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Abstract: Mobile crowd sensing (MCS) systems usually attract numerous participants with
widely varying sensing costs and interest preferences to perform tasks, where accurate task
assignment plays an indispensable role and also faces many challenges (e.g., how to simplify the
complicated task assignment process and improve matching accuracy between tasks and participants,
while guaranteeing submitted data credibility). To overcome these challenges, we propose a service
benefit aware multi-task assignment (SBAMA) strategy in this paper. Firstly, service benefits of
participants are modeled based on their task difficulty, task history, sensing capacity, and sensing
positivity to meet differentiated requirements of various task types. Subsequently, users are then
clustered by enhanced fuzzy clustering method. Finally, a gradient descent algorithm is designed to
match task types to participants achieving the maximum service benefit. Simulation results verify
that the proposed task assignment strategy not only effectively reduces matching complexity but also
improves task completion rate.

Keywords: Mobile Crowd Sensing; task assignment; service benefit; users clustering; gradient
descent algorithm

1. Introduction

The diversification and popularization of embedded mobile devices enable innumerable
user-centric mobile crowd sensing (MCS) applications (e.g., traffic monitoring, pollution monitoring,
and indoor positioning) [1–9]. A typical MCS system includes two entities (i.e., users and platform),
where users not only publish tasks to acquire information from the platform but also collect sensing
data for the platform. As a bridge between task publishers and participants, the platform helpfully
selects suitable participants to complete tasks for publishers. Generally, sensing tasks in a MCS system
are allocated to multiple participants and accomplished cooperatively [10–14].

It is crucial for a MCS system to provide task publishers with reliable services. The task sensing
process of MCS system relies on massive participants whose sensing positivity and sensing capacity are
diverse for different tasks. If a task is randomly assigned to participants, the quality of its results may
be severely affected, the credibility of collected sensing data may be reduced, and the corresponding
computing resource consumption may increase [15–20]. Therefore, task assignment strategies should
be reasonably designed to eliminate the above uncertainties, which can dramatically enhance the
philosophy behind MCS participant collaborations [21–23].

Technically, how to objectively evaluate the matching accuracy of task assignment strategies is a
major challenge and remains in dispute. In response to this challenge, many studies presented solutions
using varying methods and with different emphases. Jin, H et al. assigned MCS tasks to participants
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according to their capabilities to maximize sensing coverage [24]. The authors of [25,26] assigned
tasks based on the history of submitted high-quality results. However, they had different definitions
of data quality. Yue, W et al. mainly considered the coverage quality of sensing results [25], while
Sabrina, K.N.M et al. measured the data quality based on the actual evaluation of data [26]. Liu, S et al.
evaluated participant’s service quality based on its context and cost, and developed a Modified
Thompson Sampling Worker Selection (MTS-WS) algorithm to select workers in a reinforcement
learning manner [27]. Addressing the problem of performance maximization in MCS, a context-aware
hierarchical online learning algorithm was proposed in [28]. In detail, a local controller (LC) in
the mobile device of a participant regularly observed the participant’s context, based on which
the participant’s context-specific performance could be estimated and the participants could be
selected. Although the authors of [24–28] considered multiple task-related factors, there are still
some limitations and factors that may intuitively affect MCS performance (e.g., task difficulty, task
history, sensing capacity, and sensing positivity were omitted). Besides, the quality of data uploaded
for different task types was not clearly modeled in these studies. Consequently, it may be impossible
for the platform to assign tasks reasonably and accurately, resulting in low matching accuracy/task
completion rate, high computing resource consumption, and incredibility of data.

Focusing on above limitations, we propose a service benefit aware (SBAMA) multi-task
assignment strategy for MCS. The service benefit of participants is first modeled. Subsequently,
we propose an enhanced Fuzzy C-Means (FCM) algorithm to dynamically cluster users in terms of
their task preferences. Finally, an iterative participant search method based on gradient descent is
designed to match participants with the best service benefit in each cluster quickly and accurately.
The proposed SBAMA multi-task assignment strategy offers an interest tradeoff between participants
and platform given a fixed budget and a certain movement distance. Simulation results verify that
SBAMA can quickly and accurately find the most appropriate participants for all types of tasks.
Therefore, task completion rate based on the proposed strategy is convincingly high. The main
contributions of our paper can be summarized as follows:

(1) A service benefit evaluation model is established, from several different perspectives of tasks and
participants, to comprehensively interpret impacts of task difficulty, task history, sensing capacity,
and sensing positivity on service benefit received by the platform.

(2) An enhanced FCM algorithm is designed to cluster users. Specifically, a task preference threshold
allows participants to join more than one cluster if such participants have similar task preferences.
The generated clusters can effectively reduce the time consumption of the optimization problem
while increasing participant matching accuracy.

(3) An iterative gradient descent algorithm is proposed to tune the tradeoff between interests of
participants and platform. Particularly, it decouples the service benefit from movement distance
such that the most appropriate participants for tasks can be found accurately and quickly.

The rest of this paper is organized as follows. Related works are introduced in Section 2. Section 3
presents the task assignment framework. The service benefit model is proposed in Section 4. Section 5
elaborates on the task assignment strategy. Simulation results validating our proposed SBAMA are
given in Section 6. Finally, Section 7 concludes this paper and discusses future work.

2. Related Works

In recent years, task assignment for MCS systems has been attracting increasing research attention.
Wei, G et al. proposed a heterogeneous multi-task allocation mechanism based on spatiotemporal
correlation [29]. The reference and non-reference tasks were distinguished through utilizing granularity
settings based on which the best triple (i.e., worker-cycle-region) was obtained. Besides, to improve
the task assignment efficiency, a decomposition and combination framework was designed in [29]
for large-scale scenarios. In [30], a location-based online task assignment method was proposed
under constraints of distance and budget, incorporating quality/progress-based, task-density-based,
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travel-distance-balance-based, and bio-inspired-travel-distance-balance-based algorithms, to search for
the optimal participants maximizing the overall task quality. Wang, J et al. studied the deterministic
model and random model of trajectories in vehicle-based MCS and proposed an effective vehicle
recruitment algorithm to minimize the overall recruitment cost [31]. However, the authors of [29–31]
only considered either the mobility of participants or the spatiotemporal correlation among tasks,
where impacts of task requirements and service benefits were ignored. A failure to consider these
critical factors together may result in an inaccurate participant matching during the task assignment
process, which reduces the task completion rate.

The criterion of participant selection in task assignment has been extensively studied. Considering
various factors affecting the task participant selection, a task assignment framework was proposed
in [32]. Specifically, a unified estimation function was employed to calculate the feasibility of task
assignments and the optimal task assignment using a greedy algorithm was obtained. Wang, L et al.
and Alsayasneh, M et al. focused on the context information of participants to enhance the task
completion rate and MCS quality [28,33]. In particular, a diverse task composition scheme was studied
in terms of participant personalities to dramatically improve user experience [33]. Mavridis, P et al.
inferred skills required for tasks from available skill sets and modeled a hierarchical skill tree to match
participants with tasks, which was however computationally intensive and therefore inapplicable to
scenarios with massive users and tasks [34]. Besides, the credibility of data submitted by participants
could not be guaranteed only based on their skills. Although the authors of [28,32–34] assigned tasks
to relatively appropriate participants to ensure the data credibility, when evaluating the participant
selection, key factors such as participant positivity and task difficulty should be carefully considered
for the matching accuracy. Therefore, in this paper, we comprehensively evaluate the service benefits
of participants as the matching criterion and propose the SBAMA multi-task assignment strategy to
enhance MCS performance.

3. Task Assignment Framework

The proposed SBAMA framework is shown in Figure 1. Since tasks arrive randomly, tasks
assigned by the platform can be divided into n identical time intervals, denoted as t = [t1, t2 . . . . . . tη ].
At the beginning of tη , task publishers R = {R1, R2 . . . . . . Rm} submit tasks of different types A =

{A1, A2 . . . . . . Am} to the platform. Each publisher can only submit one type of tasks within each time
interval. Note that each task type contains q subtasks, i.e., Ai =

[
ai

1, ai
2 . . . . . . ai

q

]
. Specifically, a task has

several requirements (i.e., deadline, location, data format, and ID), denoted as Tdoc =
〈

Td; lAi ; v; ID
〉
,

where Td refers to the time range from task start ts to task end te (i.e., Td = [ts, te]) and participants
must submit sensing results before this deadline. The specific locations for subtasks of task Ai are
denoted by lA i =

[
li1, li2 . . . . . . liq

]
. Due to different content types for each task, the format of collected

data also varies. Without loss of generality, the data format is identified by v= [v1, v2 . . . . . . vk],
where vk specifies the content type acceptable for each task.

The platform then publishes tasks to all potential participants U = {u1, u2 . . . . . . un} satisfying
task requirements Tdoc. Task candidates then submit a subset of the received tasks SA =

[A1, A2 . . . . . . Ak] , where k ≤ m, to the platform indicating their task preferences. Subsequently,
the platform employs task assignment strategy to select participants with high service benefits and low costs
to perform tasks. In other words, the optimal task participants W =

(
W1, W2.....Wy

)
(y ≤ n) are found.

When tasks are completed, the platform compensates the selected participants according to their
costs and task difficulties. Finally, upon receiving feedback from the platform, task publishers score
the service quality of the participants. Apparently, the scores should be exploited by the platform as an
important reference to evaluate and update the service benefit, which further serves as an indicator for
the next rounds of task assignments.
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Figure 1. SBAMA framework.

Generally, MCS tasks are location-dependent and participants have to travel a certain distance to
perform the tasks. Therefore, movement distances are an inevitable cost for participants, i.e., cost Cij
of participant uj performing task Ai should be a function of movement distance dij and sensing cost cij.
Evidently, Cij is proportional to the distances traveled by participants (i.e., Cij

(
d̃ij
)
≥ Cij

(
dij
)

,∀ d̃ij ≥ dij)

and its growth rate also should increase with the distance (i.e.,
d2Cij(dij)

ddij
≥ 0). The cost Cij is defined

as follows
Cij = aijd2

ij + bijdij + cij (1)
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In Equation (1), aij > 0 and bij > 0 are pre-defined system parameters and cij is constant.
Participants expect to get rewards from the platform after completing tasks. Specifically, the reward
depends on the task difficulty and movement distance. Given a difficult task, its price per meter should
be high, and prices of different types of tasks are denoted by P = [P1, P2 . . . . . . Pm]. Besides, the reward
should not exceed the budget. Note that participants can perform different subtasks in the same time
interval to maximize their incomes, only when their locations are not in conflict. Thus, the income of
participants can be easily calculated through deducting the cost from the reward; there holds

ψj
(
dij
)
=

m

∑
i=1

[(
Pi · dij

)
− Cij

]
(2)

For the platform, its profit mainly comes from service benefits contributed by participants.
Intuitively, participants with greater service benefits generate more profits for the platform and
therefore should be prioritized. However, the growth rate of the profit should be slowly attenuated
because the participant service benefits become smaller and smaller after the participant is selected.
The profit obtained from completing task can be calculated as follows

fi
(
sij, dij

)
=

n

∑
j=1

[
wi · ln(1 + sij)

]
−

n

∑
j=1

(
Pij · dij

)
(3)

where system coefficient wi > 0 is determined by the platform for each task type. Apparently,
both the platform and participants want to maximize their profits or incomes. Hence, a reasonable
task assignment strategy should select participants with low sensing costs and high service benefits,
where a tradeoff between the platform and participants must also be made under constraints of the
maximum movement distance rmax

j and budget of each type of tasks B = [B1, B2 . . . . . . Bm]. Rationally,
the reward should be more than the cost to motivate participants to travel within rmax

j . Eventually,
the task assignment can be formulated as the following optimization problem.

max ψj
(
dij
)
=

m

∑
i=1

[(
Pi · dij

)
− Cij

]
(4)

max fi
(
sij, dij

)
=

n

∑
j=1

[
wi · ln(1 + sij)

]
−

n

∑
j=1

(
Pi · dij

)
(5)

s.t.
m
∑

i=1
dij ≤ rmax

j , dij > 0
n
∑

j=1
Pi · dij ≤ Bi

0 < sij ≤ 1

(6)

4. Service Benefit Evaluation

Service benefit is an important indicator for the platform to estimate the potential profit gained
from a certain participant, which often relates to task requirements. In this paper, task difficulty,
task history, sensing capacity, and sensing positivity are employed, from perspectives of tasks,
participants, and publishers, to comprehensively evaluate the service benefit of all types of tasks, so as
to achieve accurate participant matching and reliable MCS data collection.

4.1. Sensing Positivity

Sensing positivity refers to the motivation of participants in performing sensing tasks, which is
a dynamic process. Given the same sensing capacity, a higher sensing positivity signifies a greater
contribution to the platform. Interactions between participants and the platform are employed to
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measure the sensing positivity, where interaction frequency and task performance are two major
observable indicators for these interactions. Specifically, performance p is a function of response time
∆t and cost Cij. If a participant has a relatively low ∆t and Cij, the platform deems his/her performance
positive. Due to the restrictive task deadline and movement distance, p decreases with the growing ∆t
and Cij, and then gradually stabilizes. Therefore, performance pji of participant uj in task Ai can be
calculated by

pji = log2

(
1

Cij · ∆t
+1

)
(7)

where ∆t =
∣∣∣ti

q − ti
s

∣∣∣, ∆t ≤ Td. ti
q is the time participant uj starts task Ai and obviously ∆t = 0 if ti

q

is equal to task start time ti
s, which generates the value of maximum performance is 1. Conversely,

the minimum performance 0 can be obtained when ∆t = Td. Besides, when Cij is infinitely large,
pji reaches 0 (i.e., log21 = 0 ), as bounded by

pji =


0 , ∆t = Td

log2

(
1

Cij ·∆t + 1
)

, 0 < ∆t < Td

1 , ∆t = 0

(8)

Interaction frequency is another important indicator for sensing positivity. Apparently, a high
interaction frequency signifies a stable and positive sensing behavior, and thereby the interaction
frequency has the equivalent weight with the task performance in sensing positivity. Therefore,
the sensing positivity of participant uj in task Ai can be obtained as

χi
j =

f jm
n
∑

j=1

m
∑

i=1
f ji

· pji (9)

In Equation (9), f j =
[

f j1, f j2 . . . f jm
]

, f jm = [1, 2 . . . . . . h] refers to the tasks participated by uj, and
h denotes the latest task. The sensing positivity for different types of tasks is represented by a vector
Xj =

[
χ1

j , χ2
j , χ3

j . . . . . . χm
j

]
.

4.2. Task Difficulty

The task difficulty challenges the sensing capacity of participants, and we utilize a difficulty
coefficient to measure it in this paper, where a small coefficient signifies a difficult task. However,
dynamic MCS tasks are large in number and rich in type. Evaluating the task difficulty in real
time will inevitably consume massive computing power of the platform, which is prohibitively
expensive. Therefore, we employ an offline method evaluating the completion rate in task history to
obtain the difficulty coefficient. Specifically, the completion rate is defined as the ratio of completed

subtasks
∣∣∣Ai

competed

∣∣∣ to all published subtasks q, `i =

∣∣∣Ai
competed

∣∣∣
q and

∣∣∣Ai
competed

∣∣∣ ≤ q. Note that the
completion rate of different types of tasks is denoted by a vector ` = [`1, `2 . . . . . . `m]. Intuitively,
a high completion rate signifies a simple task. Besides, the completion time must be before the
deadline. Here, we exploit a theoretical completion time ϑ = [ϑ1, ϑ2 . . . . . . ϑm] to evaluate the actual

completion time ϑ̃ =
[
ϑ̃1, ϑ̃2 . . . . . . ϑ̃m

]
, and they are calculated by ϑ̃i =

∣∣∣Ai
competed

∣∣∣
∑

q=1
ai

q · tactual
make−span and
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ϑi = q · ∑
aq∈Ai

ttheoretical
make−span, where q is the total number of published subtasks. If θ̃i is within ϑi, this task

can be completed. Eventually, the difficulty coefficient can be obtained as

Di =


`i ×

(ϑi−ϑ̃i)
max(ϑi−ϑ̃i)

, ϑi ≥ ϑ̃i

`i ×
(

1− (ϑ̃i−ϑi)
max(ϑ̃i−ϑi)

)
, ϑi < ϑ̃i

, ϑi ≤ Td (10)

It is also worth noting that the task difficulty is relative. If the sensing capacity of a participant
is low, the platform will not assign a difficult task to him/her. We denote the varying sensing
capacity of participants with a vector K =

[
κ1j, κ2j . . . . . . κij

]
, where κij is a constant determined by

hardware specifications of sensing devices. Therefore, the relative difficulty coefficient of participant
uj performing task Ai can be easily calculated and normalized using logarithmic function, as shown in
the following

=ij =

{
log2

(∣∣κij − Di
∣∣+ 1

)
, ϑi ≥ ϑ̃i

log2
(∣∣κij − Di

∣∣ + 1
)

, ϑi < ϑ̃i
, ϑi ≤ Td (11)

Relative difficulty coefficients are further denoted by matrix Cn×m , as shown in Equation (12),
where rows represent participants and columns indicate tasks.

Cn×m =


=1,1 =1,2 . . . . . . =1,m
=2,1 =2,2 . . . . . . =2,m
. . . . . . . . . . . . . . .
=n,1 =n,2 . . . . . . =n,m

 (12)

4.3. Task History

Generally, subjective feedback from task publishers is an effective benchmark for the credibility
of data submitted by participants. However, due to insufficient labeled MCS data, it is challenging
to objectively evaluate the data credibility. We exploit historical records of participants including
ID, collected data format vj, vj ∈ v and reward <j, <j = Pi · dij, as denoted by Zj =

〈
#, vj,<j

〉
,

to evaluate data credibility. Collected data format vj is compared with task requirements v defined by

Tdoc, and a small gap signifies the complete data, which can be indicated by Ij =
||v|−|vj||

max||v|−|vj|| . Besides,

the more data formats the platform receives, the higher data credibility a task can obtain. Generally,
the value of data is defined as a quotient of frequency and the residual of vj in the task history of
publisher Ri. The value of the historical data is estimated by linear regression model Y=Xω+δ, where
Y and δ are both |U| dimension vector, |U| denotes the number of participants, X is a |U| × |Zi|
matrix, and ω is a |Zi| dimension vector. Therefore, the residual between the actual data value and the
estimated is δ̂ = Y− Ŷ = (1−M)Y, where M = X

(
XTX

)−1XT is a hat matrix and a small residual
indicates high data credibility. Consequently, the data credibility of participant uj for task Ai can be

obtained as reliableij =
Ij · f

j
value

‖δ̂‖ . Moreover, a publisher gives a high score to participants requiring

relatively low task payments, and the score given to participants can be obtained as follows

nij =
relibleij

<j
(13)

We further adopt the logarithm to normalize the score, as shown in the following

nij = log2

(
1 +

relibleij

<ij

)
(14)
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Then, the score matrix Nn×m can thus be obtained as follows

N =


n11 n12 n13 . . . . . . n1m
n21 n22 n23 . . . . . . n2m
n31 n32 n33 . . . . . . n3m
. . . . . . . . . . . . . . . . . .
nn1 nn2 nn3 . . . . . . nnm

 (15)

where rows represent task publishers and columns represent participants.

4.4. Service Benefit

Mathematically, the service benefit of participants is a function of task score nij, relative task
difficulty =ij, and sensing positivity χi

j , where χi
j serves as the weight of the service benefit indicating

the motivation of participants. In addition, the service benefit grows monotonically with the increasing
task score and difficulty. As marginal benefits of submitted data gradually decrease, the growth rate of
service benefits drops and stabilizes. Thus, the service benefit of uj to Aj can be formulated through
the following inverse trigonometric function

sij =
χi

j

π
× arctan

[
nij · =ij

]
+

1
2

(16)

However, the evaluation of service benefits depends on task history, which is inapplicable to new
participants. Therefore, we propose to set the default value of service benefits to 0.5, indicating an
uncertain service benefit for strange participants. Besides, 0.5 also serves as a threshold to distinguish
participants with low service benefits. Based on their task histories, we can reformulate the service
benefit of participants as

sij =


χi

j
π ×arctan[nij=ij]+ 1

2 , task history

0.5 , no task history
(17)

Similarly, service benefits of participants for different types of tasks can also be denoted by
matrix Sn×m.

5. Service Benefit Aware Multi-Task Assignment

Technically, the optimization goal of MCS task assignment is to select participants with high
service benefits and low costs, so as to balance the interests of participants and the platform,
given constraints of movement distance and budget. To solve this optimization problem, we first
cluster users (i.e., task candidates) according to their task preferences, and then exploit a gradient
descent algorithm to find the optimal participants in each cluster.

5.1. User Clustering Based on Task Preference

In MCS scenarios with massive users, the matching accuracy of optimization algorithms always
suffers from the large search range of task candidates. Therefore, we propose to employ the similarity
among task preferences to cluster task candidates. Specifically, task preferences indicate the interest of
users in certain tasks, which can be reflected by task acceptance rate and task performance. The task
acceptance rate is defined as the proportion of tasks submitted by user uj to the total number of tasks

submitted by all the selected participants, calculated by pjm
acc =

|SAi |uj

∑
uj∈W

k
∑

i=1
|SAi |uj

, which further serves as

the weight of the task preference. Intuitively, the acceptance rate of participant, calculated by pjm
acc =
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|SAi |uj

∑
uj∈W

k
∑

i=1
|SAi |uj

, which further serves as the weight of the task preference. Intuitively, the acceptance

rate of participant uj for different types of tasks can be denoted by vector Pji
acc =

[
pj1

acc, pj2
acc . . . . . . pjm

acc

]
.

The task preferences of users pj =
[
pj1, pj2 . . . . . . pjm

]
are also perceived by the platform, which can be

calculated similarly with Equation (8). Therefore, task preferences can be denoted by the product of
the task acceptance rate and task performance (i.e., hij = pji

acc × pji ), and its matrix holds as

H =


h11 h12 h13 . . . . . . h1m
h21 h22 h23 . . . . . . h2m
. . . . . . . . . . . . . . . . . .
hn1 hn2 hn3 . . . . . . hnm

 (18)

where rows represent users and columns represent tasks.
The number of MCS clusters depends on the number of published tasks in each time interval,

which varies dynamically with the task preference. Note that a user may be interested in multiple
tasks and therefore belongs to more than one cluster, which makes Fuzzy C-Means (FCM) algorithm a
perfect clustering method for this scenario. In terms of the task preference defined above, we employ
cosine similarity to replace the Euclidean distance in standard FCM and modify it into similarity FCM
(SFCM). The cosine similarity of task preferences indicating the preference similarity between cluster
center ok and user uj in SFCM can be calculated by

dkj = 1− cos(hk, hj) = 1−

m
∑

i=1
hji × hki√

m
∑

i=1
h2

ji

√
m
∑

i=1
h2

ki

(19)

In FCM, the fuzzy weighted exponent m is commonly employed to determine the fuzzy degree
of clustering results, and its optimal value is usually set to 1.5 ≤ m ≤ 2.5. We take m = 2 and the
objective function of SFCM can be obtained as follows

J (U, O) =
n
∑

j=1

Λ
∑

k=1

(
µkj

)2(
dkj

)2

s.t.



0 ≤ µkj ≤ 1 , k ∈ [1, Λ] , j ∈ [1, n]
Λ
∑

k=1
µkj = 1 , j ∈ [1, n]

0 <
Λ
∑

j=1
µkj ≤ n , k ∈ [1, Λ]

(20)

In Equation (20), µkj represents the membership degree of user uj to cluster Ok. The membership
matrix can then be denoted by UΛ×n and the cluster center matrix is O, which can be calculated in
the following

ok =

n
∑

j=1

(
µkj

)2
hji

n
∑

j=1

(
µkj

)2 , k ∈ [1, Λ] (21)

µkj =
1

Λ
∑

i=1

{ dkj
dji

}2
, k ∈ [1, Λ] , j ∈ [1, n] (22)
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We set the iteration times to l and the stop parameter to ξ, respectively. Given the user preference
matrix H, SFCM randomly generates an initial membership matrix U0 and calculates Λ initial cluster
centers ok, k ∈ (1, 2 . . . . . . Λ). According to cluster center matrix O, both cosine similarity dkj and
membership matrix UΛ×n can be obtained. For instance, if dkj = 0, membership degree of uj to Ok is 1.

Finally, the iteration is stopped, if
∣∣∣J(l+1) − J(l)

∣∣∣ ≤ ξ, to generate clustering results UΛ×k and obtain
cluster center matrix O. Otherwise, iterations continue to update UΛ×k and O until reaching iteration
times l or stop parameter ξ.

Generally, FCM constructs clusters according to the membership matrix (i.e., Ok ={
k|µkj = max

i
uij, 1 ≤ j ≤ Λ

}
, uj ∈ Ok). However, users clustered by FCM can only belong to one

cluster according to her/his highest task preference, which is against the intuition that users with
similar preferences for several tasks may simultaneously belong to multiple clusters. Therefore,
we define clustering threshold Θ to establish these characteristic overlapping clusters. Specifically,
the maximum membership value of a user in the cluster is compared with the other memberships value
that he/she belongs to, then all comparison values are sorted, the largest comparison value are got
among them as the threshold, which calculated by Θ= arg max

Ej

⋃|Uk|
j=1 Ej, Ej =

⋃m
i=1 min

∣∣∣µmax
ij − µ−ij

∣∣∣.
The true label is obtained by the maximum average preference value among different types of tasks in
a cluster; there holds

H̄i =

|Uk |
∑

j=1
hj=1

|Uk|
(23)

where |Uk| is the total number of users in cluster Ok.

5.2. Optimization Problem Based on Lagrange Duality

5.2.1. Problem Reformulation

Since the task price per meter is fixed, the income of participants can be maximized by reducing
the movement distances, whereas the platform maximizes its profit by selecting participants with high
service benefits. Therefore, the optimization problems in Equations (4)–(6) can be rewritten as follows

max
m
∑

i=1
ϕi −

n
∑

j=1
Cj

s.t.
m
∑

i=1
di j ≤ rmax

j , di j > 0, j = 1, 2 . . . . . . n
n
∑

j=1
Pi · dij ≤ Bi, i = 1, 2 . . . . . . m

0 < sij ≤ 1

(24)

In Equation (24), ϕi =
n
∑

j=1
wi · ln

(
1 + sij

)
and Cj =

m
∑

i=1

(
aij · d2

ij + bij · dij + cij

)
represent the

service benefits obtained by the platform and the costs consumed by participants, respectively.

5.2.2. Lagrange Duality

Equation (24) shows that the objective function is convex with respect to dij and sij. Hence,
the Lagrange multiplier can be employed to solve this unconstrained dual problem; there holds

L
(

dij, αij, βi j

)
=

m
∑

i=1
ϕi −

n
∑

j=1
Cj +

n
∑

j=1
αij·
(

m
∑

i=1
dij − rmax

j

)
+

m
∑

i=1
βi j ·

(
n
∑

j=1
Pi · dij − Bi

)

=
m
∑

i=1

[
ϕi + βi j ·

(
n
∑

j=1
Pi · dij − Bi

)]
+

n
∑

j=1

[
αij ·

(
m
∑

i=1
dij − rmax

j

)
− Cj

] (25)
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In Equation (25), the Lagrange multiplier is denoted by matrix βm×n = [β1,∗, β2,∗ . . . . . . βm,∗],
αn×m = [α1,∗, α2,∗ . . . . . . αn,∗] and αij ≥ 0. Since the service benefit of participants is already evaluated,
the dual problem can be defined by

min
αj≥0;βi

D (α, β) = min
αij≥0;βi

max
dij>0

L
(

dij, αij, βi j

)
= min

αij≥0;βi
max
dij>0

m
∑

i=1
Φi
(

βij
)
+

n
∑

j=1
Ψj
(
αij
) (26)

In Equation (26), Φi
(

βij
)
= max

dij≥0
ϕi + βij ·

(
n
∑

j=1
pij · dij − Bi

)
and Ψj

(
αj
)
= max

dij≥0
αij ·

(
m
∑

i=1
dij − rmax

j

)
− Cj.

Because the original objective function is convex, the strong duality must satisfy the Slater condition to
generate the optimal solution for this dual problem.

5.2.3. Optimization Algorithm

We employ a gradient descent algorithm to iteratively solve the dual problem. The variables of
the dual problem can be updated as follows〈

αl+1
ij , βl+1

ij

〉
=
[〈

αl
ij∂, βl

ij

〉
− λ ·

〈
∂D
∂αij

, ∂D
∂βij

〉]+
=
[〈

αl
ij, βl

ij

〉
− λ

〈(
dl

ij − rmax
j

)
,
(

Pi · dl
ij − Bi

)〉]+ (27)

In Equation (27), dl
ij is the variable of the original optimization problem in the lth iteration, αl

ij and

βl
ij are the variables of the dual problem in the lth iteration, and λ is the learning step size. Participants

with the best service benefits and optimal movement distances can be obtained iteratively by the
platform. First, in the iteration of service benefits, participants with the best benefits in the lth iteration
can be obtained. Then, in the gradient descent algorithm, dual variables αl

ij and βl
ij of the lth iteration

are obtained. Finally, sl
ij, αl

ij and βl
ij are all set for Equation (28) to generate the optimal movement

distance. The iteration process does not stop until convergence conditions are met. Algorithms 1 and 2
are updated as Equations (28) and (29).

∀uj ∈ U, dl
ij = arg max ϕi + βl

ij ·
(

n

∑
j=1

Pi · dij − Bi

)
+ αl

ij ·
(

m

∑
i=1

dij − rmax
j

)
− Cj (28)

∀Ai ∈ A, sl
ij = arg max ϕi (29)

Specifically, the complexity of Algorithm 1 is O(n), where n is number of task candidate.
The complexity of Algorithm 2 is O (m), where m is the number of task cluster. The complexity
of overall assignment strategy is O (m× n).

When the best participants are selected for each type of task, the platform pays their task
reward, updates their service benefits, and exploits scores from task publishers for the next round
participant selection.
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Algorithm 1 Service benefits.

Input: potential participants set U; service benefit matrix S; Task set A
Output: the optimal participants W for Task Ai; Profit fi

(
sij, dij

)
Initialize
W = φ, the number of iterations l = 0

Select participant u0 randomly, W ← u0

Receive dl
ij from user

Calculate the profit of each task of u0 through Equation (5)

while
∣∣∣ f l+1

i (W)− f l
i (W)

∣∣∣ ≤ 10× e−k or l 6= 0 do

if sij = arg max ϕi then

Select participant uj and corresponding sij

Calculate the profit of the platform through Equation (5))

return
〈

sij, f l
i (sij, dij)

〉
break

else

l = l − 1
update Equation (29)
return to Line 5

end if
end while
return

〈
sij, fl(W)

〉

Algorithm 2 Iterative of dij progress.

Initialization
for l = 0, 1, 2, 3 . . . . . . do

Receive sl
ij from platform

Update Equation (28)

Compute the new value of αl+1
ij and βl+1

ij using Equation (27)

if
∣∣∣αl+1

ij − αl
ij

∣∣∣ ≥ ρ and
∣∣∣βl+1

ij − βl
ij

∣∣∣ ≥ ρ, where ρ is a tunable little real number then

Return to Line 3

else

return
〈

dl
ij, ψj

(
dij
)〉

break

end if
end for

6. Experiment

Gowalla, employed in this study to validate the proposed SBAMA, is a location-based real world
social network dataset that allows users to share their information, including ID, access time, longitude,
latitude, and location tags. The dataset collected all public check-in data between February 2009 and
October 2010. There are 19,6591 nodes and 950,327 edges in Gowalla. Gowalla is mainly used to
study human mobility [35]. Specifically, 500 locations and 1000 users were extracted from Gowalla as
task locations and candidates, respectively. Subsequently, these 1000 task candidates were clustered
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into five groups, where each group maintains a task preference matrix and a corresponding service
benefit matrix, containing five types of tasks. In addition, SFCM clustering algorithm and optimization
algorithm in SBAMA were compared with original FCM algorithm and greedy algorithm in Dynamic
Trust-Based Recruitment Framework (DTRF) [20] on MATLAB platform, respectively. Simulation
parameters are given in Table 1.

Table 1. Parameter settings.

Parameters Value

target region (km2) 600× 50
types of task 5

number of unit tasks for each task [20, 200]
participant service benefit value (0, 1)

user preference value (0, 1)
aij (0, 1)
bij (0, 1)
cij (1, 2)

inherent sensing costcij (1, 4)
maximum movement distance rmax

j (km) 10
task effective time (min) [20, 60]

task price per meter pij($/m) (0.2, 0.5)
number of candidate users 200

ξ 10−5

wi (100, 300)
Bi [2000, 5000]

6.1. Advantages of SFCM

The objective function iteration and clustering accuracy of SFCM were compared with those of
FCM to verify the effectiveness of SFCM. Objectively, both FCM and SFCM adopt the same initial
membership matrix and the simulation was repeated 100 times, where seven tests were randomly
selected for observation.

The iteration times needed by FCM and SFCM for objective function convergence are shown
in Figure 2. Compared with FCM, SFCM requires a stably lower number of iterations around 30.
In addition, SFCM converges quickly and has significantly short clustering time. Figure 3 illustrates
the iteration of their objective function values, where the initial value of SFCM is notably much smaller
than that of FCM, because the Euclidean distance in FCM is replaced by cosine similarity of SFCM to
reduce the membership value.
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Figure 2. Comparison of the number of iterations.
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Figure 3. Comparison of the iterative process.

The clustering accuracy of FCM and SFCM, given the maximum membership value, is shown
in Figure 4, which is measured based on the original dataset with labels. The clustering accuracy
of SFCM is generally higher than 95%, whereas the worst case of FCM is only 74.5%. Similarly,
given the maximum membership value, randomly selected clustering results of FCM and SFCM
are shown in Figure 5, where SFCM has a significantly better clustering result. Figure 6 shows the
final membership matrix value of users from a random test. Cluster labels can be determined by
Equation (22). For example, the cluster for Task A1 almost includes Users 40–80. However, according to
their membership matrices, Users 34, 84, 100, 103, and 156 have similar membership values for different
types of tasks. As shown in Table 2, the membership values of User 34 for Tasks A3 and A5 only
differ by approximately 0.074. Besides, Users 103 and 156 have membership differences only within
0.1 for Tasks A2/A4 and Tasks A2/A5, respectively. Therefore, the task preference threshold is set to
0.1 for overlapping clustering and the clustering result of SFCM based on this threshold is shown in
Figure 7. Compared with Figure 5, clusters overlap and User 34 belongs to clusters of Tassk A3 and A5
simultaneously, which is more practical for real world MCS scenarios. In short, SFCM with membership
threshold can cluster users with similar task preferences, which is an effective underpinning for the
subsequent optimization problem.
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Figure 4. The accuracy of clustering.
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Figure 5. Comparison of user clustering.
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Figure 6. Membership matrix values of SFCM.

Table 2. Similar membership values of randomly tested users.

Task User 34 84 100 103 156

A1 0.046355202 0.423835317 0.0043460630 0.021614770 0.087140617
A2 0.034177025 0.046220128 0.0661477153 0.388445033 0.479426570
A3 0.494624410 0.003243961 0.4977484533 0.009119740 0.002899209
A4 0.003762370 0.517018454 0.4254306807 0.458955766 0.039708579
A5 0.421080991 0.009682137 0.0063270875 0.121864688 0.390825023
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Figure 7. Result of SFCM cluster based on threshold.

6.2. Analysis of Optimization Algorithm

Figure 8 shows how the platform profit gained from each type of task varies with the number
of iterations. It is observed that the platform profit converges to the optimal value when the number
of iterations reaches about 45, which implies the platform can stably match appropriate participants
to tasks. Besides, the platform profit increases as the average service benefit increases. In Figure 9,
the impact of the number of iterations on the participant income is depicted. For a fixed task price Pi,
the participant income first grows sharply as the number of iterations increases and then tends to be
stable. The income of Participant 3 is significantly higher than those of others. This is because his/her
task is more difficult to be performed and requires a stronger sensing capacity, which thereby receives
a higher payment from the platform. In Figures 8 and 9, the fast iteration convergence of the proposed
gradient descent algorithm for achieving the best task participants is validated.
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Figure 9. Changes in participant income.

In Figure 10, the task completion rates of DTRF and SBAMA are compared. In addition to sensing
quality considered by DTRF, the proposed SBAMA also takes service benefits of participants, task
preferences and real-time feedbacks from task publishers. Hence, SBAMA acquires 8% higher task
completion rate.
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Figure 10. Comparison of task completion rates for different tasks.

In short, through narrowing the search range of task candidates, SBAMA effectively improves the
matching accuracy of tasks assignment with fast algorithm convergence.

7. Conclusions

In this paper, we propose the SBAMA to quickly and accurately match MCS tasks with the
most appropriate participants to improve the task completion rate and data credibility. Firstly,
the service benefit of participants is modeled based on their task difficulty, task history, sensing
capacity and sensing positivity to improve the accuracy of task assignment. Then, task candidates
are clustered according to their task preference to narrow the search range. Finally, the gradient
descent algorithm is designed to select the optimal participants in each cluster. Simulation results
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verify that the proposed SBAMA can quickly find the most appropriate participants to meet the
requirements of multiple concurrent types of tasks under a massive user scenario, for example,
crowded road condition monitoring. Although the proposed SBAMA can be applied to the scenario of
massive users and numerous concurrent tasks, the strategy still has some limitations for the scenario
where participants are sparse, which can lead to a low matching accuracy between the task and the
participant. In the future, we will focus on the sparse participant scenario and study the associated
task assignment strategy.
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