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Abstract: A low-cost miniature homodyne interferometer (MHI) with self-wavelength correction and
self-wavelength stabilization is proposed for long-stroke micro/nano positioning stage metrology.
In this interferometer, the displacement measurement is based on the analysis of homodyne
interferometer fringe pattern. In order to miniaturize the interferometer size, a low-cost and
small-sized laser diode is adopted as the laser source. The accuracy of the laser diode wavelength is
real-time corrected by the proposed wavelength corrector using a modified wavelength calculation
equation. The variation of the laser diode wavelength is suppressed by a real-time wavelength
stabilizer, which is based on the principle of laser beam drift compensation and the principle of
automatic temperature control. The optical configuration of the proposed MHI is proposed. The
methods of displacement measurement, wavelength correction, and wavelength stabilization are
depicted in detail. A laboratory-built prototype of the MHI is constructed, and experiments are carried
out to demonstrate the feasibility of the proposed wavelength correction and stabilization methods.

Keywords: homodyne interferometer; laser diode; wavelength correction; wavelength stabilization;
positioning stage

1. Introduction

Long-stroke micro/nano positioning stages with high accuracy act as fundamental units in various
fields, such as precision machining and precision measurement [1,2]. A high-precision position sensor
is required to be integrated into the positioning stages for closed-loop feedback control of the axis’s
motion. Thus, the measurement accuracy of the position sensor is one of the key factors that affects the
positioning accuracy of the stage.

For advantages of fast and long-stroke measurement with nanometer accuracy, commercial laser
interferometers (CLIs) are widely used as position feedback sensors of a stage in precision machining
or measurement equipment, such as mask aligners, wafer steppers, and ultra-precision measuring
machines. A frequency/wavelength stabilized He-Ne laser is generally adopted as the laser source of
the CLI, resulting in the whole system being rather bulky and expensive [1,3]. However, for small-sized
micro/nano positioning stages commonly used in Micro Electro Mechanical Systems (MEMS) equipment
or micro/nano machining, those CLIs would not be able to integrate into the systems as a position
sensor. To address the problem of bulky size and high-cost, many interferometers with a laser diode
as the laser source were developed [4–10]. Some of them have been embedded into micro/nano
positioning stages as a position sensor [4–7]. In such an interferometer, the displacement information is

Sensors 2019, 19, 4587; doi:10.3390/s19204587 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8937-4337
https://orcid.org/0000-0003-1320-9412
http://dx.doi.org/10.3390/s19204587
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/20/4587?type=check_update&version=2


Sensors 2019, 19, 4587 2 of 12

often encoded by the phase-to-intensity change of the interference signals. The wavelength of the laser
source is often treated as the length unit of those interferometers. However, the laser diode suffers from
the short temporal coherence length and low stability in output power and wavelength. Therefore, the
necessary condition to use laser diode as a laser source in an interferometer is to stabilize and correct
its wavelength.

There are a huge number of methods and techniques for stabilizing laser diode wavelength.
Generally, it can be divided into two categories, namely active stabilization and passive
stabilization [8,11–17]. Active stabilization methods usually involve certain kinds of electronic
feedback systems in which variations of some parameters are converted to an electronic signal
to stabilize the laser wavelength [13]. The stability of the wavelength with such active stabilization
system can be achieved to 10−9 [14,15]. However, due to complexity and the high-cost of realization,
active stabilization methods cannot be applied in a small-sized interferometer. Since the laser diode
frequency/wavelength is sensitive to the temperature and supplied current, it is important to apply a
current source and temperature controller to stabilize the laser frequency/wavelength, which is called
the passive stabilization methods [8,11–17]. The passive stabilization methods are usually simple and
easy implement. In addition, since the laser diode temperature is maintained in a specific range, laser
diode mode hopping can be avoided [8].

In addition, wavelength is the length unit of the laser interferometers. Therefore, it is essential
to ensure the accuracy of the laser diode wavelength in the displacement measurement. The laser
wavelength is conventionally measured by the methods based on the Edlen equation [18] or its
modified equations [19,20], interference [21,22], optical beating [23,24], optical frequency combs [25–27],
and specific wavelength-dependent material properties [5–7,28,29]. The laser wavelength can be
compensated by combining the Edlen equation or its modified equation with an air sensor. This
method is commonly used in the commercial laser interferometers [30,31]. However, those equations
were obtained based on the properties of the He-Ne laser, which is not compatible with the laser diode.
In addition, the measurement accuracy is significantly dependent on the sensitivity and accuracy of the
air sensor. In the methods based on the principles of interference and optical beating, a high-precision
reference laser is necessary, and the measurement accuracy depends on the reference laser. Moreover
although those methods have a high accuracy, they are complicated in system construction and are
high-cost, and so they are seldom used in industry. The methods based on optical frequency combs can
achieve a high measurement accuracy. However, the femtosecond laser has a bulky size and high-cost.
Among those methods, the simplest and most applicable one is the method based on the specific
material properties. In our previous research, a laser diode interferometer (LDI) was designed for the
displacement feedback of a nanopositioning stage [7] in which a low-cost and small-sized laser diode
was adopted as the light source. A wavelength corrector, consisting of a grating and an autocollimator,
was designed for correcting the wavelength in the LDI based on the diffraction grating equation. Since
only the variation of diffraction angle was considered, the measurement accuracy of the laser diode
wavelength was low. Moreover, a plane mirror was applied as the optical reflector of the MLDI [7].
The tilt motion errors of the plane mirror would affect the measurement range and accuracy [28].

Therefore, in this paper, a novel miniature homodyne interferometer (MHI) is designed based
on the previous works [6,7]. In this MHI, a modified wavelength calculation equation, is proposed,
from which a real-time wavelength corrector (RWC) is designed. It is verified that the wavelength
measurement accuracy of the newly proposed RWC is better than that in Ref. [7]. In addition, in order
to improve the repeatability of the proposed MHI, a real-time wavelength stabilizer (RWS) based on
the laser beam drift compensation principle and automatic temperature control principle is presented
to stabilize the laser diode wavelength. Moreover, the plan mirrors in Ref. [6,7] is replaced by two
corner cube retroreflectors in the proposed MHI, by which the measurement range is enlarged. This
article demonstrates the novelty of the design and construction of the prototype system. A series of
experiments are preformed to verify the feasibility of the proposed MHI, RWC, and RWS.
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2. Optical Configuration

Figure 1 shows the optical configuration of the miniature homodyne interferometer (MHI)
with self-wavelength correction and self-wavelength stabilization. The MHI includes a stationary
interferometer unit and a moving reflector. There are three sets in the interferometer unit. Set I
is a Michelson interferometer-based laser diode interferometer (LDI), which is composed of three
polarizing beam splitters (PBS, PBS2, PBS3), two beam splitters (BS1, BS2), three quarter waveplates
(QWP1, QWP2, QWP3), four photodetectors (PD1, PD2, PD3, PD4), and a corner cube retroreflector
(CR1). Set II is a real-time wavelength corrector (RWC), which consists of a diffraction grating (G),
two focus lenses (FL1, FL2), two quadrant-photodetectors (QPD1, QPD2), and a PZT driven angle
mirror mount (AMM). Set III, consisting of two thermoelectric cools (TECs), a thermistor, and two
heatsinks, is a real-time wavelength stabilizer (RWS). CR2 is employed as the moving reflector of the
proposed MHI.
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Figure 1. Optical configuration for the miniature homodyne interferometer (MHI). 
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Figure 1. Optical configuration for the miniature homodyne interferometer (MHI).

3. Measurement Principle

The principle and data processing procedure of the displacement measurement based on the
homodyne interferometer fringe pattern analysis are shown in Figure 2. A linearly polarized beam
emitted from a laser diode is split into a reference beam and a measurement beam by PBS1. The
reference beam is reflected by CR1 and passes through QPW2 twice before going back to PBS1. The
reflected measurement beam, which is reflected by CR2, passes through QPW1 twice before going back
to PBS1, combining with the reflected reference beam. The combined beams (Ê1, Ê2) interfere with
each other. The interference signals are then projected onto four detectors (PD1 to PD4) after phase
controlled by two PBSs (PBS2, PBS3), a BS (BS1), and a QWP (QWP3). Therefore, the intensity of each
detector can be expressed as follows:

IPD1 = A2[1 + sin(∆ϕ)]
IPD2 = A2[1− sin(∆ϕ)]
IPD3 = A2[1 + cos(∆ϕ)]
IPD4 = A2[1− sin(∆ϕ)]

, (1)
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where A represents the intensity magnitude of the combined beams. ∆ϕ is the phase difference of Ê1

and Ê2, which can be calculated by combining the sinusoidal and cosine signals. According to IPD1 to
IPD4, the sinusoidal and cosine signals can be obtained.{

IPD1 − IPD2 = A2 sin(∆ϕ)
IPD3 − IPD4 = A2 cos(∆ϕ)

, (2)

The motion of CR2 would cause an optical path difference (2∆d) between the two combined beams.
Therefore, the moving distance d of CR2 with respect to the interferometer unit can be calculated by
combining the integer and fraction fringe counts,

∆d =
λ
2n

(N +
∆ϕ0 + ∆ϕ f

2π
), (3)

where, N is the integer fringe count and
∆ϕ0+∆ϕ f

2π is the fraction fringe count. ∆ϕ0 and ∆ϕ f represent
the phases of initial and final incomplete wave cycles, respectively.
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Figure 2. Principle and data processing procedure of the laser diode interferometer (LDI). 
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Figure 2. Principle and data processing procedure of the laser diode interferometer (LDI).

Although the laser diode can reduce the size and cost of the LDI, it suffers from the low stability
in output power and wavelength. It is known that the laser wavelength is the length unit of the
interferometry. The accuracy and the stability of the wavelength significantly influence the measurement
accuracy of the interferometry. Therefore, in order to achieve a high precision measurement and
improve the stability of the measurement system, it is essential to correct and stabilize the laser diode
wavelength in real-time.

Figure 3 shows the principle of correcting laser diode wavelength. In our previous research, the
variation of the diffraction angle (∆θd) is the only variable in the wavelength calculation equation [7].
However, the laser diode has the property of beam drift, which will cause the variation of the incidence
angle (∆θi). Additionally, the grating pitch (d) will be changed with the variation of the ambient
temperature. If the laser beam was set to normally project onto the grating (i.e. θi was equal to zero),
the wavelength calculation equation should be modified to:

λ = [1− α·(25− T)]·d·[sin(∆θi) + sin(θd + ∆θd)], (4)

where, α is thermal expansion coefficient of the grating. T is the temperature of the grating during
the experiment, which can be detected by a thermometer. ∆θi and ∆θd represent the variations of the
incident angle and diffraction angle, which can be detected by two autocollimator sets (AS1, AS2),
respectively, as shown in Figure 3. Both autocollimator sets are composed of a focus lens (FL1, FL2)
and a quadrant-photodetector (QPD1, QPD2). By using Equation (4), the laser diode wavelength can
be real-time corrected.
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Figure 4. Principle of the real-time wavelength stabilizer: (a) methodⅠcompensation of laser beam 

drift, (b) method Ⅱ automatic temperature control of laser diode. 
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Figure 3. Principle of the real-time wavelength corrector (RWC).

The stability of the laser diode wavelength is another factor that effects the accuracy and
repeatability of the LDI. Figure 4 shows two comprehensive wavelength stabilization methods.
As show in Figure 4a, method I is based on the principle of the laser beam drift compensation, which
has been introduced in our previous researches [32]. The output of AS1 is adopted to feedback control
the angle of an angle mirror mount (AMM), in which two mini-PZTs (PZT_a, PZT_b) are embedded
into the threaded shafts of the AMM. By rotating the AMM, the focused spot of the laser beam can
remain at the center of QPD1. Method II is based on the principle of automatic temperature control
(ATC), as shown in Figure 4b. A closed-loop control system is adopted to improve the precision of
temperature control. A negative temperature coefficient (NTC) thermistor is installed in a copper
holder of the laser diode to detect the laser diode’s surface temperature (TLD). After comparing with
the reference temperature (Tref), a differential signal is generated and input to the PID controller. Then,
two thermoelectric cools (TECs), which are fed by an external current generator, are regulated to heat
or cool according to the differential signal. By using this closed-loop temperature control system, TLD
can be effectively controlled within the commanded accuracy. Combined with method I and method II,
the laser diode wavelength can be real-time stabilized.

In addition, the mode hopping should normally occur between adjacent modes of the laser diode
when temperature varies. Thus, the laser diode temperature should be maintained in a range in which
no laser diode mode hopping occurs [8]. Therefore, the proposed real-time wavelength stabilizer not
only stabilized the wavelength, but also avoided the laser diode mode hopping.
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drift, (b) method Ⅱ automatic temperature control of laser diode. 

4. .Experiments and Results 

4.1. Performance of the Real-Time Wavelength Corrector (RWC) 

Figure 4. Principle of the real-time wavelength stabilizer: (a) method I compensation of laser beam
drift, (b) method II automatic temperature control of laser diode.
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4. Experiments and Results

4.1. Performance of the Real-Time Wavelength Corrector (RWC)

In order to verify the feasibility and accuracy of the proposed real-time wavelength corrector
(RWC), an experiment setup was constructed, as shown in Figure 5.
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Figure 6. Calibration results of the AS1 and AS2 in the X- and Y-direction: (a) AS1, (b) AS2. 

Then, the wavelength of the He-Ne laser was calculated by the RWC (λRWC) and compensator 

(λcom) under the various temperatures. Figure 7 shows the variation of the laser diode wavelength 

with temperature. The missing measured points correspond to the temperature period when the 

MCV500 was not in operation. For comparison, the wavelength (λref) evaluated by the equation, 

which was proposed in Ref. [7], was also plotted in the figure. As seen from Figure 7, the He-Ne 

laser wavelength was enlarged with the increase of the temperature. The laser wavelength (λRWC) 

obtained by the modified wavelength correction equation Eq. (4) was larger than the wavelength 

Figure 5. Experimental setup for investigating the performance of the RWC.

A wavelength stabilized He-Ne laser interferometer (MCV500, Optodyne, California, USA) with
a wavelength of 632.694 nm, a laser stability of ±0.05 ppm, and an output power of 1.5 mW was
adopted as the measured laser source. The wavelength of the He-Ne laser can be simultaneously
calculated by the RWC and the wavelength compensator kit of the MCV500, which is based on the
Edlen equation [17]. In the RWC, a 1200 line/ mm grating (Thorlab, Morganville, USA) was selected.
Two high-precision QPDs (QPD1 and QPD2, QP5.8-6-TO5, First Sensor, Arne Wollmann, Germany)
with a measurement resolution of 0.05 µm were applied to detect the variation of θi and θd, respectively.

Prior to calculating the He-Ne laser wavelength, the AS1 and AS2 were calibrated by a commercial
autocollimator (5000U3050, AutoMat, Tianjin, China), which has a measurement accuracy of 0.2 arcsec
and repeatability of 0.05 arcsec. The calibration range was set to be ±50 arcsec. Figure 6 shows the
calibration results of the AS1 and AS2 in the X- and Y-directions. It can be seen from the figure that the
residual of each result was within ±0.4 arcsec.
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Then, the wavelength of the He-Ne laser was calculated by the RWC (λRWC) and compensator
(λcom) under the various temperatures. Figure 7 shows the variation of the laser diode wavelength with
temperature. The missing measured points correspond to the temperature period when the MCV500
was not in operation. For comparison, the wavelength (λref) evaluated by the equation, which was
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proposed in Ref. [7], was also plotted in the figure. As seen from Figure 7, the He-Ne laser wavelength
was enlarged with the increase of the temperature. The laser wavelength (λRWC) obtained by the
modified wavelength correction equation Equation (4) was larger than the wavelength (λref) obtained
by Ref. [7]. λRWC was in a good agreement with that calculated by compensator λcom. It indicates that
the measurement accuracy of the wavelength corrector proposed in this research is much higher than
that proposed in Ref. [7]. The maximum residual between λRWC and λcom was evaluated to be ±0.007
nm, which is a satisfactory value for our designed long-stroke micro/nano positioning stage.

Sensors 2019, 19, x FOR PEER REVIEW 7 of 12 

 

(λref) obtained by Ref. [7]. λRWC was in a good agreement with that calculated by compensator λcom. It 

indicates that the measurement accuracy of the wavelength corrector proposed in this research is 

much higher than that proposed in Ref. [7]. The maximum residual between λRWC and λcom was 

evaluated to be ±0.007 nm, which is a satisfactory value for our designed long-stroke micro/nano 

positioning stage. 

-0.003

0

0.003

-0.0005

0

0.0005

23 24.35 25.7 27.05 28.4

-110 -55 0 55 110
zeroing point 15:01:34  2019/9/10

1 
st
 t
im
e

3 rd time

A

2 nd time
632.7

632.7

632.7

632.7

632.7

-0.0005

-0.00025

0

0.00025

0.0005

23 24.35 25.7 27.05 28.4

-110 -55 0 55 110

zeroing point 11:52:21  2019/9/10
Mea
ED
Mea1

1 
st
 t
im
e

3 rd time

A

2 nd time

28.4027.0525.7024.3523.00

Temperature   ℃

-0.03

R
es

id
ua

l 
  

 n
m

W
av

el
en

gt
h 

  
 n

m

0.03

0

632.689

632.697

632.695

632.693

632.691

632.7

632.7

632.7

632.7

632.7

-0.0005

-0.00025

0

0.00025

0.0005

23 24.35 25.7 27.05 28.4

-110 -55 0 55 110

zeroing point 11:52:21  2019/9/10
Mea
ED
Mea1

1
 
s
t
 
t
i
m
e

3
 
r
d
 
t
i
m
e

A

2 nd time

632.7

632.7

632.7

632.7

632.7

-0.0005

-0.00025

0

0.00025

0.0005

23 24.35 25.7 27.05 28.4

-110 -55 0 55 110

zeroing point 11:52:21  2019/9/10
Mea
ED
Mea1

1
 
s
t
 
t
i
m
e

3
 
r
d
 
t
i
m
e

A

2 nd time
λcom

λRWC

632.7

632.7

632.7

632.7

632.7

-0.0005

-0.00025

0

0.00025

0.0005

23 24.35 25.7 27.05 28.4

-110 -55 0 55 110

zeroing point 11:52:21  2019/9/10
Mea
ED
Mea1

1 
st
 t
im
e 3 rd time

A

2 nd time

λRWC - λcom632.7

632.7

632.7

632.7

632.7

-0.0005

-0.00025

0

0.00025

0.0005

23 24.35 25.7 27.05 28.4

-110 -55 0 55 110

zeroing point 11:52:21  2019/9/10
Mea
ED
Mea1

1 
st
 t
im
e 3 rd time

A

2 nd timeλref

632.7

632.7

632.7

632.7

632.7

-0.0005

-0.00025

0

0.00025

0.0005

23 24.35 25.7 27.05 28.4

-110 -55 0 55 110

zeroing point 11:52:21  2019/9/10
Mea
ED
Mea1

1
 
s
t
 
t
i
m
e

3
 
r
d
 
t
i
m
e

A

2 nd timeλref - λcom

 

Figure 7. Calibration result of the RWC under various temperatures. 

4.2. Performance of the Real-Time Wavelength Stabilizer (RWS) 

The feasibility of the real-time wavelength stabilizer (RWS) was investigated by using a laser 

diode (DI635-2-3, Huanic, Xi’an, China), which has a nominal wavelength of 635 nm and an output 

power of 2 mW. The experiment results are shown in Figure 8. 
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4.2. Performance of the Real-Time Wavelength Stabilizer (RWS)

The feasibility of the real-time wavelength stabilizer (RWS) was investigated by using a laser
diode (DI635-2-3, Huanic, Xi’an, China), which has a nominal wavelength of 635 nm and an output
power of 2 mW. The experiment results are shown in Figure 8.
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4.2. Performance of the Real-Time Wavelength Stabilizer (RWS) 
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power of 2 mW. The experiment results are shown in Figure 8. 

635.2

635.2

635.2

635.2

635.2

-0.0005

-0.00025

0

0.00025

0.0005

0 5 10 15 20

-110 -55 0 55 110

zeroing point 15:10:05  2019/9/10
without

with

1 
st
 t
im
e

3 rd time

A

2 nd time

20151050
Sampling time   min

W
av

el
en

gt
h 

  
 n

m

635.173

635.185

635.182

635.179

635.176

With wavelength stabilization 

Without wavelength stabilization 

635.2

635.2

635.2

-0.0005

0

0.0005

0 5 10 15 20

-110 -55 0 55 110
zeroing point 15:10:05  2019/9/10with

1 
st
 t
im
e

3 rd time

A

2 nd time
635.1770

635.1758

635.1764

 

Figure 8. Real-time recording of the laser diode wavelength with and without stabilization. 

The experimental setup for measuring the laser diode wavelength is similar to that shown in 

Figure 5, except the MCV500 was replaced by the studied laser diode. It has been confirmed that the 

AS1 and AS2 have the same angle measurement accuracy as indicated in Figure 6. In order to 

Figure 8. Real-time recording of the laser diode wavelength with and without stabilization.



Sensors 2019, 19, 4587 8 of 12

The experimental setup for measuring the laser diode wavelength is similar to that shown in
Figure 5, except the MCV500 was replaced by the studied laser diode. It has been confirmed that
the AS1 and AS2 have the same angle measurement accuracy as indicated in Figure 6. In order to
compensate the laser beam drift, an angle mirror mount integrated with two mini-PZTs was designed
and constructed. In the ATC set, a negative temperature coefficient (NTC) thermistor with a resistance
of 10 KΩ and an accuracy of 0.5% was installed in the holder of the laser diode for feedback to the
temperature controller (TECs), which was 25 mm × 25 mm in size, and pasted on the top and bottom
of the laser diode holder. Two heatsinks with a dimension of 40 mm × 40 mm were mounted on the
TECs for heat absorption. A control circuit was designed to lock the laser diode’s surface temperature
on the reference temperature with very little variation around it.

The real-time recording of the laser diode wavelength with and without stabilization by the
proposed RWS were shown in Figure 8. The total sampling time and the sampling frequency were
set to be 32 min and 10 Hz, respectively. It can be seen that the stability of laser diode wavelength
was improved from 1.2 × 10−5 before stabilization to 0.9 × 10−6 after stabilization, from which the
effectiveness of the proposed RWS was verified. Since the wavelength stability of 10−6 is usually
required in interferometry measurements [8], the RWS is satisfied for micro/nano positioning stages.

Wavelength measurement repeatability is a very important factor for the designed RWC and RWS
in the MHI. The measurement repeatability was tested by a group of the wavelength measurement
experiments, with which the same laser diode and same parameter of the sampling time and frequency.
The sampling time for each experiment series was set to be 20 min. Figure 9 shows the tested results.
The repeatability of the laser diode wavelength measurement was at the level of 1.3 × 10−6.

Sensors 2019, 19, x FOR PEER REVIEW 8 of 12 

 

compensate the laser beam drift, an angle mirror mount integrated with two mini-PZTs was 

designed and constructed. In the ATC set, a negative temperature coefficient (NTC) thermistor with 

a resistance of 10 KΩ and an accuracy of 0.5% was installed in the holder of the laser diode for 

feedback to the temperature controller (TECs), which was 25 mm × 25 mm in size, and pasted on 

the top and bottom of the laser diode holder. Two heatsinks with a dimension of 40 mm × 40 mm 

were mounted on the TECs for heat absorption. A control circuit was designed to lock the laser 

diode’s surface temperature on the reference temperature with very little variation around it. 

The real-time recording of the laser diode wavelength with and without stabilization by the 

proposed RWS were shown in Figure 8. The total sampling time and the sampling frequency were 

set to be 32 min and 10 Hz, respectively. It can be seen that the stability of laser diode wavelength 

was improved from 1.2 × 10-5 before stabilization to 0.9 × 10-6 after stabilization, from which the 

effectiveness of the proposed RWS was verified. Since the wavelength stability of 10-6 is usually 

required in interferometry measurements [8], the RWS is satisfied for micro/nano positioning 

stages. 

Wavelength measurement repeatability is a very important factor for the designed RWC and 

RWS in the MHI. The measurement repeatability was tested by a group of the wavelength 

measurement experiments, with which the same laser diode and same parameter of the sampling 

time and frequency. The sampling time for each experiment series was set to be 20 min. Figure 9 

shows the tested results. The repeatability of the laser diode wavelength measurement was at the 

level of 1.3 × 10-6. 

635.1

635.1

635.1

635.1

635.1

-0.0003

-0.00015

0

0.00015

0.0003

0 20 40 60 80 100

-110 -66 -22 22 66 110

zeroing point 17:08:32  2019/10/106 Mea 1 2 3 4

1 
st
 t
im
e

3 rd time

A

2 nd time

S
ta

b
ili

ty
 

o
f 

th
e 

 la
se

r 
w

av
el

en
g
th

-4

4

2

0

-2

Sampling time

20 min 20 min 20 min 20 min 20 min

Series 1 Series 2 Series 3 Series 4 Series 5

×10-6

 

Figure 9. Repeatability of the laser diode wavelength measurements. 

4.3. Performance of the Miniature Homodyne Interferometer (MHI) 

After investigating the performance of the proposed RWC and RWS, testing of the designed 

miniature homodyne interferometer (MHI) was carried out. A laboratory-built prototype of the 

MHI was constructed for long-stroke micro/nano positioning stage metrology. In the MHI, the laser 

diode was adopted as the laser sources. It has been confirmed that the measurement range of the 

MHI can reach to 150 mm, which is much longer than our previous work and many other works 

[4–7]. Figure 10 shows the output sinusoidal signals in the form of a Lissajous circle, which was 

found to be very good and stable during measurement range of 150 mm. 

Figure 9. Repeatability of the laser diode wavelength measurements.

4.3. Performance of the Miniature Homodyne Interferometer (MHI)

After investigating the performance of the proposed RWC and RWS, testing of the designed
miniature homodyne interferometer (MHI) was carried out. A laboratory-built prototype of the MHI
was constructed for long-stroke micro/nano positioning stage metrology. In the MHI, the laser diode
was adopted as the laser sources. It has been confirmed that the measurement range of the MHI can
reach to 150 mm, which is much longer than our previous work and many other works [4–7]. Figure 10
shows the output sinusoidal signals in the form of a Lissajous circle, which was found to be very good
and stable during measurement range of 150 mm.
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Figure 10. Output Lissajous circle of the MHI.

As shown in Figure 11, an experimental setup was constructed to verify the feasibility and the
measurement accuracy of the MHI. The commercial interferometer (MCV500), with a measurement
accuracy of ±0.5 ppm and measurement range of 15 m, was employed as a reference for comparison.
The interferometer unit of the MHI and laser head of the MCV500 were positioned on both sides of a
precision motorized positioning stage (KA100, Zolix, Beijing, China), which has a moving range of
100 mm, a positioning accuracy of 30 µm, and a repeatability of ±3 µm. The moving reflector of the
MHI and the retro-reflector (RR) of the MCV500 were mounted on the moving stage of the positioning
stage, which was moved for a distance of 100 mm with a step size of 1 mm at a speed of 2 mm/s. The
RWC and RWS were embedded in the MHI and activated during the displacement measurement.
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Figure 11. Experimental setup for distance measurement.

The measurement axis of the MHI and MCV500 were carefully aligned with the moving axis
of the positioning stage so that the Abbe error and cosine error in displacement measurement can
be eliminated. The displacement of the positioning stage was simultaneously measured by the
MCV500 and the developed MHI. The experiment results for dynamic displacement measurement
of a positioning stage are plotted in Figure 12. Figure 12a shows the relationship between the actual
displacement (dstage) of positioning stage and the measured displacements by using the MCV500
(dMCV500) and proposed MHI (dMHI). As seen from the figure, the fitted slope and the linear correlation
coefficients of two measured displacements are the same. The fluctuating trends of the residuals, which
were obtained by making a difference between the actual displacement and measured displacement,
are also almost the same, as shown in Figure 12b. This indicates the outputs of the proposed MHI are
in a good agreement with those of the commercial laser interferometer.



Sensors 2019, 19, 4587 10 of 12Sensors 2019, 19, x FOR PEER REVIEW 10 of 12 

 

dHMI=0.9991×dstage-0.0057; R=0.999

0

2.5 104

5 104

7.5 104

1 105

0

25

50

75

100

0 2.5 104 5 104 7.5 104 1 105

-110 -55 0 55 110

zeroing point 9:51:39  2019/9/12
MCV500

DSP

1 
st
 t
im
e

3 rd time

A

2 nd time

1007550250

Displacement of the stage   mm

M
ea

su
re

d
 d

is
p

la
ce

m
e

n
t 

b
y 

tw
o

 

in
te

rf
er

o
m

et
er

s 
  

 n
m

0

100

75

50

25

0

2.5 104

5 104

7.5 104

1 105

0

25

50

75

100

0 2.5 104 5 104 7.5 104 1 105

-110 -55 0 55 110

zeroing point 21:09:59  2019/9/10
MCV500

DSP

1
 
s
t
 
t
i
m
e

3
 
r
d
 
t
i
m
e

A

2 nd time

0

2.5 104

5 104

7.5 104

1 105

0

25

50

75

100

0 2.5 104 5 104 7.5 104 1 105

-110 -55 0 55 110

zeroing point 21:09:59  2019/9/10
MCV500

DSP

1 
st
 t
im
e

3 rd time

A

2 nd time

MCV500

HMI

(a)

dMCV500=0.9991×dstage-0.0058; R=0.999

0

5 104

1 105

0

50

100

0 2.5 104 5 104 7.5 104 1 105

-110 -55 0 55 110

zeroing point 21:13:01  2019/9/10S-MCV
S-DSP

1 
st
 t
im
e

3 rd time

A

2 nd time

0R
es

id
ua

ls
 

b
et

w
ee

n 
ac

tu
al

 d
is

p
la

ce
m

e
nt

 

an
d
 m

ea
su

re
d
 
d
is

p
la

ce
m

e
nt

 
  
  
nm

50

25

0

2.5 104

5 104

7.5 104

1 105

0

25

50

75

100

0 2.5 104 5 104 7.5 104 1 105

-110 -55 0 55 110

zeroing point 21:09:59  2019/9/10
MCV500

DSP

1
 
s
t
 
t
i
m
e

3
 
r
d
 
t
i
m
e

A

2 nd time

0

2.5 104

5 104

7.5 104

1 105

0

25

50

75

100

0 2.5 104 5 104 7.5 104 1 105

-110 -55 0 55 110

zeroing point 21:09:59  2019/9/10
MCV500

DSP

1
 
s
t
 
t
i
m
e

3
 
r
d
 
t
i
m
e

A

2 nd time

dMCV500 - dstage

dHMI - dstage

1007550250

Displacement of the stage   mm

(b)

 

Figure 12. Experiment results for dynamic displacement measurement of a positioning stage: (a) 

measured displacement by the MCV500 and proposed MHI; (b) residual between the actual 

displacement of the stage and the measured displacement by two interferometers. 

In order to get the measurement accuracy of the proposed MHI, the residuals between the 

measured displacements with the MCV500 (dMCV500) and proposed MHI (dMHI) was calculated and 

shown in Figure 13a. It can be seen that the maximum residual was evaluated within ±130 nm in a 

measurement range of 100 mm, which is satisfactory for our designed long-stroke micro/nano 

positioning stage. The standard deviation of the displacement for six measurements using the 

proposed MHI was estimated between 0.01 μm and 0.09 μm, as shown in Figure 13b. The feasibility 

of the proposed miniature homodyne interferometer was demonstrated from the experiment results. 

Therefore, it has been verified that the proposed MHI can be applied to dynamic displacement 

measurement longer than 100 mm range with a sub-micrometer measurement accuracy. 

-0.5

-0.25

0

0.25

0.5

0

25

50

75

100

0 2.5 104 5 104 7.5 104 1 105

-110 -55 0 55 110

zeroing point 21:13:01  2019/9/10
MCV-DSP

1 
st
 t
im
e

3 rd time

A

2 nd time

0.50

0.25

0

-0.25

-0.50

dMCV500 - dHMI

R
es

id
ua

l 
b
et

w
ee

n 
o
ut

p
ut

s 
o
f 

M
C

V
5

0
0

 a
nd

 H
M

I 
  

 μ
m

1007550250

Displacement of the stage   mm

(a)

0

0.1

0.2

0

50

100

0 2.5 104 5 104 7.5 104 1 105

-110 -55 0 55 110

zeroing point 21:13:01  2019/9/10
STdav

1 
st
 t
im
e

3 rd time

A

2 nd time

0.2

0.1

0

S
ta

nd
ar

d
 d

ev
ia

tio
n 

o
f 

si
x 

m
ea

su
re

m
e
n
ts

 
us

in
g 

H
M

I 
  

  
 μ
m

1007550250

Displacement of the stage   mm

(b)

 

Figure 13. (a) Residual between the MCV500 and proposed MHI; (b) standard deviation of six 

displacement measurements by MHI. 
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Figure 12. Experiment results for dynamic displacement measurement of a positioning stage:
(a) measured displacement by the MCV500 and proposed MHI; (b) residual between the actual
displacement of the stage and the measured displacement by two interferometers.

In order to get the measurement accuracy of the proposed MHI, the residuals between the measured
displacements with the MCV500 (dMCV500) and proposed MHI (dMHI) was calculated and shown in
Figure 13a. It can be seen that the maximum residual was evaluated within ±130 nm in a measurement
range of 100 mm, which is satisfactory for our designed long-stroke micro/nano positioning stage. The
standard deviation of the displacement for six measurements using the proposed MHI was estimated
between 0.01 µm and 0.09 µm, as shown in Figure 13b. The feasibility of the proposed miniature
homodyne interferometer was demonstrated from the experiment results. Therefore, it has been
verified that the proposed MHI can be applied to dynamic displacement measurement longer than
100 mm range with a sub-micrometer measurement accuracy.
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5. Conclusions

This paper presents an innovative low-cost miniature homodyne interferometer (MHI), which
is composed of an interferometer unit and a moving reflector. It possesses functions of a laser
diode interferometer (LDI) for displacement measurement, a real-time wavelength corrector (RWC)
for self-correcting the laser diode wavelength, and a real-time wavelength stabilizer (RWS) for
self-stabilizing the laser diode wavelength. A prototype of the MHI was constructed, in which a
low-cost and small-sized laser diode was used as the laser source. A series of experiments were carried
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out. The accuracy of laser wavelength measurement by using the modified wavelength correction
equation was achieved to ±0.007 nm and it has been verified that the wavelength measurement
accuracy of the wavelength corrector proposed in this research is much higher than that proposed in
our previous research. The stability of laser diode wavelength was improved from 1.2 × 10−5 before
stabilization to 0.9 × 10−6 after stabilization by using the proposed RWS. It has been confirmed that the
displacement measurement accuracy of the proposed MHI was ±130 nm in a measurement range up
to 100 mm.

Although the proposed MHI can be applied to dynamic displacement measurement longer
than 100 mm range, the measurement accuracy of the proposed MHI is still lower than that of the
commercial laser interferometers. The motion errors of the moving reflector and the linearity error of
the interferometer are primary error sources that influence the measurement accuracy of the proposed
MHI. The analysis of above-mentioned errors will be carried out in the future works. In addition,
the mode hoping locations tend to change over a limited time, which will influence the stability and
accuracy of the proposed MHI. This problem will also be considered in the future work.
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