016/j.media.2008.03.006
http://dx.doi.org/10.1016/j.cviu.2008.06.007
http://www.bic.mni.mcgill.ca/brainweb/
http://na-mic.org/Wiki/index.php/Projects:RegistrationLibrary: RegLib_C47.
http://na-mic.org/Wiki/index.php/Projects:RegistrationLibrary:.RegLib_C20
https://www.insight- journal.org/rire/
http://dx.doi.org/10.1118/1.4709600
http://www.ncbi.nlm.nih.gov/pubmed/22755708
http://nist.mni.mcgill.ca/?page_id=248
http://dx.doi.org/10.1109/42.611354
http://www.ncbi.nlm.nih.gov/pubmed/9263002
http://dx.doi.org/10.1093/bioinformatics/btt309
http://www.ncbi.nlm.nih.gov/pubmed/23720489
http://dx.doi.org/10.1097/00004728-199707000-00007
http://dx.doi.org/10.1109/TMI.2014.2354352
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	The Framework of the FMIND Based Image Registration Method 
	The Foveated Modality Independent Neighborhood Descriptor 
	MRF Optimization Based on the Spatial Constraint 
	Discrete Optimization Based on the MRF 
	Spatial Constraint Based on the FMIND 


	Results 
	Parameter Setting 
	The Kernel Elongation Parameter   
	The Image Patch Radius RLP 
	The Similarity Threshold  
	The Static Factor  

	Comparison of Registration Performance 
	Registration Results of Simulated T1, T2 and PD Images 
	Registration Results of CT and MR Images 
	Registration Results of CT and PET Images 
	Registration Results of Real MR Images 
	Registration Results of Real MR and US Images 


	Conclusions 
	References

