
sensors

Article

An Exploration of Machine Learning Methods for
Robust Boredom Classification Using EEG and
GSR Data

Jungryul Seo 1 , Teemu H. Laine 2 and Kyung-Ah Sohn 1,*
1 Department of Computer Engineering, Ajou University, Suwon 16499, Korea; jrseojr@naver.com
2 Department of Computer Science, Electrical and Space Engineering, The Luleå University of Technology,

Skellefteå 93187 , Sweden; teemu@ubilife.net
* Correspondence: kasohn@ajou.ac.kr; Tel.: +82-31-219-2434

Received: 12 September 2019; Accepted: 17 October 2019; Published: 20 October 2019
����������
�������

Abstract: In recent years, affective computing has been actively researched to provide a higher
level of emotion-awareness. Numerous studies have been conducted to detect the user’s emotions
from physiological data. Among a myriad of target emotions, boredom, in particular, has been
suggested to cause not only medical issues but also challenges in various facets of daily life. However,
to the best of our knowledge, no previous studies have used electroencephalography (EEG) and
galvanic skin response (GSR) together for boredom classification, although these data have potential
features for emotion classification. To investigate the combined effect of these features on boredom
classification, we collected EEG and GSR data from 28 participants using off-the-shelf sensors. During
data acquisition, we used a set of stimuli comprising a video clip designed to elicit boredom and two
other video clips of entertaining content. The collected samples were labeled based on the participants’
questionnaire-based testimonies on experienced boredom levels. Using the collected data, we initially
trained 30 models with 19 machine learning algorithms and selected the top three candidate classifiers.
After tuning the hyperparameters, we validated the final models through 1000 iterations of 10-fold
cross validation to increase the robustness of the test results. Our results indicated that a Multilayer
Perceptron model performed the best with a mean accuracy of 79.98% (AUC: 0.781). It also revealed
the correlation between boredom and the combined features of EEG and GSR. These results can
be useful for building accurate affective computing systems and understanding the physiological
properties of boredom.
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1. Introduction

Sensors, machine learning, artificial intelligence, and other kinds of information technologies
have recently been advancing rapidly. Based on these trends, several studies have been conducted on
the acquisition and processing of information, aiming at a higher-level understanding of the collected
information. In particular, detection of the user’s context, such as their emotional or physical state,
is of particular importance because it enables the creation of context-aware systems that adapt their
behavior to match the context in which they are used. This branch of computer science is known
as context-aware computing. A sub-branch of it, which is the focus of this study, concentrates on
classifying emotions using physiological data.

The study of emotion classification belongs to the area of affective computing (AC) that aims to build
computer systems capable of detecting and reacting to the user’s emotions. The area of AC in computer
science is considered to have been established when a seminal paper by Picard [1] was published, and it
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has since become a vibrant field of study, with some example studies being [2–4]. To classify emotions in
these systems, researchers have three data collection (i.e., measurement) strategies at their disposal [5]:
(i) neurological/physiological measurement, which uses sensors to detect changes in the user’s body;
(ii) subjective self-reporting by questionnaires, diaries or interviews; and (iii) behavioral measurement
that is based on expert observations of the participant’s behavior. While all these approaches have their
specific advantages and disadvantages, as Kim and Fesenmaier [5] suggest, physiological measurement is
considered to be particularly objective. In our literature review, we found that a large body of AC studies
exists on classifying emotions from physiological data such as electroencephalography (EEG) [2,6,7],
galvanic skin response (GSR) [2,8–11], heart rate [2,10,11], and others [12,13]. However, a higher validity
can be achieved by combining more than one measurement strategy. For example, a viable approach,
which is employed in this study, is to combine a physiological approach with self-reporting, where the
latter is used to verify the existence of the target emotion.

Accurate classification of boredom can be considered of particular importance because boredom
affects multiple facets of our lives. In a technical report published by the United States Air Force,
unmanned aerial vehicle pilots’ reaction times were longer when they felt bored [14]. Furthermore,
boredom can contribute to serious medical issues such as cardiovascular disease [15]. Additionally,
it can have negative effects on learning [16–19]. If computing devices could accurately classify the
occurrence of the user’s boredom and administer a suitable intervention to compensate for it, they
could be used to tackle the aforementioned boredom-related issues.

Several previous studies have built boredom classification models using different physiological
data as summarized in Table 1. However, to the best of our knowledge, no previous studies have used
both EEG and GSR data for boredom classification. In this study, we performed a joint analysis of
both data by collecting EEG and GSR data from 28 participants who also answered a questionnaire
surveying their perceived level of boredom. The participants watched two types of video stimuli
that were prepared to elicit boredom and to entertain, respectively. Based on the collected data and
questionnaire results, we ran an initial test of 19 machine learning algorithms and selected the best three
candidate classification models. After hyperparameter tuning, we measured the final performance
of the selected models with 1000 iterations of 10-fold cross validation. The best performance with a
mean accuracy of 79.98% (min: 71.43%, max: 93.93%) was obtained using a Multilayer perceptron
(MLP) model. Furthermore, we analyzed the used features to investigate the correlation between
EEG data, GSR data, and boredom. This study, therefore, has three major contributions: (i) revealing
a correlation between EEG, GSR, and boredom; (ii) conducting a reliable performance comparison
among 19 machine learning algorithms through repeated cross validations; and (iii) proposing a robust
boredom classification model based on MLP.

Table 1. Studies on boredom classification using physiological data.

Study Data Source Number of Participants

Shen et al. [2] HR, GSR, BP, EEG 1
Mandryk and Atkins [11] HR, GSR, Facial 12
Kim et al. [6] Eye-tracking, EEG 16
Giakoumis et al. [9] ECG, GSR 19
Giakoumis et al. [8] ECG, GSR 21
Seo et al. [7] EEG 28
D’Mello et al. [12] Facial, Gesture 30
Jaques et al. [13] Eye-tracking 67
Jang et al. [10] HR, GSR, Temperature, PPG 217

HR - Heart Rate, BP - Blood pressure, ECG - Electrocardiogram, PPG - Photo Plethysmo Graphy

2. Background

Emotion detection based on physiological data are a vibrant research field that has produced a
large body of studies focusing on different emotions and analysis approaches. This section provides



Sensors 2019, 19, 4561 3 of 18

an overview of the previous physiology-based emotion detection research relevant to our study.
In our literature review, we searched previous studies in Google Scholar with searching keywords
of “Emotion”, “Boredom”, “Classification”, “Physiology”, and “Sensor”. We did not set limitations
on the publication year or forum; however, we excluded studies that classified emotions solely by
interviews or surveys.

Several AC studies focusing on emotion classification from physiological data [2,6,20–25] referred
to Russell’s Circumplex model (Figure 1) to explain the target emotion [26]. The model categorizes
emotions into four groups by the dimensions of valance and arousal. According to the model, boredom is
categorized into the low-valence low-arousal group (red box in Figure 1).

Figure 1. Circumplex model [26].

Despite the simplicity of the way in which the Circumplex model assigns boredom to the third
quadrant, boredom is considered a complex emotion as various studies have defined it differently.
Vogel-Walcutt et al.’s literature review resulted in 37 definitions of boredom, and concluded that
“boredom occurs when an individual experiences both the neurological state of low arousal and the
psychological state of dissatisfaction, frustration, or disinterest in response to the low arousal.” [27].
The conclusions of Russell’s model [26] and Vogel-Walcutt et al.’s definition [27] are thus similar. In
contrast, the range of boredom in Eastwood et al.’s definition [28] is wider than that of Russell’s model.
According to their study, people who are in a low-valence state can feel boredom regardless of the level
of arousal. Considering these studies, we conclude that a universally accepted definition of boredom
does not exist.

Some previous studies regarding boredom categorized it as a trait, while others handled it as a
state. The meaning of trait in boredom-related studies is the proneness of an individual to become
bored, thus there is a difference between easily becoming bored, and being able to resist boredom.
Conversely, the meaning of a state is the current state of boredom that the person is experiencing.
Fahlman et al. [29] handled boredom as a trait, while Eastwood et al. [28] and Kim et al. [6] treated it
as a state. In this study, we approach boredom as a state. The reason for this is that we hypothesize
that, when a person feels bored, changes in their physiological signals can be identified.

Our literature review identified nine studies on boredom classification from physiological data
sources as listed in Table 1. It reveals that seven studies used more than one data source; this approach
of sensor fusion is a common technique to increase the detection accuracy. The median number of
participants in these studies was 21, which is relatively small compared to other cases where machine
learning methods are typically applied. In the individual source perspective, EEG was used by three
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studies, and GSR was utilized by four studies. However, to the best of our knowledge, no previous
study has used both EEG and GSR data for classifying boredom.

Sanei and Chambers [30] and Ashwal and Rust [31] showed that EEG data correlates with emotion
states of humans. Furthermore, GSR is related to the autonomic nervous system [32], which is also
known to correlate with emotion states, thus GSR can be utilized as a potential source for emotion
classification [33]. In the physiological perspective, EEG data are captured from the activity of the brain,
which belongs to the nervous system together with GSR. Moreover, the analysis on the characteristics
of boredom conducted by Bench and Lench [34] suggested that boredom should be associated with
the increased autonomic nervous system activity. This linkage implies that a correlation may exist
between boredom, EEG and GSR, but so far it has not been investigated in previous studies.

Table 2 presents the methods and the accuracy results of the previous studies that classified
boredom using physiological data. Mandryk and Atkins [11], D’Mello et al. [12], Giakoumis et al. [8],
and Kim et al. [6] focused on finding correlations between boredom and physiological data using
statistical approaches, thus they did not generate classification models. The other reviewed boredom
classification studies built classification models using machine learning algorithms and measured
the performance of the models. However, these studies did not address the issue of overfitting
carefully, making it difficult to guarantee the robustness of the results. Moreover, many previous
studies lacked the discussion on the choice of the classification algorithms and only considered a few
limited algorithms. Therefore, it is necessary to consider the potential of a wider range of classification
algorithms to classify boredom. Considering these facts and shortcomings of previous studies, our
study aims to produce reliable performance results based on more diverse machine learning methods.

Table 2. Methods and accuracies of previous boredom classification studies.

Study Accuracy Method

Jaques et al. [13] 73.0 % Random Forest
Jang et al. [10] 84.7 % Discriminant Function Analysis
Shen et al. [2] 86.3 % Support Vector Machine (SVM)
Seo et al. [7] 86.7 % k-Nearest Neighbors (kNN)
Giakoumis et al. [9] 94.2 % Linear Discriminant Analysis
Mandryk and Atkins [11], D’Mello et al. [12],
Giakoumis et al. [8], and Kim et al. [6] Not available Statistical approaches

3. Data Collection Methodology

This section describes the methods that we used to collect and analyze physiological data for
the classification of boredom. We collected data according to the guidelines of the Declaration of
Helsinki [35]. Specifically, we obtained written informed consents from the participants before the data
collection, advertised data collection for inviting voluntary participants, explained to the participants
that they could quit the experiment anytime they want, and provided snacks as a reward for their
participation. The details of the data collection procedure are explained in the following sections.

3.1. Participants

We collected the EEG and GSR data from 28 Korean participants (13 males and 15 females) who
were either students or staff at a university in the Republic of Korea. The participants’ ages ranged
from 20 to 34, with an average age of 23.62. We collected the data in two sessions: the first session
was carried out with 18 participants (6 males and 12 females), and the second session was carried
out with 10 participants (7 males and 3 females). All data collection procedures were designed and
executed with careful consideration of legal and ethical issues. All participants elected to join the
experiment voluntarily, and they were instructed to quit the experiment at any time if they felt the urge
to do so. To secure the safety of the participants, an emergency kit was prepared as a countermeasure
for accidents. All collected data were anonymized and stored securely in a password-protected data
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storage. Finally, a data collection protocol (see Section 3.3) was designed with consideration of the
participants’ legal rights.

3.2. Sensors

An EEG sensor produced by Muse [36] and a Grove GSR sensor produced by Seeed [37] were
used in this study (Figure 2). The upper section of Figure 2 shows the EEG sensor, which has four
electrodes. According to the instructions from the EEG sensor manufacturer, the electrodes are
located at the positions FP1, FP2, TP9, and TP10 of the head [36]. The mapping of head locations
was defined by Jasper [38], and it is used in neuroscience. The EEG data were captured with four
electrodes; however, only the data from FP1 and FP2 were utilized. This is because TP9 and TP10
were not attached well on the participants’ heads during the data collection, which caused instability
in the output data from these electrodes. The EEG sensor captured raw EEG at a 220 Hz sampling
rate and provided power spectral density (PSD) values for each electrode. According to the sensor
manufacturer, the types of PSD data were absolute band power (ABP), relative band power, and
others [36]. The sampling rate of these data was 10 Hz. To calculate ABP, we applied the fast Fourier
transform algorithm. We calculated PSD by the following EEG frequency bands [36]:

• Delta: (1–4) Hz,
• Theta: (4–8) Hz,
• Alpha: (7.5–13) Hz,
• Beta: (13–30) Hz,
• Gamma: (30–44) Hz.

Figure 2. (a) EEG sensor, and (b) GSR sensor.

The lower section of Figure 2 illustrates the Grove GSR sensor that was used in this study, along
with the finger band electrodes. These electrodes were attached to the index and middle fingers of the
participants. The GSR sensor captures micro voltages (MV) between the fingers using the attached
electrodes. Furthermore, the sensor calculates skin resistance (SR) utilizing the MV input in ohms.
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The formula for calculating SR using MV is provided by the sensor manufacturer [37], and is replicated
in Equation (1). The sensor was connected to an Arduino Uno device, and the captured data were
transmitted to a computer at a 192 Hz sampling rate:

SR = ((1024 + 2 ∗MV) ∗ 10, 000)/(512−MV). (1)

3.3. Protocol

Figure 3 presents the protocol of data collection. In the introduction stage, the participants
were presented a page showing a consent form of the experiment. The information on the consent
form stated that we would use the collected data only anonymously for academic purposes.
Furthermore, the participants were instructed that they could stop the experiment anytime when
they feel uncomfortable.

Figure 3. Protocol of data collection.

In the stage for showing non-boredom videos, a cinematic trailer of Blizzard’s Starcraft 2: Heart
of the Swarm, and a Korean comedy video clip were used to evoke non-boredom. These video clips
were chosen to entertain the participants so that they would not become bored. To evoke boredom,
a looping video was played in which a small circle moved slowly tracing the boundary of a bigger circle.
Furthermore, to neutralize the emotion state of the participants, a cloud image from the International
Affective Picture System [39] was shown for 30 seconds before showing each video stimulus. When
the participants watched the videos, they were instructed to stop watching (by pressing a button) at
any time they chose. Thus, each participant’s data length was different, with the shortest watching
time being 7.13 s.

The data collection consisted of two sessions. The sessions were otherwise identical except for the
non-boredom video stimulus (i.e., the game trailer and the comedy show clip). The reason for carrying
out data collection in two sessions was to get a content-independent classification result. In other
words, we wanted to see whether the change of non-boredom video has an effect on the classification.
After watching the video stimuli, the participants answered a questionnaire to measure the strength of
boredom that they felt. The questionnaire had two questions: one for the boredom video, and another
for the non-boredom video. The questionnaires were designed to be answered on a 5-point scale,
and the range of the scale was from “None” to “Very much.”
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4. Machine Learning Methods

In this section, we describe the procedure for feature extraction and machine learning techniques
for analyzing the collected data to classify boredom.

4.1. Window Size

As explained in Section 3.3, each participant’s data length was different because they were
instructed to stop the video stimuli playback at the time they chose. The shortest data length was
7.13 s, thus only the last 7 s of each participant’s data were extracted to build the models. With the
window size of 7 s, the number of samples was 56. Other window sizes, such as 1 s and 0.5 s, were also
tested; however, these potentially caused overfitting because two or more samples would be generated
from the same data with the same label.

4.2. Features

This section explains the feature extraction methods that we used for the EEG and GSR datasets.
MATLAB (R2017a) was used for data analysis pertaining to feature extraction.

4.2.1. EEG

Similar to our previous study [7], we extracted five EEG features: (1) ABP, (2) Normalized ABP
(NABP), (3) differential entropy (DE), (4) rational asymmetry (RASM), and (5) differential asymmetry
(DASM). As explained in Section 3.2, ABP is a PSD value that is produced at 10 Hz from each electrode
and frequency band. NABP is a normalized value of ABP using the following equation:

x′ =
x−min (x)

max (x)−min (x)
, (2)

where x is the original value, x′ is the normalized value, and max(x) and min(x) are the maximum
value and the minimum value of the dataset, respectively.

To calculate the DE, RASM, and DASM features, we used the formulae proposed by Zheng et al. [4],
which are replicated in Equations (3)–(5):

DE =
1
2

log 2πeσ2, (3)

DASM = DE(le f t) − DE(right), (4)

RASM = DE(le f t)/DE(right). (5)

In Equation (3), σ2 is the variance of the bandpass-filtered EEG data of each frequency band,
and π and e are constants. Furthermore, as the equations show, DASM and RASM are based on DE
and utilize the electrical current asymmetry between the electrodes of the EEG sensors. Therefore,
in this study, we use the asymmetry between the electrodes and the values from each electrode at the
same time to train classification models.

As explained in Section 4.1, we set the window size to 7 s for feature extraction. Therefore, 70 units
of ABP data and 70 units of NABP data of each electrode and frequency band, and 1540 units of EEG
data of each electrode were extracted from each participant’s data. We calculated the average and the
standard deviation for each 70 units of ABP and NABP data and used the results as features. In the
calculation of DE, we used all 1540 units of EEG data. In more detail, we applied the bandpass filter on
EEG data. Regarding the frequency range of filtering, we followed the frequency band ranges of our
EEG sensor (see Section 3.2). Finally, RASM and DASM were calculated using the extracted DE values.

As a result of EEG feature extraction, we secured 40 features from ABP and NABP (five frequency
bands times two electrodes times two summary statistics). Moreover, 10 features were extracted from
DE (five frequency bands times two electrodes). Finally, as indicated by Equations (4) and (5), RASM
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and DASM utilize locational symmetry for each electrode and DE value. Thus, five features were
secured from RASM and DASM (five frequency bands).

4.2.2. GSR

As mentioned in Section 3.2, we used MV and SR data features from the GSR sensor. Additionally,
normalization of MV with feature scaling was also performed (see Equation (2)). As a result, MV,
normalized MV (NMV), and SR were secured from the GSR data. Similar to the feature extraction of
the EEG data, we calculated the average and the standard deviation for each feature of the GSR data
and used them as the final feature values. Consequently, six features in total were secured from the
GSR data.

4.3. Machine Learning Model Selection

Weka, which is an open-source software for data mining that provides several machine learning
algorithms, was used for building and testing the machine learning models [40]. In this study,
we considered a wide range of machine learning algorithms supported by Weka as candidate
algorithms. These candidates were used for initial testing to select the best algorithms for
hyperparameter tuning.

Table 3 presents the evaluated algorithms and their options for training. Most of the algorithms
were set to default parameters, i.e., the parameters that were preconfigured for the respective
algorithms in Weka. Some algorithms (IBk, MLP, SVM) were used several times with different
configurations, but these were considered as the same algorithm with different parameters. Therefore,
although the number of algorithms was 19, we had 30 models in total to be trained for each dataset
(EEG, GSR, and EEG-GSR combined).

Table 3. List of algorithms used for training models.

Algorithm Option Algorithm Option Algorithm Option

IBk
Default

Multilayer Perceptron
(MLP)

t

SVM

Linear
1/distance i Polynomial
1-distance a Radial

Decision Stump Default o Sigmoid
Decision Table Default t,a LMT Default
Hoeffding Tree Default t,a,o PART Default
J48 Default t,i,a,o Logistic Default
Random Tree
(RT) Default

Random Forest
(RF) Default Simple Logistic Default

JRip Default REP Tree Default Zero R Default
Naïve Bayes (NB) Default KStar Default One R Default

Network design parameter of MLP (Number of node per layer). a = (number of features + number of
labels)/2, i = number of features, o = number of labels, t = number of features + number of labels, Ex) if 10
features and 2 labels are used, a, i, o, and t are 6, 10, 2, and 12, respectively (single hidden layer).

IBk, which is a k-Nearest Neighbor classifier, has a parameter for getting a weight from the
distance between samples. By default, no weight is assigned. In MLP, the number of layers and the
number of nodes in each layer can be defined. For example, “t,i” means that the MLP has two layers,
with the first layer consisting of “t” nodes and the second layer consisting of “i” nodes. Table 3 notes
explain “a”, “i”, “o” and “t”. Finally, SVM provides options for selecting the SVM kernel type to
be used. The MLP, IBk and SVM algorithms also have additional parameters than the ones listed in
Table 3; however, we did not adjust them in this study.

4.4. Feature Refinement

To increase the models’ performance, we applied a feature selection algorithm provided by
Weka called Wrapper Subset Evaluator (WSE). WSE was proposed by Kohavi and John [41] to find
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a classifier-optimized feature subset from a dataset to increase model performance. To use WSE,
a searching method (forward or backward searching) is required. The target classifier information
is also provided as an input to WSE. We used forward searching and the optimized feature set for
each algorithm during initial testing and hyperparameter tuning. In the next section, we present the
selected features that produced the highest accuracies.

5. Results

5.1. Questionnaire

We first analyzed the questionnaire results, summarized in Figure 4, to be used for labeling the
datasets. We regrouped the questionnaire answers into two groups as follows: “None” and “Little”
were merged into the weak boredom group, and the remaining answers were merged into the strong
boredom group. The total number of questionnaire answers was 56, which comprised 28 participants’
answers for two video stimuli. The number of answers in the weak boredom group was 30, while
26 were assigned to the strong boredom group. These regrouped questionnaire results were then
used for labeling the collected samples. Based on Figure 4, the game trailer and the comedy clip did
not induce boredom among most participants; however, the circle video was successful in evoking
boredom among the participants.

Figure 4. Questionnaire results (Question: How much boredom did you feel from “stimulus name”?).

5.2. Initial Test for Model Selection

We performed initial testing to compare the 19 candidate algorithms and to select the best models
for further analysis. Table 4 presents the top ten models for each dataset. Based on the results,
we selected RF, MLP, and NB for further investigation. In particular, RF was ranked as the best
algorithm for the EEG-GSR combined and EEG datasets. MLP was ranked in the top ten more than
other algorithms in all datasets. We also chose NB because it has a relatively low time complexity
of O (np), where n is the number of training samples and p is the number of features, whereas other
algorithms with similar performance, such as IBk or J48, have time complexity of O

(
n2).
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Table 4. Initial testing results for model selection.

EEG-GSR EEG GSR

Algorithm Accuracy (%) Algorithm Accuracy (%) Algorithm Accuracy (%)

RF 83.93 RF 80.36 MLP (t) 75.00
PART 80.36 MLP (a) 78.57 Simple Logistic 73.21
IBk 80.36 MLP (i) 78.57 MLP (a) 71.43
J48 80.36 KStar 78.57 MLP (i) 71.43
NB 80.36 MLP (o) 73.21 SVM (Radial Kernel) 71.43
RT 78.57 NB 71.43 MLP (o) 69.64
Hoeffding Tree 78.57 Hoeffding Tree 71.43 KStar 69.64
MLP (o) 76.79 MLP (t) 71.43 PART 69.64
MLP (a) 76.79 IBk 71.43 Decision Stump 69.64
MLP (t) 76.79 Logistic 69.64 J48 69.64

5.3. Hyperparameter Tuning

5.3.1. Random Forest

Weka’s RF API has three major hyperparameters that are related to performance: the number of
features to randomly investigate, the number of trees, and the maximum depth of trees. In order to
find the best hyperparameters, we trained models with all possible combinations of the parameters
within predefined ranges. As a result, we trained 107,100 models and measured these performances
with 10-fold cross validation. The predefined ranges of the tuning parameters were as follows:

• Number of features to randomly investigate: 1–6, default = int(log2(p) + 1),
• Number of trees: 1–100,
• Maximum depth of trees: 1–50, no limit.

Table 5 presents the top three hyperparameter combinations for the Random Forest algorithm
in each dataset. To select the best hyperparameters, we established the following prioritization:
(1) Accuracy, (2) Area Under the receiver operating characteristics Curve (AUC), and (3) expected
classification cost. Consequently, we selected 7, 14, and 7 as the number of features, trees, and the
maximum depth value, respectively, for the EEG-GSR combined dataset. In the case of EEG and GSR
datasets, the default values for the number of features (6, and 3, respectively) were optimal, and 18
and 11 were selected as the number of trees and depth, respectively. The “no limit” in depth means
unlimited search on each tree of random forest. Considering the expected classification cost, 11 appears
to be a suitable value.

Table 5. RF hyperparameter tuning results.

Features Trees Depth Accuracy (%) AUC

EEG-GSR
default (7) 14 7 87.50 0.842

2 14 7 87.50 0.842
3 14 7 87.50 0.842

EEG
default (6) 18 no limit 76.79 0.780
default (6) 18 11 76.79 0.780
default (6) 18 12 76.79 0.780

GSR
default (3) 18 no limit 76.79 0.780
default (3) 18 11 76.79 0.780
default (3) 18 12 76.79 0.780

5.3.2. Multilayer Perceptron

We tuned the neural network design, learning rate, and epoch parameters for MLP in the Weka
API. We started by evaluating the neural network design parameters by testing all possible cases,
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whilst keeping the other parameters at default values. For flexible neural network design, we followed
the Weka API’s MLP neural network design parameter rule (see Table 3). The general design concept
of a neural network was to decrease the number of each layer’s nodes gradually, from the first layer to
the last layer.

To decide the optimal learning rate and epoch values for MLP, we tested all possible combinations
of these within predefined ranges. As a result, 3,600,000 models were trained and their performances
were measured using 10-fold cross validation. The predefined ranges of each tuning parameter were
as follows (the default value of MLP’s momentum parameter is 0.2; however, we fixed it as 0.1):

• Learning rate: 0.01–1.00 (0.01 unit),
• Epoch: 1–2000 (1 unit).

Table 6 presents the hyperparameter tuning results. To select the best hyperparameters,
we established the following prioritization: (1) Accuracy, (2) AUC, and (3) low epoch. Considering the
characteristics of MLP and to avoid overfitting, the learning needs to stop when the accuracy does
not increase. Regarding the network design, models with three hidden layers could not be tested
because WSE produced a model that contained only the label data. According to the results of Table 6,
we selected “t”, 0.76, and 73 as the values of network design, learning rate, and epoch, respectively, for
the EEG-GSR combined dataset. For the EEG dataset, “i”, 0.19, and 489 were found to the best values
of network design, learning rate, and epoch, respectively. Finally, “t”, 0.95, and 321 were designated as
the values of the three hyperparameters for the GSR dataset.

Table 6. MLP hyperparameter tuning results.

Layer and Node Learning Rate Epoch Accuracy (%) AUC

EEG-GSR

a 0.47 444 76.79 0.771
i 0.90 215 82.14 0.794
o 0.47 444 76.79 0.771
t 0.76 73 83.93 0.765
i, a 0.59 572 82.14 0.795
i, o 0.49 1351 82.14 0.764
t, i 0.91 192 76.79 0.737

EEG

a 0.70 452 76.79 0.733
i 0.19 489 83.93 0.822
o 0.21 654 80.36 0.751
t 0.48 163 82.14 0.791
i, a 0.43 405 78.57 0.706
i, o 0.71 265 75.00 0.710
t, i 0.99 320 78.57 0.692

GSR

a 0.44 312 75.00 0.767
i 0.44 312 75.00 0.767
o 0.44 312 75.00 0.767
t 0.95 321 76.79 0.759
i, a 0.64 1120 73.21 0.663
i, o 0.90 231 71.43 0.642
t, i 0.91 255 71.43 0.641

5.3.3. Naïve Bayes

Table 7 presents the tuning results of the NB hyperparameters for each dataset. Weka’s NB API
has two major options, which are mutually exclusive: whether to use a kernel density estimator
rather than the normal distribution for numeric attributes (“Kernel” in Table 7), and whether to use a
supervised discretization to process numeric attributes (“Discretization” in Table 7).
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Table 7. NB hyperparameters’ tuning results.

Kernel Discretization Accuracy (%) AUC

EEG-GSR
FALSE FALSE 82.14 0.785
TRUE FALSE 76.79 0.819
FALSE TRUE 60.71 0.569

EEG
FALSE FALSE 67.86 0.653
TRUE FALSE 67.86 0.603
FALSE TRUE 53.57 0.454

GSR
FALSE FALSE 69.64 0.681
TRUE FALSE 64.29 0.626
FALSE TRUE 60.71 0.569

As in the parameter tuning processes for RF and MLP, we also tested all possible combinations of
the NB hyperparameter options. Thus, we trained and tested nine models in total, and found that the
parameters should be disabled for the EEG-GSR combined, EEG, and GSR datasets.

5.4. Final Performance Analysis

5.4.1. Performance Measurement

A common method of evaluating a classification model’s performance is to use k-fold cross
validation. However, k-fold cross validation is based on a random split of data; thus, when the
validation is executed, the produced performance results can be different each time. Therefore,
to obtain more reliable performance results, we measured the final models’ performance by repeating
10-fold cross validation 1000 times with different seed values. Table 8 presents the mean, maximum
and minimum accuracies and AUCs produced by 1000 iterations of the 10-fold cross validation runs
for each parameter combination and dataset. Considering the mean accuracy, the MLP algorithm
produced the best performance in all datasets. However, when considering the mean AUC values,
the RF model outperformed the MLP model on the EEG-GSR combined dataset. The last column of
Table 8 reports the average computation time for each run. We measured the average time per cross
validation using the last 100 iterations of 10-fold cross validation. MLP took the longest time overall,
for example, it took 71 ms on the EEG-GSR combined dataset, which was about 2.7 times longer than
RF and 7.5 times longer than NB. The performance on the EEG-GSR combined dataset was better than
each individual data performance in all cases.

Table 8. Final performance comparison—1000 runs of 10-fold cross validation.

Accuracy (%) AUC Time (ms)

Mean Max Min Mean Max Min Mean

EEG-GSR
RF 77.53 89.29 66.07 0.815 0.900 0.722 26.52
NB 79.39 85.71 67.86 0.783 0.819 0.733 9.41
MLP 79.98 83.93 71.43 0.781 0.815 0.723 70.98

EEG
RF 64.77 78.57 51.79 0.695 0.833 0.569 44.38
NB 70.85 78.57 64.29 0.710 0.760 0.640 9.89
MLP 77.04 83.93 66.07 0.775 0.833 0.641 251.22

GSR
RF 68.33 78.57 53.57 0.731 0.831 0.591 30.84
NB 66.86 71.43 64.29 0.709 0.751 0.655 11.9
MLP 70.03 76.79 60.71 0.744 0.796 0.683 163.49

Figure 5 shows the models’ final performances using box plots. We observe that the MLP and
NB models’ performances were more stable than that of RF in 1000 runs of 10-fold cross validation.
The mean accuracies of MLP were higher than those of the other models in general. The RF model on



Sensors 2019, 19, 4561 13 of 18

the EEG-GSR combined dataset showed a high mean AUC but had a large variance. Muller et al. [42]
defined a model’s discriminatory ability with AUC as follows: (1) excellent discrimination (AUC >= 0.90),
(2) good discrimination (0.80 <= AUC < 0.90), (3) fair discrimination (0.70 <= AUC < 0.80), and (4) poor
discrimination (0.60 <= AUC < 0.70). For many of our final models, the AUC was over 0.7, and thus
these models can be classified as fair discrimination models.

Figure 5. Box plots for the final performance comparison.

Considering all aspects of our model performance validation, the MLP model classified boredom
most reliably on all the datasets. Furthermore, the model using the EEG-GSR combined dataset showed
the highest performance, while MLP on the EEG dataset and MLP on the GSR dataset ranked second
and third, respectively.

5.4.2. Analysis of the Selected Features

Table 9 presents the features that the WSE algorithm selected for each model. These results
indicate that the standard deviation of MV was selected for all classifiers that used the GSR datasets.
For a more detailed analysis of the selected features, we illustrate the distribution of the selected EEG
features by frequency bands and electrodes in Figure 6. As the left pie chart indicates, the features
related to the Alpha and Beta bands were selected more frequently than those of the Delta and Gamma
bands, and the Theta band features were not selected by WSE at all. The right pie chart in Figure 6
illustrates the distribution of features by electrodes, where the distribution among FP1 and FP2 is
nearly balanced; however, FP2 features were picked slightly more frequently.
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Table 9. Selected features by WSE in each model.

EEG-GSR EEG GSR

MLP

ABP Delta FP1 std ABP Beta FP2 mean
MV std
NMV mean

ABP Gamma FP2 mean ABP Gamma FP2 mean
NABP Delta FP2 mean NABP Alpha FP1 std
MV std DASM Alpha

NB

ABP Beta FP2 mean

NABP Alpha FP1 std
DE Beta FP1

MV std
NMV std

ABP Gamma FP2 mean
NABP Alpha FP1 mean
NABP Beta FP1 mean
MV std

RF NABP Beta FP2 mean
MV std

ABP Gamma FP2 mean MV std
SR meanNABP Beta FP2 mean

Alpha RASM

Figure 6. Distributions of EEG features by frequency bands and electrodes.

Figure 7 illustrates the distribution of EEG features by frequency bands for each electrode
separately. We find that all selected Alpha band features are concentrated on FP1. In contrast,
all selected Gamma band features occur on FP2 as the right pie chart shows.

Figure 7. Distributions of EEG features by frequency bands for each electrode.

Based on our analysis of Table 9, Figures 6 and 7, we conclude that EEG and GSR show some
indicators for the classification of boredom. First, the standard deviation of MV strongly correlated
with boredom because this feature was selected from both GSR datasets. Second, the Gamma, Alpha
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and Beta bands have a strong correlation with boredom because these were selected more frequently
than the Delta and Theta bands. Third, each frequency band has some correlation with a specific
electrode location in boredom classification; for example, all selected Gamma band features belonged
to FP2 and all selected Alpha band features belonged to FP1.

6. Discussion

In our experiment, the MLP models’ performances were more stable than those of the other
models. Considering Table 8, the RF model for the EEG-GSR combined dataset produced a maximum
accuracy of 89.29%, which is the highest of all accuracies; however, its minimum accuracy was 66.07%,
which was the lowest accuracy among all the models on the same dataset. An important property of a
good classification model is the robustness of performance over multiple executions. To evaluate this
for the selected models, we executed 1000 iterations of 10-fold cross validation with different random
seeds. Thus, training data and testing data splits were changed randomly. A good model should be
able to produce good classification results for different training and testing datasets. From this aspect,
the MLP models classified boredom more robustly than the other models. Furthermore, the EEG-GSR
dataset’s MLP model (mean accuracy of 79.98%) outperformed the other MLP models in the aspect of
mean accuracy. Therefore, our analysis suggests that MLP is generally recommended for classifying
boredom from EEG and GSR.

Comparing our main results with the previous research presented in Table 2, our model’s
performance is better than those of Jaques et al. [13] and lower than Jang et al. [10]. However,
as Table 1 shows, previous studies did not utilize EEG and GSR for classifying boredom. Thus, a direct
comparison between our model and previous studies’ performance is not reasonable. Furthermore,
we collected EEG and GSR data from 28 participants whereas many previous studies, with the exception
of Jang et al. [10], Jaques et al. [13], and Seo et al. [7], collected data from less than 28 participants
(see Table 1); thus, our model is based on data acquired from a sufficient number of participants.

Moreover, this study executed 1000 iterations of 10-fold cross-validation on each model to reduce
the effect of randomness on the results and to produce more reliable performance scores. Among
previous studies, Jaques et al. [13], Jang et al. [10], and Seo et al. [7] also validated their models with
10-fold cross validation; however, they did not mention the number of repetitions of validation so we
assume that cross validation was only executed once. Shen et al. [2] separated their data into training
and testing sets but did not consider the random effect. Giakoumis et al. [9] validated their model with
the use of leave-one-out cross validation that validates a model without random effect; however, as we
mentioned above, a direct comparison of this study to our study is not reasonable because we used
EEG and GSR datasets, while Giakoumis et al. [9] used ECG and GSR datasets.

We note that the proposed MLP model’s performance (79.98%) is lower than that of the model
proposed in our previous study (86.73%) [7]. One of the reasons contributing to this difference is that,
as we explained in the paragraph above as well as in Sections 4.1 and 4.2.1, the experimental setting
and the way we evaluated the models’ performance was modified from the previous study. These
changes were made to improve the robustness and generalizability of the results. For example, in
our previous study [7], we acquired multiple samples from one participant’s data by splitting them
into one-second windows and used these for training; in the current study, we acquired only one
sample from each participants’ dataset by increasing the window size, thus aiming to increase the
independence between the samples. This can help to reduce overfitting and achieve more generalizable
results. Moreover, the previous study conducted only one iteration of cross validation, whereas, in
the current study, mean accuracies were recorded after 1000 iterations of 10-fold cross-validation
to increase the robustness of the results. This approach provides more reliable performance scores
especially in the applications where the number of available samples is relatively small as in this study.
Although the aforementioned steps taken decreased the accuracy of the final model, the generalizability
and reliability of the result were increased.
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Another novelty of this study is the identification of correlation between EEG, GSR, and boredom
through the interpretation of features. As we explained in Section 2, this correlation was not revealed
by previous studies. Moreover, our findings are aligned with Bench and Lench [34]’s suggestion
that boredom should increase the autonomic nervous system activity, which directly relates to EEG
and GSR as data sources. In our feature refinement results, the WSE algorithm recommended the
EEG and GSR features on the best performing model for increasing performance. This suggests that
the combination of these data correlates with boredom. In particular, Gamma band features were
selected for the combined EEG-GSR and the EEG datasets. This indicates that the Gamma band may
correlate with boredom, whereas the Alpha, Beta and Delta bands have weaker correlations, and the
Theta band has no correlation at all with boredom. Furthermore, the WSE algorithm selected the
standard deviation of MV among the GSR features from the combined EEG-GSR and GSR datasets.
Consequently, the standard deviation of MV can also be an indicator of boredom.

7. Conclusions

In this study, we classified boredom using features from EEG and GSR datasets that were trained
and tested by 30 models based on 19 different machine learning algorithms as an initial test for
finding a suitable classification algorithm. We picked MLP, RF, and NB as the most suitable candidate
algorithms. After tuning the selected algorithms’ hyperparameters, we executed 1000 iterations of
10-fold cross validation with different random seed values to identify the most robust model among
these. As a result, we recommended the MLP model which had a mean accuracy of 79.98% on the
EEG-GSR combined dataset. Another major finding is that EEG and GSR appear to correlate with
boredom, thus supporting the conclusion of Bench and Lench [34] that boredom and autonomic
nervous system are linked.

Although this study produced novel contributions, there are noteworthy limitations. First,
we collected physiological data from young and healthy participants. Thus, the recommended models
may not be applicable to other age groups and to people with health issues. In addition, we hypothesize
that emotion elicitation, and possibly also the manifestation of experienced emotions, is related
to culture. We collected the data from Korean participants using non-boredom stimuli that were
purposefully picked for this cultural context; therefore, the model may not be applicable to participants
coming from other cultures. Regarding the protocol, we did not consider the effect of the order of
showing the stimuli because the number of participants was deemed to be insufficient for dividing
them into comparison groups. Finally, we used only one type of content to elicit boredom. Other types
of contents may give different results about the intensity of the experienced emotion. In our future
work, we aim to solve these limitations by collecting more data from a diverse group of users who are
exposed to different boredom-evoking stimuli.

These results can be of use to developers building accurate affective computing systems as well
as to researchers who seek to understand the physiological properties of boredom. As noted above,
the current results still have limited applicability due to the experiment design that used only one type
of boredom stimulus and a fairly homogeneous participant population. We plan to use diverse stimuli
and extend the data collection to children, elderly people, patients suffering from different medical
conditions, and participants representing other cultures to overcome these limitations.
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