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Abstract: To improve the multi-speed adaptability of the powered prosthetic knee, this paper
presented a speed-adaptive neural network control based on a powered geared five-bar (GFB)
prosthetic knee. The GFB prosthetic knee is actuated via a cylindrical cam-based nonlinear series
elastic actuator that can provide the desired actuation for level-ground walking, and its attitude
measurement is realized by two inertial sensors and one load cell on the prosthetic knee. To improve
the performance of the control system, the motor control and the attitude measurement of the GFB
prosthetic knee are run in parallel. The BP neural network uses input data from only the GFB
prosthetic knee, and is trained by natural and artificially modified various gait patterns of different
able-bodied subjects. To realize the speed-adaptive control, the prosthetic knee speed and gait cycle
percentage are identified by the Gaussian mixture model-based gait classifier. Specific knee motion
control instructions are generated by matching the neural network predicted gait percentage with the
ideal walking gait. Habitual and variable speed level-ground walking experiments are conducted via
an able-bodied subject, and the experimental results show that the neural network control system can
handle both self-selected walking and variable speed walking with high adaptability.

Keywords: prosthetic control; neural network; prosthetic knee; geared five-bar mechanism

1. Introduction

The prosthetic knee is a vital apparatus for the rehabilitation of lower limb amputations, which can
enable above-knee amputees to regain walkability in daily life. Compared with purely passive
prosthetic knee joints, the powered prosthetic knee joints can provide the amputees with active
actuation when needed, thus improving the walking gaits of amputees. To achieve satisfactory
performance, the mechanical structure, actuating device, and control system of the powered prosthetic
knee must be designed appropriately according to their respective requirements and mutual relations.

The control system, which works as the “brain” of the powered prosthetic knee, directly determines
the response of the prosthetic knee. Therefore, various control methods, such as the adaptive
control [1-4], finite state control [5,6], expect system control [7], central pattern generator based
control [8], EMG based control [9,10], neural network control [11-13], etc., have been proposed to
implement and further improve the control performance of the prosthetic knee. Compared with other
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parametric model-based control methods, the neural network is a data-driven system, which has
advantages of fewer difficulties in more accurate system modeling and stronger capabilities of handling
known abnormal inputs when adequately trained. E. Tileylioglu et al. proved by experiments that
the neural network-based approach can generate slightly better results than conventional rule-based
algorithms [14].

Generally, there are two ways to implement the neural network control of the prosthetic knee:

(1) Use the neural network to learn the underlying relations between inputs and control parameters
of the actuating device, thus controlling the prosthetic knee [15];

(2) Use the neural network to predict motions of the amputated leg, based on which the specific
control instructions of the actuating device is generated [16].

Compared with the former efficient application-specific method, the latter one is more versatile.

Many different sources of inputs can be used for the neural network control of prosthetic joints.
For example, the surface electromyography (EMG) is an electrical activity generated by the muscle cell,
which can be detected via surface electrodes and used for limb pattern recognition. S. Li et al. used
EMG signals from five muscles of the lower limb as inputs of the trained neural network, which can
successfully identify three different level walking speeds with a general recognition rate of 90.48% [17].
L. Liu et al. used the extracted features of the EMG signals from able-bodied subjects via the principal
component analysis as inputs of the neural network, thereby successfully recognizing locomotion
patterns such as walking up/down hills, walking up/down stairs, etc. [18]. Similar to Liu [18], R. Oweis
used features extracted by sample entropy, fourth-order cepstral coefficient, root mean square and
waveform length, as inputs of the neural network, thus realizing five human forearm hand gestures
recognition with an average accuracy of 96.7% [19].

In addition to EMG signals, signals of mechanical sensors such as accelerometers, gyroscopes,
load cells, etc., are also widely used in neural network control of the prosthetic joint. Compared
with sEMG-based control, sensor-based control has the advantage of convenience in use, lower cost,
and better reliability [20,21]. For example, M. Islam et al. used velocity and segmentation angle of the
ankle as inputs of the neural network, which can automatically detect the gait mode of the powered
ankle-foot orthosis [22]. K. Ekkachai et al. proposed a neural network predictive control of the MR
damper prosthetic knee with inputs of the knee angle and control voltage, which can provide amputees
with better knee angle trajectories than conventional open-loop controllers [23]. Apart from using only
kinematic data, dynamics data such as joint forces can also be used for the neural network control.
U. Demir et al. used the neural network with inputs of the angle and force of the Physiotherabot to
estimate impedance parameters during manual therapy, which can make the Physiotherabot suitable
for the personal robotic treatment of different patients [24]. ]. Jung et al. used the ground reaction
force and joint angles of the sound leg as inputs of the neural network, which can recognize current
phase gait and generate predicted motions of the unsound leg [25]. Moreover, G. Li developed a novel
wearable sensor shoe, which can measure force situations of the foot, and used 3D force situations of the
foot as inputs of the neural network to predict motions of the measured limb. Unlike the conventional
limb sensing system, this sensing shoe is more convenient [26].

There is also some indirect information that can be used for motion recognition of lower limbs.
For example, D. Joshi et al. predicted the motion of the residual limb via the cross-correlation coefficient
obtained from sixteen healthy adult males [27], while H. Vallery et al. used statistical regression [28]
between the sound leg and the residual limb to control the prosthetic knee. In addition, P. Kutilek
used the angle-angle diagram between hip, knee, and ankle joints as inputs for the neural network to
predict limb motions [29].

In this paper, the authors intend to use the neural network to develop a speed-adaptive control of
a previously proposed GFB prosthetic knee concept [30]. However, by thoroughly analyzing the above
literature, three potential shortcomings of current neural network control methods for the powered
lower-limb prosthesis could be found as follows:
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(1) Current neural network control methods did not take into account the past walking gait,
which contains the time information that has been proven essential to the improvement of the
overall control performance [31,32] and the compensation for inherent system noise [22].

(2) Current neural network control methods directly predicted the prosthetic locomotion, which will
make it hard to modify the gait output for the adaptability of different walking conditions without
retraining the neural network.

(3) Current neural network control methods often used data from the sound limb of the amputee as
inputs, which will lose versatility in dealing with asymmetrical walking gaits such as acceleration
or deceleration.

To solve these shortcomings, this paper tries to use the current walking gait as well as the past
walking gait of only the prosthetic knee as inputs of the neural network, and then matches the predicted
walking gait percentage with the ideal gait database that contains walking gaits corresponding to
different walking speeds to generate specific knee motions for the motor control, thereby improving
the speed-adaptive and asymmetrical walking effects of the prosthetic knee as well as the modifiability
of the neural network control.

The rest of this paper is organized as follows: Section 2 presented the structure and the actuation
design of the GFB prosthetic knee, and Section 3 is the speed-adaptive neural network control of
the GFB prosthetic knee. Section 4 shows the experimental verification of the control algorithm,
and Section 5 concludes the paper.

2. Design of the Powered GFB Prosthetic Knee

2.1. Structure Design

The GFB prosthetic knee consists of a GFB mechanism and a cam-based nonlinear series elastic
actuator. Specific theoretical modeling and formula derivation are presented in [30,33]. Its schematic
diagram, structure, actuation mechanism, and the CAD model are all depicted in Figure 1.

@

Figure 1. (a) Schematic diagram, (b) structure, (c) actuation mechanism, and (d) CAD model of the
GEFB prosthetic knee. 1-level arm (fixed on linkage AB), 2-linkage AB (thigh linkage), 3-linkage O, A
(frame), 4-linkage O104 (shank linkage), 5-linkage BC, 6-linkage COj4 (incomplete gear g, centered at
hinge O,), 7-incomplete gear g; (fixed on linkage O A), 8-bearing, 9-spring fastening, 10-helical spring,
11-cam roller, 12-guide, 13-transmission gear, 14-coupling, 15-motor cabinet (fixed on frame), 16-motor,
17-guide, 18-transmission gear, 19-bearing chock, 20-bearing, 21-cylindrical conjugate cams (two cam
grooves on outer/inner walls of the cylinder), 22-bearing chock, 23-bearing, 24-helical spring, 25-spring
fastening, 26-bearing.
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The dimension of the GFB mechanism is optimized by the improved genetic annealing
algorithm [34] to implement the bionic human knee centrode. The linkage O;A works as the
frame to enable the installation of the actuating component in its cavity. The linkage AB acts as the
thigh bar and the linkage 010 is the shank bar. The linkage BC is modified as curved to avoid its
motion interference [35] with the actuating component. The endpoint Oy of the linkage O4C is designed
as an incomplete gear, which can mesh with the incomplete gear centered at O; on the linkage O;A to
form the gear mechanism.

The actuating component of the GFB prosthetic knee is a cam-based nonlinear series elastic
actuator, whose dimensional parameters are optimized to enable the prosthetic knee to realize natural
level-ground walking gait while the energy consumption of the actuator is minimized. The motor
drives the conjugate cylindrical cams to rotate via the gear transmission (5:1), which can deform two
helical springs that reciprocate along the frame slides to actuate the thigh linkage AB during walking.

The specifications of the powered GFB prosthetic knee are listed in Table 1.

Table 1. Specifications of the powered geared five-bar (GFB) prosthetic knee.

Height  Weight (without Battery) = Max. Joint Torque = Max. Joint Speed = Max. Range of Motion
0.2m 2.8kg 77 N'-m 1.85 rad/s 2.45 rad

2.2. Motor Control

The motor system of the GFB prosthetic knee is shown in Figure 2.

LabVIEW Maxon Epos 2 Maxon RE40 Prosthetic
(Host PC) controller DC motor knee
USB cable . Encoder/power cables . Transmission
Lt hal Lagl BT - Lt
Motor instruction Electric power Mechanical power

04 ‘ 1|ba) 1| ba ¥ PID EON PI
» — = ( Position  H+» Current
S N + Controller |ii +, Controller

ATF(,:alC ) KT i/* Current regulation Motor motion

Current compensation

Position regulation

Figure 2. Motor control system (feedforward current compensations are provided to deal with
inertial-related, speed-related and load-related changes in the prosthetic system). L,;, and R, are the
inductor and the resistor of the motor, and J;; and b;; are the moment of inertial and damping of the
motor and transmissions; Ky; and Ky are the torque constant and the speed constant of the motor,
respectively; Ky, K; and K, are corresponding gains of feedforward current compensations; T), is the
needed actuating torque of the prosthetic knee, and ATg"lC is the calculated prosthetic torque changes
by real-time inverse dynamics of the prosthetic knee.

The hardware of the motor control system consists of a host PC (LabVIEW), a motor controller
(Epos 2 50/5, Maxon, Sachseln, Switzerland), and a brushed DC motor (RE 40, 24V, Maxon, Sachseln,
Switzerland) with an integrated reducer (GP 42, 26:1, Maxon, Sachseln, Switzerland). The host PC
communicates with the Maxon Epos 2 controller via a USB cable based on the LabVIEW-Maxon
EPOS instrument Driver. The DC motor is connected to the Maxon Epos 2 controller via a 3-channel
differential incremental encoder (ML, 512-line, Maxon, Sachseln, Switzerland) as well as a power cable.
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The motor control architecture is finalized by the cascade of a PI (Proportional-Integral) current
regulation and a PID (Proportional-Integral-Derivative) position regulation. The sampling frequencies
of the PI current regulation and the PID position regulation are 1 kHz and 500 Hz, respectively. Because
the prosthetic knee angle is mechanically related to the output angle of the cam-based nonlinear series
elastic actuator, the input of the prosthetic control is set as the desired output angle 04, angular velocity
Qd, and angular acceleration Gd of the cam-based nonlinear series elastic actuator, and the output of
the control is the actual output angle 0 of the cam-based nonlinear series elastic actuator. Additional
feedforward compensations are provided for the current regulation of the motor to provide necessary
actuating torque for the prosthetic knee in addition to the primary actuation of the motor system.
The acceleration feedforward and the speed feedforward are added to deal with the moment of inertial
related changes and the speed-related damping in the motor system, while the torque feedforward is
meant for the compensation of changes in prosthetic load.

2.3. Attitude Measurement

The attitude measurement of the GFB prosthetic knee is to use mechanical sensors to obtain
the locomotion data for the neural network control. The specific platform is shown in Figure 3,
which consists of an Arduino Uno board, dual IMU sensors (MPU-6050, InvenSense, San Jose, CA,
USA) and one FSR load cell (Force Sensing Resistor, Interlink Electronics, Camarillo, CA, USA). The
Arduino UNO development board works as a sensor hub to communicate with the host computer.
The FSR load cell is installed at the bottom of the prosthetic knee to distinguish the stance phase and
the swing phase in the level-ground walking cycle. Dual MPU-6050 sensors, which are individually
accessed via the 12C address 0x68 (the one whose ADO port is set high) and 0x69 (the one whose ADO
port is configured low), are installed on the upper and lower linkages of the GFB prosthetic knee to
measure the motions of the lower extremity. The Yaw, Pitch, and Roll data of the thigh and the shank
can be directly obtained by the DMP (Digital Motion Processor) within two MPU-6050 sensors, the
sampling frequency of which are set as 100 Hz.

@

Host PC

(b)

A Yaw
5 :
;— Roll Arduino board
s Pitch
a 1 H MPU-6050
@ t
>
/ MPU- 6@
C e e e LN I — _
" y attitude GFB H q MPU-6050
j| SEE prosthetic -
knee joint

AAPU 60\

shank
attitude
\_ sensor

Analog port
\ 12Cport

=)
FSR load cell

FSR

load cell Foot

Figure 3. Attitude measurement platform: (a) schematic diagram; (b) hardware diagram.

The overall attitude measurement process of the GFB prosthetic knee is shown in Figure 4.
To identify which sensor the transmitted data belongs to, the Header Byte of the transmitted data
from the thigh MPU-6050 and the shank MPU-6050 are set to 0x69 and 0x0c, respectively. The current
walking phase of the prosthetic knee can be obtained by identifying the walking phase Flag. When in
the stance phase, the value of the walking phase Flag is 1; when in the swing phase, the Flag value is 0.
The details of the transmitted data are listed in Table 2.
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Figure 4. Attitude measurement of the powered geared five-bar (GFB) prosthetic knee.

Table 2. Data structures of the transmitted data from the attitude measurement platform.

Header Yaw Float (4 Byte)  Pitch Float (4 Byte) Roll Float (4 Byte)  Phase Flag (1 Byte)
0x69/0x0c Y Byte 1,2,3,4 P Byte 1,2,3,4 R Byte 1,2,3,4 1/0

2.4. Parallel Implementation of the Attitude Data Processing and the Motor Control

If the motor control function and the attitude data acquisition/processing function are operated
in the serial mode, the motor will be unmonitored at some specific period. The attitude data
acquisition/processing period must be restricted below millisecond levels to ensure control timeliness,
which will increase the design difficulty of both the software and hardware systems, as shown in
Figure 5a. However, if the attitude data acquisition/processing function and the motor control function
are run in parallel as shown in Figure 5b, the motor will remain monitored during the whole walking
cycle. The only issue that must be seriously taken care of in the parallel operation is to ensure the data
synchronization between threads, which can be practically implemented by local variables (thread
data sharing) and semaphores (thread data protection). In this paper, the control frequency of the
prosthetic controller is set as 50 Hz.
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. 1T 1,
@) - Time t
In control Unmonitored In control Unmonitored
Motor control thread
ATme ATwc ATnvc
(b) .
JL Timet
Wait ATpa ATsp Wait ATpa ATsp Wait ATpa ATsp

Attitude data processing thread

Figure 5. (a) Serial and (b) parallel implementation of the attitude data acquisition, processing, and
motor control. ATy represents the period the motor control command is sent and executed; ATgp
represents the period to collect the transmitted attitude data from Arduino; ATpy4 is the period required
for the host PC to process the transmitted data.

3. Speed-Adaptive Neural Network Control of the Powered GFB Prosthetic Knee

3.1. Gait Analysis and Feature Extraction

Different people have different walking gaits, which are strongly related to their own heights,
weights, walking speeds, and walking habits, etc. To study the proper gaits of different people, gait data
of ten able-bodied subjects with different physical characteristics distributions (listed in Table 3) was
collected for analysis (written consent forms were obtained prior to data collection).

Table 3. Subjects information in collecting gait data.

No. Gender Weight Height Age No. Gender Weight Height Age
1 male 89 kg 1.85m 29 6 male 60 kg 1.80 m 25
2 male 70kg 1.75m 28 7 female 55 kg 1.64 m 33
3 female 60 kg 1.72m 25 8 male 105 kg 1.76 m 61
4 female 48 kg 1.55m 19 9 female 52 kg 1.72m 41
5 male 53 kg 1.66 m 24 10 female 79 kg 1.62m 32

Figure 6 shows the continuous gait cycles of the representative subject 2, 5 and 8 under normal,
fast, slow, accelerated and decelerated walking situations. The speed of the normal walking is 1.3 m/s,
while the fast and the slow walking speeds are 50% and 150% of the normal speed, respectively.
The acceleration and deceleration processes refer to the recorded process from the slow walking to the
fast walking, and from the fast walking to the slow walking, respectively.

It can be noticed from Figure 6, that different subjects have different walking gaits, such as the
peak stance/swing angles during a walking cycle, the lowest knee angles during a walking cycle,
the stance/swing cycle percentages during a walking cycle, the knee angle standard deviation during a
walking cycle, etc. For example, the peak knee angle of the subject 5 is smaller than that of subjects 2
and 8 in every walking conditions, while the stance peak knee angle of the subject 8 is much larger
than that of subjects 2 and 5 in every waking condition. In addition to the gait differences between
individuals, the gait of the subject itself at different walking speeds also varies. For instance, the stance
phase of the subject 2 in fast walking is a little longer than that in slow walking.

Therefore, to improve the versatility and practicality of the powered GFB prosthetic knee joint,
this paper uses the recorded gait data of all the able-bodied subjects in Table 3 as the reference gaits
and store them in the ideal gait database for subsequent knee control. These subjects are of balanced
age, height, weight, and gender distribution, which can bring in expected gait control effect.
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Figure 6. Knee angles of subject 2, 5 and 8 in different walking conditions.

However, variable walking conditions for different people such as different walking speeds or
acceleration/deceleration show certain differences, which must be evaluated and identified accurately
for the following neural network control. Compared with the time-domain characteristics, the statistical
characteristics of gait signals can be used to perform fast extraction of gait movement laws and motion
trends in embedded development. Specific statistical features of gait signals are listed in Table 4.

Table 4. Statistical features of gait signals.

Name Expression Name Expression
Mean p=Xrl x/n Coefficient of Variation o/u
Median s:%rlt,odd n, (xs%orf,even n + sgoj:,leven 71)/2 Skewness ;1:1 (xi _ H)?)/ (1’163)
Mode max f(x;), f = frequency Kurtosis T (x -t/ (not)
Total Distance maxx; — 1msii£nxi Slope Count L (i1 — x1)
. . C'2((xiy1 — %) (xig2 — xi1) < 0)
Variance n(x; - p)? Slope Zero Crossin, =1 WAL T A2 T = R
i1 (X =) /n P ng C = count

Standard Deviation

o= JELy(x- )2/ (n-1)

The Mean, the Median, and the Mode mathematically mean the average of a sequence of inputs,
which can be used to implement the noise reduction for the original input. As the Mean has a better
effect in smoothing the original input than the other two methods, this paper used the Mean (MN) as
one of the key inputs for the gait feature extraction.

The Total Distance, the Variance, the Standard Deviation, and the Coefficient of Variation can
be used to describe the degree of divergence of the input signal. The difference between these four
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methods is that they are sensitive to the magnitude of the signal fluctuation amplitude while the
identifications of the signal trend stay completely consistent. Therefore, this paper used the Standard
Deviation (SD) for the gait feature extraction due to its moderate sensitivity in systematic testing.

The Skewness is a measure of input signal asymmetry while the Kurtosis measures whether the
input signal distribution is sharper or flatter than the normal distribution. As the Standard Deviation
is able to reflect the magnitude of the input, this paper used the Skewness (SKE) for the subsequent
gait feature extraction.

The Slope Count (SC) and the Slope Zero Crossing (5ZC) can be used to measure the trend
change of the input signal, which are essential to the identification of variable speed walking such
as acceleration and deceleration. Therefore, these two parameters are all used in the subsequent gait
feature extraction.

Figure 7 shows the feature extraction of the “acceleration->fast walking->deceleration” walking
of the subject 1 by using the five criteria discussed above. The knee gait input consists of 14 cycles that
last about 16 s. It can be directly noticed from the knee angle curve that the duration of one cycle at
different walking speeds differs. The duration of one cycle in the fast walking is shorter than that in
the slow walking, i.e., this information can be used for the identification of different walking speeds.
However, the acceleration or deceleration phase cannot be easily identified by the original knee angle
curve, which must be implemented with the help of other feature curves. For instance, the acceleration
or constant speed or deceleration can be efficiently recognized via the SKE curve. In the acceleration
stage, the slope of the triangle formed by the start lowest point, the middle highest point and the end
lowest point is much higher than that in the constant speed walking, while it is much lower in the
deceleration stage. These same characteristics can also be revealed from the SD, SC and the SZC curves.
Therefore, by using these curves for gait stage and transition identification, the actual walking status of
the patients can be obtained to realize the adaptive control of the GFB prosthetic knee.
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Figure 7. Feature extraction example of the “acceleration->fast walking->deceleration” walking of

subject 1.
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3.2. Following Control Strategy

In order for the prosthetic knee to follow the thigh motion of the amputee, this paper proposed a
novel neural-network-based gait database matching method to achieve the specific control, as shown
in Figure 8.

| | Previous gait register '

Thigh I
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I T t gait ta
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Figure 8. Following control strategy of the powered GFB prosthetic knee.

The real-time attitude of the prosthetic knee is transmitted to the host PC via the Arduino board,
and the current speed ratio and the gait percentage of the prosthetic knee are calculated by the Gaussian
mixture model-based gait classifier, as shown in Figure 9.
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Figure 9. Gaussian mixture model-based gait classifier.

The workflow of the Gaussian mixture model-based gait classifier (GMMGC) is as follows:
the GMMGC first obtains the current knee angle and the last four samples of previous knee angles
from the Arduino board and the Previous Gait Register (PGR), respectively. Then the Mean (MN),
the Skewness (SKE), the Slope Count (SC), and the Slope Zero Crossing (SZC) features of the total five
input samples are extracted. Because the amplitude of different feature differs (for example, the MN
feature is an order of magnitude larger than others), each feature is normalized via the Min-Max
Scaling method by extracting their previous four samples from the PGR to ensure that each feature
will have the same impact on the final classification result. In order to improve the efficiency of the
gait classification, this paper used the Principal Component Analysis (PCA) to perform the dimension
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reduction of input knee gait features. To ensure all the variability of the dimensionally reduced features
is larger than 90%, the first three components are adopted for the subsequent gait classification.

To perform reliable and fast classification of input gaits, this paper compared some typical
multi-label classification methods (such as the Discriminant Analysis, the Support Vector Machines,
the K-Nearest Neighbor Classifiers, and the Naive Bayes Classifiers, the Stochastic Gradient
Descent classifiers, etc.) and some typical unsupervised classification methods (such as the
Expectation-Maximization, the K-means, the Gaussian mixture model, etc.) via a training data (121903
sets, 100 labels/clusters of 10 subjects with 10 walking gaits) in MATLAB. The results show that the
Gaussian kernel Support Vector Machine (hyperparameters are optimized via the Bayesian optimization
as [Coding: One VS. One, BoxConstraint: 895.69, Kernel Scale: 0.68021, Standardize: true]) achieved
>95% classification accuracy, while the K-Nearest Neighbor achieved >99.99% classification accuracy.
However, the K-Nearest Neighbor showed a low posterior probability. As for the unsupervised
classification methods, the Gaussian mixture model achieved the highest >85% classification accuracy
with a high posterior probability. Because the Gaussian kernel Support Vector Machine used the One
VS. One coding, there will be 100 X 99/2 = 4950 binary Support Vector Machine learners, which is not
beneficial for the subsequent embedded integration into the development board. Although the Naive
Bayes Classifier is simple enough for subsequent embedded integration, it could provide only >68%
classification accuracy. Therefore, this paper finally adopted the Gaussian mixture model for fast gait
classification. The classification result of the training data (feature dimensions reduced from 5 to 3 by
PCA) via the trained Gaussian mixture model is depicted within Figure 9.

After the classification of the input knee gait, the target gait profile can be obtained by matching
the classification result with the Ideal Gait Database (IGD). The ideal gait profiles corresponding to
different walking speeds in the IGD are normalized for adaptability. Then the gait percentage can
be quickly calculated by using the intraclass correlation coefficient (ICC), i.e., compare a small time
window of the walked gait with the target gait profile to find the gait cycle percentage, as shown in
Equation (1):

. ?:1 (Qi—n - m) (Gt+i—n+1 - m)
[t = min
1<t<N-5 (n—-1)S

@

where

Y (Bicyn + Giticnt1) 5 \/Z?—l(ei—n —m)® + X0 (Gryionpr —m)

"= on -1

In Equation (1), t is the gait cycle percentage; G; represents the data at the t% gait cycle percentage
of the kth ideal gait profile; [0y, 0_,11, ..., 0_1, 0o] are the past n — 1 collected discrete actual prosthetic
knee angles and the current prosthetic knee angle.

Then by using the calculated gait percentages and previous four percentages in the target gait
profile as inputs (because the sampling frequency of the prosthetic controller is 50 Hz, the total
locomotion period of these five attitudes will be 100 ms, which is sufficient for pattern recognition),
the neural network will output the predicted gait percentage of the prosthetic knee. Finally, by matching
the predicted gait percentage with the target gait profile, the predicted prosthetic knee posture is
generated. The host PC will then send corresponding motor instructions to the motor system to actuate
the prosthetic knee.

For example, in a theoretical control state as shown in Figure 10, speed ratios and gait percentages
calculated by Equation (1) are [K =1/2, 50%] at t;, [K =1, 60%] at t;;1, and [K = 2, 70%] at t;,
respectively. At t;, the neural network predicted gait percentage is 60%. Then the next prosthetic knee
attitude is obtained by matching 60% gait percentage with the K = 1/2 ideal gait data; at #;; 1, the next
prosthetic knee attitude is generated by matching the neural network predicted 70% gait percentage
with the K = 1 acceleration ideal gait; and so on.
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Figure 10. Typical operating state during control.
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To avoid abnormity in practical conditions, measured K is pre-processed by limiting it to values
of only 1/4, 1/2, 3/4,1, 5/4, 3/2, 7/4, and 2 via approximation. When the measured K is greater than 2,
it is limited to 2 due to level-grounding walking limitation. When the measured K is less than 1/4
but higher than the given threshold T%, it remains as 1/4 to continue the prosthetic knee locomotion.
When the measured K is below the given threshold T*, the pre-processing procedure calls the locomotion
initiation/termination functions for further investigation. In this paper, the threshold T~ is obtained via
practical experiments.

The prosthetic knee initiation: when the device is turned on, it will automatically home to the
state of zero knee flexion. When the flexion angle of the prosthetic knee reaches zero, the prosthetic
knee will stand by until the measured speed ratio K is greater than the initiation threshold (T;* = 0.18).

The prosthetic knee termination: when the measured speed ratio is lower than the termination
threshold (T7* = 0.09), the prosthetic knee will automatically home to the state of zero knee flexion, and
the motor shaft will be locked by the motor controller to enable the stance support of the prosthetic knee.

3.3. Neural Network Design

In this paper, a BP neural network is utilized for the neural network control, as shown in Figure 11.
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Figure 11. Structure of the BP neural network.

The input layer of the BP neural network has 10 nodes that correspond to 10 input variables,
namely, last four and current gait percentages Pos and the speed ratios K of the prosthetic knee (5 points
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in 100 ms are used as the input variable of the neural network because a 100 ms time window contains
enough data information for pattern recognition, and the amount of data processed is not particularly
large. Using 7, 9, or more points as the inputs will not improve the detection accuracy). Since the
control system cannot be expressed in the form of a continuous function, the BP neural network is set
as the double hidden layer 8 x 5 (Compared with 10 X 5 and 8 X 3 structures and other configurations,
the 8 x 5 hidden layer structure has the best correlation between the predicted value and the expected
value after testing). The activation function of the neural network is the S-type function, and the output
layer is a single node (the predicted Pos value).

3.4. Training and Performance Test of the Neural Network

To ensure that the neural network has excellent generalization performance and a high recognition
rate, 3500 training samples of ten different categories are used in this paper. The training data in each
category contains 87.5% correct data and 12.5% error data (inputs are modified with slight noise and
accidental errors), as shown in Figure 12. Specific training data is collected via recorded gait from
Section 3.1. The reference speed (i.e., K = 1) is 1.3 m/s.

Training samples
Decelerated motion(with

errors)
3%
\ Uniform speed,

Accelerated motion(with

K=2(with errors)
errors) 3%
3% Decelerated
motion Uniform speed, K=7/4
8% 8%
Uniform speed,
K=7/4(with errors)
3%
Uniform speed, —_/
K=1/4(with errors) |
3% .
Uniform speed,
K=3/2(with errors)
3%

Uniform speed,
K=1/2(with errors)
3%
Uniform speed,

K=3/4(with errors)
3%

Uniform speed, K=3/4
8%

Uniform speed,
K=5/4(with errors)
3%

Uniform speed,
K=1(with errors)
3%

Figure 12. The distribution of training data for the neural network.

By using 500 separate sets of validation data and another 500 different sets of test data, the
regression of training, validation, and test are shown in Figure 13. The overall performance of the
trained neural network reaches 1.19 x 1071°, which proves that the designed neural network has the
right prediction and correction over the training data.
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Figure 13. Regression of the training, validation, and test of the neural network.

3.5. Overall Control of the GFB Prosthetic Knee

The overall control flowchart of the GFB prosthetic knee is shown in Figure 14. The attitude data
acquisition/processing thread and the motor control thread are run in parallel, while their thread data
is synchronized by local variables.
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Figure 14. Overall control of the powered GFB prosthetic knee.
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4. Reliability Analysis and Experimental Evaluation

4.1. Comparison with Typical Gait Prediction Methods

To study the prediction effect of the proposed BP neural network-based gait detection method,
this paper compared it with typical gait detection methods: Adaptive Network-based Fuzzy
Inference System (ANFIS), Gaussian process regression (GPR), and Support Vector Machine (SVM).
The parameters of ANFIS for comparison are as follows: Numbers of clusters: 5; Radii of clusters: 0.5;
Range of influence of the cluster center: 0.5; Squash factor: 1.25; Acceptance ratio: 0.5; Rejection ratio:
0.15. The parameters of GPR for comparison are as follows: Explicit basis in the GPR model: constant;
Kernel function: squared exponential kernel. The parameters of SVM for comparison are as follows:
Kernel function: linear; Kernel scale: 1.

The BP neural network, the ANFIS, the GPR, and the SVM are all trained with the same training
dataset. To evaluate the prediction ability of these methods, a test reference gait and its noised one are
utilized to check the prediction accuracy. The results are depicted in Figure 15. It can be known from
Figure 15 that the prediction accuracies of ANFIS for both the reference gait and the noised one are
not satisfactory. The root means square errors (RMSEs) of the ANFIS predicted gaits to the reference
gait and the noised reference gait are 5.4179 deg and 6.9074 deg, respectively. The prediction of SVM
for the reference gait is close to expected, but the prediction of the noised one is poor. The RMSEs of
the SVM predicted gaits to the reference gait and the noised reference gait are 2.9665 deg and 12.3637
deg, respectively. This result indicates that the SVM method is susceptible to noise, which limits its
practical effects if no additional robust algorithms are provided.
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Figure 15. BP neural network gait detection comparison with adaptive network-based fuzzy inference
system (ANFIS), gaussian process regression (GPR), and support vector machine (SVM).
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It can be noticed from Figure 15 that the GPR has good prediction accuracies for both the reference
gait and the noised one. The RMSEs of the GPR predicted gaits to the reference gait and the noised
reference gait are 0.3518 deg and 2.0857 deg, respectively. However, compared with the GPR, the BP
neural network performs better in predicting both the reference gait and the noised one. The RMSEs of
the BP neural network predicted gaits to the reference gait and the noised reference gait are 0.2165
deg and 2.4831 deg, respectively. In addition, compared with GPR, the BP neural network consumes
much fewer computing resources in embedded hardware systems. The use of BP neural network in
embedded systems can effectively improve the gait detection accuracy without occupying additional
computing performance.

4.2. Reliability Analysis

To evaluate the prediction reliability of the proposed BP neural network, this paper studied the
continuous gait prediction effects of several test subjects. In order to verify the anti-failure performance
of the proposed method, the thigh IMU and the shank IMU in the data recording devices are randomly
disabled within one or two cycles to simulate the malfunction of the prosthetic attitude measurement
system. Figure 16 depicted some of the continuous test results.

Figure 16a shows the continuous prediction of a test subject waking at the constant speed. The IMU
in the ninth cycle is randomly disabled to simulate incorrect knee angles caused by sensor malfunctions.
As can be seen from the first eight cycles, the proposed method has a very good predictive effect in
the constant-speed walking. The predicted knee angles almost coincide with the actual angle curve.
In the ninth cycle, the input knee angles become invalid. The prediction of the proposed method will
oscillate around the expected one, which means adding a filter in the subsequent process can simply
and effectively handle this kind of short-term sensor malfunctions. In the tenth cycle, the input knee
angle signal returns to normal, and the proposed method can quickly restore accurate continuous
prediction for subsequent cycles. Figure 16¢ shows the gait prediction of another test subject at constant
waking speeds. Two cycles are modified as malfunctioned. The prediction outcomes are also accurate
and can recover from simulated sensor failures quickly.
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Figure 16. Reliability analysis of BP neural network continuous prediction.
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Figure 16b shows the continuous prediction of a test subject walking at variable speeds. The second
cycle is added with one sensor error, and the seventh cycle is simulated as sensor malfunctions. It can
be obtained that the proposed method can handle accelerated and decelerated walking very well.
The predicted peak/lowest stance/swing knee angle is very close to that in each cycle. Sensor sample
errors and short-term malfunctions will not affect the prediction effect of this method. Figure 16d
shows the prediction of the variable speed walking gait of another subject. More sensor errors and
malfunctions are added for performance evaluation. It can be obtained from the result that the proposed
BP neural network gait prediction method is effective and can handle both the constant-speed and
variable-speed walking effectively and satisfactorily.

4.3. Experimental Layout

To experimentally verify the neural network control, an able-bodied subject (height: 178 cm,
weight: 63 kg, age: 22, the written consent form was obtained prior to experiments) participated in
the test of the GFB prosthetic knee via a particular connecting apparatus by flexing his knee to 90°,
as shown in Figure 17. The GFB prosthetic knee is directly supplied with power through a dedicated
DC power supply (DP712, Rigol, China). Experimental ankle trajectories and knee angles are collected
by the camera (G920, Logitech, Switzerland) via video post-processing.

Power supply Able-bodied volunteer

Wall plug

Host PC Walking direction

l Camera

Figure 17. Experimental layout of the powered GFB prosthetic knee.

After multiple times of training, the volunteer becomes familiar with wearing the GFB prosthetic
knee to walk. Figure 18 shows one gait cycle of the experimental level-ground walking. To demonstrate
the effectiveness of our proposed neural network control, specific self-selected speed and variable
speed experiments are tested.

Figure 18. One gait cycle of the experimental level-ground walking.
4.4. Constant-Speed Experiment

The volunteer is asked to walk at his habitual speed (about 1.2 m/s). Figure 19 shows the running
states of the neural network control system, the ankle trajectory, and knee angles of the volunteer in
one steady gait cycle within continuous trials.
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Figure 19. Running states of the neural network control system and the ankle trajectory/knee angle
curve of the GFB prosthetic knee during the self-selected speed experiment.

It can be obtained from Figure 19 that the measured speed ratio during the whole gait cycle is
around or below K = 1, which is consistent with the fact that the volunteer is walking at speed slightly
slower than the reference speed of the GFB prosthetic knee (1.3 m/s). Due to the self-regulation of the
neural network control system, the executed speed ratio of the GFB prosthetic knee varies between
K =1and K = 0.75 to maintain the required walking speed. The executed gait percentage is close
to the gait percentage predicted by the neural network, which verified the robustness of the overall
control system. In addition, the ankle trajectory and the knee angle curve are close to the expected gait
of the volunteer himself, which proves that the GFB prosthetic knee can provide proper level-ground
walking gait.

4.5. Variable-Speed Experiment

To further demonstrate the effectiveness of the neural network control system, the volunteer is
asked to vary his walking speed by acceleration and deceleration. Figure 20 shows the running states
of the neural network control system as well as the ankle trajectory and the knee angles of the volunteer
in one variable speed gait cycle within continuous trials.
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Figure 20. Running states of the neural network control system and the ankle trajectory/knee angle
curve of the GFB prosthetic knee during the variable speed experiment.
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It can be obtained from Figure 20 that the executed speed ratio of the GFB prosthetic knee
fluctuates between K = 0.5 and K = 1.75 in the whole gait cycle and two peak speed ratios occur in the
middle of both the stance phase and the swing phase. This indicates that the volunteer accelerated the
prosthetic knee in the early stance/swing phase and then tried to decelerate the prosthetic knee in the
late stance/swing phase. Because the pre-trained neural network can deal with accelerated/decelerated
walking gait, the executed speed ratio generated by the neural network can follow the variable-speed
walking well. The small deviation between the neural network predicted gait percentage and the
executed gait percentage of the prosthetic knee is caused by the insufficient actuating torque of the
cam-based nonlinear series elastic actuator when the speed ratio exceeds K = 1. Compared with
Figure 19, the amplitudes of the ankle trajectory and the knee angle curve of the volunteer are slightly
larger, which is in line with the gait of variable speed walking.

5. Conclusions

This paper presented a speed-adaptive neural network control of a powered GFB prosthetic knee.
The control system consists of the attitude measurement system and the neural network motor control
system, which are run in parallel to reduce hardware/software requirements. To enable speed-adaptive
asymmetrical walking gaits such as acceleration or deceleration, this paper only uses sensor data from
the prosthetic knee, rather than data from both the sound and unsound legs. The current prosthetic
knee gait can be recognized by the Gaussian mixture model-based gait classifier. Unlike conventional
prediction method, the neural network in this paper does not output the predicted prosthetic knee
motion, but the predicted gait percentage of the prosthetic knee. The specific prosthetic knee motion is
obtained by matching the predicted gait percentage with the ideal gait database that stored gait data of
different speeds. The benefit of doing this is that the size of the neural network can be reduced, and gait
diversity can be increased and modified easily for customization. Level-ground walking experiments
are conducted via the able-bodied subject. The results show that the neural network control system
can successfully realize the speed-adaptive level-ground walking of the GFB prosthetic knee. Future
work of this paper will extend the speed-adaptive control system suitable for ramp and stair walking,
as well as the embedded transplantation into the development board.
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