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Abstract: The demand for a high-resolution metal-oxide-semiconductor (CMOS) image sensor has
increased in recent years, and pixel size has shrunk below 1.0 µm to allow accumulation of numerous
pixels in a limited area. However, shrinking the pixel size lowers the sensitivity and increases crosstalk
because the aspect ratio is worsened by maintaining the height of the pixel. This work introduces a
high-sensitivity pixel with a quad-WRGB (White, Red, Green, Blue) color filter array (CFA), spatial
deep-trench isolation (S-DTI), and a spatial tungsten grid (S-WG). The optical performance of the
suggested pixel was analyzed by performing 3D optical simulations at 1.0, 0.9, and 0.8 µm pixel
pitches as small-sized pixels. The quad-WRGB CFA is compared with the quad-Bayer CFA, and the
S-DTI and S-WG are compared with the conventional DTI and WG. We confirmed an improvement in
the sensitivity of the suggested pixel using the quad-WRGB CFA with S-DTI and S-WG to a maximum
of 58.2%, 67.0%, and 66.3% for 1.0, 0.9, and 0.8 µm pixels, respectively.
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1. Introduction

The advances in camera technology now necessitate the development of a high-resolution
complementary metal-oxide-semiconductor (CMOS) image sensor. However, a high-resolution camera
requires a pixel pitch smaller than 1.0 µm to allow accumulation of numerous pixels in the limited
sensor area [1]. Accordingly, the aspect ratio is worsened by maintaining the pixel height in a small
pixel pitch. If the pixel depth gets thinner, the color filter (CF) or the photodiode should also be
thinner. However, the thickness of the CF has pigment limitations [2], and making the photodiode
thinner is difficult because of the lower light absorption at long wavelengths [3]. Therefore, the optical
performance of a small-sized pixel deteriorates due to low sensitivity and high crosstalk, which lead to
a lower performance of CMOS image sensors.

Many approaches are available for enhancing the sensitivity and crosstalk for a small pixel.
Particularly good examples include new optical pixel structures, such as the stacked grid structure
between color filters, the lensed CF, and the front-inner lens image sensor [4–6]. The stacked grid
structure is located between the color filters, and it blocks the optical crosstalk to increase sensitivity [4].
However, the grids cannot be adapted to small pixels because the CF width reduces and adversely
affects the sensitivity by shrinking the absorption area. In [5], a lensed CF is proposed to reduce
crosstalk and enhance the sensitivity by uniting the micro lens and a color filter. However, the height
and the radius of curvature (ROC) of this structure are difficult to process equally. The front-inner lens
is proposed to enhance the sensitivity by adding a lens to the front side to serve as the interconnection
layer in a shallow photodiode [6]. However, the complicated structure of the front inner lens creates
substantial difficulty in conducting general processes.

Conversely, different approaches are available to obtain high sensitivity by changing the color
filter array (CFA) [7–10]. A CFA with a white color filter has been studied because a white color filter
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transmits incident light at all wavelengths. The WRGB (white, red, green, blue) CFA indicates that one
of the green pixels of the Bayer CFA was replaced with a white pixel [7]. The RGBW CFA consisting
of 50% white CF has also been developed to improve the sensitivity and resolution [8]. Fifty percent
of the total area of the RGBW CFA is occupied by the white CF, 25% by the green CF, and 12.5% by
the red and blue CF. The RGBW CFA consisting of 75% white CF with a color separation process
was also introduced [9,10]. The low-illumination signal-to-noise ratios of the luminance signal are
improved by increasing the white CF area [11]. Moreover, the color reproducibility of the WRGB
pattern is comparable with the Bayer pattern [11,12]. According to this research, the WRGB CFA
demosaicing result has a similar spatial resolution, color reproduction, and better color aliasing artifact
levels compared to the Bayer CFA demosaicing result by the post-processing method. However, much
crosstalk is induced with increasing sensitivity, especially for a small pixel. Because the white color
filter transmits a lot of light, some of the light enters the other pixel’s photodiode. This problem still
requires a solution.

In this work, we propose a quad-WRGB structure with spatial-deep trench isolation (S-DTI) and
a spatial-tungsten grid (S-WG) to solve the small pixel problems, such as low sensitivity and high
crosstalk. The quad-WRGB CFA provides a four-fold expansion of each color filter. The S-DTI and
S-WG are located every four pixels for efficient reduction of the crosstalk. The optical performance is
investigated by simulating the suggested structure and comparing it with typical structures with the
CFA, DTI, and WG using a commercial 3D optical simulator for precise analysis. Section 2 describes
the concept of the quad-RGBW pixel structure having S-DTI and S-WG, and Section 3 presents the
simulation results and discusses the results. Conclusions are presented in Section 4.

2. Concepts of the Quad-WRGB Color Filter Array and Spatial DTI

As previously mentioned, the aspect ratio worsens with shrinking pixel size in high-resolution
camera. Accordingly, the crosstalk increases due to the narrower and longer optical path and the
sensitivity decreases because of the narrowed pixel pitch. Therefore, the sensitivity in low light
environments becomes increasingly worse because of poor light incidence. The quad-Bayer filter is
used for high sensitivity, especially in low light, even though the resolution is effectively divided by
four [13,14]. The signals from the four adjacent pixels with the same-colored filter are added together,
thereby enabling a brighter image with low noise. In this paper, we introduce a quad-WRGB array
that gives a higher sensitivity than the quad-Bayer array. Figure 1 shows the quad-Bayer and the
quad-WRGB array; in the latter, the 25% green filter is changed to a white filter. The sensitivity is
enhanced because the white color filter has high transmittance at all wavelengths.

Conversely, deep trench isolation (DTI) and tungsten grid (WG) are commonly used to block
crosstalk [15]. DTI usually blocks crosstalk in the silicon layer, and WG blocks the crosstalk in the color
filter planarization layer. DTI and WG, as shown in Figure 2a,c, are located between the pixel and the
adjacent pixel. In this work, we propose a spatial DTI and spatial WG for an adaptable quad-WRGB
array. As shown in Figure 2b,d, the proposed S-DTI and S-WG block the boundary facing the other
color pixels except those facing the same color pixel. In Figure 2, the pink area indicates the silicon area,
and the white area is the photodiode. There is no physical isolation without DTI and WG between
adjoined same color pixels in Figure 2b. S-DTI refers to the DTI surrounding the four same-colored
pixels, except between those pixels, as shown in Figure 2b. Likewise, S-WG refers to the tungsten grid
(WG) surrounding the four same-colored pixels, except between those pixels, as shown in Figure 2d.
The S-DTI and S-WG help to ensure that the crosstalk is passed through between the same color pixels
and that the undesired crosstalk is blocked between the different color pixels. Because the DTI and
WG block every instance of crosstalk entering the pixel, the DTI and WG match more closely with the
typical Bayer CFA than with the quad-Bayer CFA. In addition, unlike the DTI and WG, the available
area for light absorption in the pixel is expanded, because the S-DTI and S-WG occupy the outside
part of the four pixels, as shown in Figure 2c,d. Thus, the expanded available area of the S-DTI, S-WG
structure increases the light absorption better than the DTI, WG structure. Therefore, the S-DTI and
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S-WG structure with the quad-WRGB CFA can promise an improvement in the pixel sensitivity by
increasing the available area.
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Figure 1. Color filter arrays in 4 × 4 pixels: (a) Quad-Bayer array; (b) Quad-WRGB array. The same
color filter is arranged in 2 × 2 pixels.
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Figure 2. Pixel structures with deep trench isolation (DTI) and tungsten grid (WG): (a) Top view of the
silicon with DTI. The DTI has located each pixel; (b) Top view of the silicon with spatial deep-trench
isolation (S-DTI). The S-DTI has located four pixels; (c) 2D cross-section of pixels with DTI and WG;
(d) 2D cross-section of pixels with S-DTI and S-WG.

3. Simulation Results

Numerical analysis of the suggested structure was conducted using the finite-difference
time-domain (FDTD) method [16]. This method is broadly used for the optical analysis of CMOS image
sensors [17]. The pixel pitches were 1.0, 0.9, and 0.8 µm for the small pixel size. The depth of the silicon
as a photodiode was 3.0 µm and the thickness of the color filter was 0.6 µm. The depths of the DTI and
WG were 3.0 and 0.2 µm, respectively. The depth of DTI and WG are the same thickness as the silicon
and color filter planarization layer for the full-isolation. The width of the WG was 50 nm. The height of
the microlens was optimized for high sensitivity at 0.6 µm for the 1.0 and 0.9 µm pixels and 0.4 µm for
the 0.8 µm pixel. Likewise, the radius of curvature (ROC) of the micro lens was optimized at 0.8 µm
for the 1.0 and 0.9 µm pixels and 0.5 µm for the 0.8 µm pixel. The DTI and WG widths were also
optimized for high sensitivity, as shown in Table 1. The DTI and WG were simulated with the varied
width from 50 nm to 125 nm. Then, the width of them is determined by the highest photon density.
The simulated conditions of each pixel pitch and pixel type are shown in Table 1. The wavelengths of
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the incident light were 650, 540, and 450 nm as red, green, and blue light, respectively. The sensitivity
in oblique incident light was investigated by setting the incident angles to 0◦, 10◦, and 20◦. In addition,
the light entered horizontally and vertically, as shown by the x- and y-axis in Figure 3. Figure 3 shows
the 3D simulated structures. The proposed structure shown in Figure 3d is compared with Figure 3a–c.
The quad-WRGB CFA is compared with the quad-Bayer CFA, and the S-DTI and S-WG are compared
with the DTI and WG. Therefore, four types of pixel structures are simulated, as shown in Figure 3.
We first evaluated the optical performance of the quad-Bayer and WRGB CFA with the DTI and WG.
We could then confirm which CFA pattern gave the best improvement of the optical performance of
the pixel. We then compared the performance between DTI, WG and S-DTI, S-WG.

Table 1. Simulation conditions.

Type Pixel Pitch Height of Microlens ROC * of Microlens DTI * Width

Quad-Bayer CFA with
DTI and WG *

1 µm,
0.9 µm,
0.8 µm

0.6 µm (1.0, 0.9 µm pixels)
0.4 µm (0.8 µm pixel)

0.8 µm (1.0, 0.9 µm pixels)
0.5 µm (0.8 µm pixel)

75 nm (all pixel pitches)

Quad-Bayer CFA with
S-DTI and S-WG

50 nm (1.0 µm pixel)
75 nm (0.9, 0.8 µm pixels)

Quad-WRGB CFA with
DTI and WG 75 nm (all pixel pitches)

Quad-WRGB CFA with
S-DTI and S-WG

50 nm (1.0 µm pixel)
75 nm (0.9, 0.8 µm pixels)

* ROC: radius of curvature, * WG: tungsten grid, * DTI: deep-trench isolation.
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Figure 3. The simulated 3D Pixel structures. 4 × 4 pixel arrays. The microlens, CFA, and photodiodes
are separated for ease of viewing. (a) Quad-Bayer CFA with DTI and WG, (b) Quad-Bayer CFA with
S-DTI and S-WG, (c) Quad-WRGB CFA with DTI and WG, and (d) Quad-WRGB CFA with S-DTI
and S-WG.

Figure 4 shows the photon density and the crosstalk for the simulation results of the four types of
pixels having the quad-Bayer CFA, quad-WRGB CFA with DTI and WG, or S-DTI and S-WG for the 1.0,
0.9, and 0.8 µm pixel pitches. The photon density represents the light absorbed from the pixels, as shown
by the bars. The photon density is the result of adding the results for the wavelength of 650, 540, and
450 nm. These results show that the photon density is improved in all cases by changing the CFA from
the quad-Bayer to the quad-WRGB. For all pixel pitches, about 43% of the photon density is enhanced
between the quad-Bayer CFA and quad-WRGB CFA with DTI and WG by the white color filter. S-DTI
and S-WG also affect the enhancement of photon density, as the enhancement increases as the pixel
pitches decrease in size. The maximum improvement of the photon density by S-DTI and S-WG was
16.8% in the quad-WRGB CFA for the 0.8 µm pixel. The minimum improvement of the photon density
was 9.7% in the quad-Bayer CFA for the 1.0 µm pixel. The changes in photon density with improved
sensitivity of the pixel were a maximum of 58.2%, 67.0%, and 66.3% for the 1.0, 0.9, and 0.8 µm pixels
with the quad-WRGB CFA, S-DTI, and S-WG. The crosstalk, which is absorbed light from the next pixel,
is represented by the lines in Figure 4. The crosstalk is the rate between the unwanted photon density
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and the total photon density. As shown in Figure 4, the crosstalk is reduced by S-DTI and S-WG for
all types of pixels. The crosstalk was reduced by S-DTI and S-WG at 0.02%, 0.08%, and 0.37% for the
1.0, 0.9, and 0.8 µm pixels, respectively, with the quad-Bayer CFA. The crosstalk was also reduced by
S-DTI and S-WG by 0.21%, 0.22%, and 0.45% for the 1.0, 0.9, and 0.8 µm pixels, respectively, with the
quad-WRGB CFA. In this work, the crosstalk in the same color filter can be used a good crosstalk as the
absorbed photon density. Therefore, we see that the good crosstalk can be absorbed as a signal. This
concept is based on the pixel binning which is a process to combine the readout signals of the four
same color pixels at a time in the quad-Bayer CFA [13,14]. Therefore, the crosstalk is reduced and the
sensitivity is improved. For this pixel binning, the S-DTI/S-WG is useful by passing the crosstalk to the
next same color pixel. In addition, the reason that the quad-WRGB CFA has the lower crosstalk than the
quad-Bayer CFA is the white pixel which is regarded as having no crosstalk. This is because the full
wavelength of the incident light can be absorbed in the white color pixel.
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A comparison of the sensitivity improvement by the incident angle and pixels is shown by the
enhancement rate of the photon density depicted in Figure 5. The enhancement rate is obtained from
the ratio of the photon density between the pixel with DTI/WG and the pixel with S-DTI/S-WG. The red
oblique striped bar, the green vertical striped bar, the blue horizontal striped bar, and the blank bar
indicate the enhancement rates in the red, green, blue and white pixels, respectively. Figure 5a,c,e show
the results for pixels having the quad-Bayer CFA, and Figure 5b,d,f show the results for pixels with the
quad-WRGB CFA. Figure 5a–f indicate the 1.0, 0.9, and 0.8 µm pixel pitches, respectively. The photon
density as the sensitivity of the pixel is enhanced to a maximum of 20.8% for the quad-Bayer CFA and
20.3% for the quad-WRGB CFA in 1.0 µm pixel. The best enhancement rates for the 0.9 µm pixel are
30.3% of quad-Bayer CFA and 31.2% of quad-WRGB CFA. The best enhancement rates for 0.8 µm pixel
are 28.8% of quad-Bayer CFA and 33.6% of quad-WRGB CFA. These results, shown in Figure 5, confirm
that every photon density is improved by S-DTI and S-WG for every incident angle. The photon
density is enhanced more in the oblique incident light. This is because crosstalk, which gets worse in
oblique incident light, is used efficiently as the photon density in the same color pixel.

Figure 6 shows the beam profile of 0.9 and 0.8 µm pixels when a 540 nm wavelength was incident at
20◦. The beam profile indicates the power flux density of the transmitted light distribution. Simply stated,
the red region in the beam profile shows the most transmitted light, which could then be absorbed by
the photodiode. Figure 6a,b show the cross-sections of green pixels with quad-Bayer CFA for the 0.9 µm
pixel. Figure 6a,b describe the pixels with DTI/WG and S-DTI/S-WG, respectively. The DTI and WG are
shown by the grey color in the beam profile. Figure 6c,d show the cross-sections of white pixels with
quad-WRGB CFA for the 0.8 µm pixel. Figure 6c,d describe the pixels with DTI/WG and S-DTI/S-WG,
respectively. The beam merged in the pixels with the S-DTI/S-WG, because the S-DTI/S-WG does not
locate the DTI/WG in the middle of two same-colored pixels. As mentioned in Section 3, the crosstalk from
adjoined same color pixels is absorbed as a signal. The absorption of the crosstalk is shown in Figure 6b,d
which has the S-DTI/S-WG. In addition, the crosstalk from the other color pixel is blocked. Therefore,
the crosstalk can be use efficiently in the quad-Bayer and quad-WRGB CFA structures. The crosstalk
causes the photon density to be absorbed as a signal, thereby improving the pixel performance.
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Figure 5. Enhancement rates of the photon density between the DTI/WG and the S-DTI/S-WG at
incident angles of 0◦, 10◦, and 20◦. The red oblique striped bar, the green vertical striped bar, the blue
horizontal striped bar, and the blank bar indicate the enhancement rates in the red, green, blue,
and white pixels, respectively: (a) quad-Bayer CFA for the 1.0 µm pixel, (b) quad-WRGB for the 1.0 µm
pixel, (c) quad-Bayer CFA for the 0.9 µm pixel, (d) quad-WRGB for the 0.9 µm pixel, (e) quad-Bayer
CFA for the 0.8 µm pixel, (f) quad-WRGB for the 0.8 µm pixel.
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Figure 6. The beam profiles of the simulated power flux density. The incident light was a 540 nm
wavelength at 20◦: (a) the green pixels of the quad-Bayer CFA with DTI/WG in a 0.9 µm pixel,
(b) the green pixels of the quad-Bayer CFA with S-DTI/S-WG in a 0.9 µm pixel, (c) the white pixels of
the quad-WRGB CFA with DTI/WG in a 0.8 µm pixel, (d) the white pixels of the quad-WRGB CFA
with S-DTI/S-WG in a 0.8 µm pixel, (e) the scale bar of power flux density. The red region in the beam
profile shows the most transmitted light, which could be absorbed in the photodiode.

For clearly showing the enhancement, the absorbed photon density by the wavelength is shown in
Figure 7. The absorbed photon density of the quad-WRGB CFA with S-DTI/S-WG and the quad-Bayer
CFA with DTI/WG are compared in the 0.8 µm pixel. The light is incident at 0◦ with the wavelengths
from 400 nm to 700 nm. The absorbed photon density of green pixels in the quad-Bayer CFA is averaged.
As shown in Figure 7, the absorbed photon density is enhanced in all pixels of the quad-WRGB CFA
with S-DTI/S-WG. The maximum improvement is 28% of 680 nm wavelength in a red pixel. We confirm
that the quad-WRGB CFA and the S-DTI/S-WG improve the sensitivity efficiently.
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4. Conclusions

In summary, a high sensitivity and low crosstalk pixel structure having quad-WRGB CFA with
S-DTI and S-WG has been introduced. The quad-WRGB CFA indicates a four-fold expansion of the
WRGB CFA. The sensitivity is improved by binning the photon from the four pixels having the same
CF and by using white CF. The use of spatial DTI (S-DTI) and spatial WG (S-WG) surrounding the
four same-colored pixels is suggested for efficient blocking of the crosstalk. The S-DTI and S-WG can
block the signals only from different CF; therefore, the absorption area increases for the same CF pixels.
The performance of the suggested structure was investigated by 3D optical simulation using 16 × 16
backside-illuminated pixels having the quad-Bayer CFA and the quad-WRGB CFA structure with
DTI/WG and S-DTI/S-WG for the 1.0, 0.9, and 0.8 µm pixel pitches. The simulation results indicated
that the sensitivity, which is the photon density absorbed in the photodiode, is improved by over
42% by changing from the quad-Bayer CFA to the quad-WRGB CFA for all pixel sizes. Moreover, the
sensitivity is improved by 58.2%, 67.0%, and 66.3% by adding S-DTI and S-WG to the quad-WRGB CFA
pixels of 1.0, 0.9, and 0.8 µm pixel pitches. The crosstalk is also enhanced by 0.21%, 0.22%, and 0.45%,
respectively, by changing the DTI/WG to S-DTI/S-WG for the 1.0, 0.9, and 0.8 µm pixels with the
quad-WRGB CFA. Therefore, the quad-WRGB CFA pixel structure with S-DTI and S-WG can promise
high sensitivity for small pixels.

The advances in camera technology require the development of a high-resolution camera. Thus,
a high-resolution CMOS image sensor is developed in a small pixel pitch as below 1.0 µm to allow
accumulation of numerous pixels in the limited sensor area. However, the aspect ratio is worsened
in a small pixel pitch and causes low sensitivity and high crosstalk. Although the various CFAs are
developed, some CFAs such as quad-Bayer were not preferred, caused by deterioration of resolution.
According to advance of compensating resolution technology such as pixel binning, novel demosaicking
method, CFAs consisting of the adjacent same color filter are gradually preferred. However, a high
crosstalk is still a problem despite solving low sensitivity. Therefore, the optical pixel structure having
high sensitivity needs to be developed in a very small pixel without any deterioration. We suggested
the novel DTI and WG for the quad-CFA and a small pixel. The suggested S-DTI and S-WG not only
induce to absorb the crosstalk from the same color pixels, but also block the crosstalk causing color
error from the different color pixels. Moreover, the available area for light absorption in the pixel is
expanded, because the S-DTI and S-WG occupy the outside part of the four pixels. Therefore, our
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work is meaningful for the very small pixels, such as next generation image sensor, as well as 0.7, 0.8,
and 0.9 µm pixels.
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