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Abstract: Geodetic networks provide accurate three-dimensional control points for mapping activities,
geoinformation, and infrastructure works. Accurate computation and adjustment are necessary, as all
data collection is vulnerable to outliers. Applying a Least Squares (LS) process can lead to inaccuracy
over many points in such conditions. Robust Estimator (RE) methods are less sensitive to outliers and
provide an alternative to conventional LS. To solve the RE functions, we propose a new metaheuristic
(MH), based on the Vortex Search (IVS) algorithm, along with a novel search space definition scheme.
Numerous scenarios for a Global Navigation Satellite Systems (GNSS)-based network are generated
to compare and analyze the behavior of several known REs. A classic iterative RE and an LS process
are also tested for comparison. We analyze the median and trim position of several estimators,
in order to verify their impact on the estimates. The tests show that IVS performs better than
the original algorithm; therefore, we adopted it in all subsequent RE computations. Regarding
network adjustments, outcomes in the parameter estimation show that REs achieve better results in
large-scale outliers’ scenarios. For detection, both LS and REs identify most outliers in schemes with
large outliers.

Keywords: geodetic networks; independent vortices search (IVS); metaheuristics; outliers detection;
robust estimation

1. Introduction

In 2000, the U.S. government turned off the selective availability of the Global Positioning System
(GPS), making it more responsive to civil and commercial use. Since then, the industry of GNSS-based
technologies (Global Navigation Satellite Systems, which includes other satellite constellations) has
grown significantly. Surveyors, researchers, and most civilians use products developed from this
technology. At present, GNSS receivers can be found in many devices, from precise measuring
instruments to cellphones and cars. In the field of geodesy, GNSS has facilitated the implementation
and quality control of high-precision and accurate networks. Before the advent of GNSS, establishing
a geodetic network required a direct intervisibility between the points, as in triangulation and traverse
surveys [1]. Now, point co-ordinates can be defined by GNSS signals coming from orbital space,
which only requires a good coverage of satellites during data collection. This has brought great
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flexibility in network design, and the achievable accuracy has also helped the densification of classical
first-order geodetic networks [2].

Most geodetic networks have been established using GNSS signals, which are available all over
the Earth’s surface. They are defined by several materialized points with high precision and their
co-ordinates serve as a basis in a wide variety of applications. Some examples are: support and
basic control for surveying and mapping projects; implementation and maintenance of infrastructure
works; monitoring of structural deformations; land cadastre and management; and monitoring of
geodynamic events, such as earthquakes, landslides, and volcanoes. The study of Mt. Etna is a good
example; two GNSS-based networks found a motion pattern of the active Nizzeti faults [3]. In addition,
a geodetic network design was applied to find optimal ground locations for interferometric synthetic
aperture radar (InSAR) devices [4].

To establish a geodetic network using GNSS, the receivers need to be placed at benchmarks and
record satellite tracking data over a given period. Then, baseline vectors are determined between
pairs of receivers, based on ranging and phase observations to the satellites. Once the vectors are
computed, they become the new observations of the network and need to be adjusted to get the final
point co-ordinates [1].

Although most of the GNSS observation process does not require much direct human influence,
the vectors may not be free of blunders. There are sources of error that may cause significant deviations
(e.g., multipath signal propagation error, cycle slips, and ionospheric anomalies). The electromagnetic
wave assumed to propagate along the line of sight between the satellite and the receiver might be
reflected or scattered by obstructions before reaching the instrument [5]. Other error sources are more
mundane, such as mistakes in measuring the height of the antenna above the marker. Although
random errors are inherent to observations, outliers should be detected, identified, and adapted for
better determination of the co-ordinates [6]. An outlier is better not to be used (or not used as it is) in
an adjustment process because it has a high probability of being caused by a gross error [7]. In geodesy,
outliers are mostly produced by gross errors, and gross errors most often lead to outliers.

As outliers in observations affect the accuracy, those errors need to be identified or minimized [8].
In standard geodetic adjustments, a least squares (LS) process is often applied, as it is the best
linear unbiased estimator, assuming that no outliers and/or systematic errors are present in
observations [1,9,10]. If the data are contaminated, however, such an estimation will lead to biased
parameters [11].

Alternatively, the adjustment can be based on Robust Estimators (REs), which are less sensitive to
outliers. If some observations contain blunders or even systematic errors, the REs will be insensitive to
those non-random errors when estimating the parameters [11]. REs have a wide range of applications;
for example, in [12], a robust parameter-estimation method for a mixture model working with the
weights of samples is presented. Furthermore, applications of non-Gaussian distributions on multipass
SAR Interferometry have been presented in [13], and new methods for geodetic observations have
been presented in [14]. Therefore, they need to be investigated for a better understanding of their
capabilities and limitations in geodetic networks.

The minimizing objective functions associated with REs are not linear and, therefore, iterative
processes or smart techniques are required to solve them. One approach is to combine metaheuristic
algorithms (MHs), to optimize the objective function. This strategy has been applied in several
studies in geodesy, as it may lead to better results than classical methods [15–21]. In MH research,
the particle swarm optimization (PSO) [22] has been widely applied, followed by the artificial bee
colony [23–25] and ant colony optimization methods [26], more recently [27]. Another solution is to
apply a data-snooping procedure [28,29], a statistical test which takes place after the LS computation.
However, studying statistical tests is not the purpose of this paper. Researchers have also applied MHs
in others areas of geoscience, such as remote sensing [30,31].

For the adjustment of geodetic networks, MHs compute the unknown parameters (point
co-ordinates) within a pre-defined search space and check them by evaluating the objective function



Sensors 2019, 19, 4535 3 of 27

for the chosen RE. The estimate is then used for the goodness-of-fitting evaluation. The process is
repeated, following the exploration strategy adopted by the MH, until either an acceptable solution or
the computational limit is reached [20].

Applying MHs in geodetic networks adjustment has not been widely explored. Most studies
have been limited to working with only one or two REs, often in simple cases. For example, they may
not have considered the generation of multiple error scenarios [18,19,21], or may have omitted the
consideration of random errors [20]. It is important to explore adjustment solutions where random
errors can be simulated, getting as close to a real situation as possible. Still, several error scenarios
need to be tested with a variety of REs to obtain a representative set and measure the reliability of
the strategy.

Furthermore, an MH needs to present stable results when minimizing the RE functions and
present good strategies to avoid local minima.

Therefore, this work has two main goals: First, developing better MHs by presenting the
Independent Vortices Search (IVS) based on the Vortex Search method [32], which brings advances to
mitigate the limitations found in the original algorithm [33]. We compare its performance with the
original method, other modifications, and a competing algorithm.

The second goal is improving quality control in geodetic networks by combining smart and robust
methods. By separating the results into three scenarios (with no outliers, small outliers, and large
outliers), we classify the REs according to the demand and situation.

Then, the behaviors of several known REs when adjusting a geodetic network are tested: Least
Trimmed Squares (LTS) [34], Least Median of Squares (LMS) [34], LTS-RC adding a constraint [20],
Sign-Constrained Robust Least Squares (SRLS) [35], Least Trimmed Absolute deviations (LTA) [36],
and Iteratively Reweighted Least Squares (IRLS) [37].

We generated observations from the official co-ordinates of a station and standard deviations
from GNSS signal processing. Several error scenarios were simulated in the observations, which are
tested by all REs, and the results are compared with the conventional LS. In addition, different median
and trim positions in residual vectors of some REs are investigated. We analyzed the results by: (1) the
identification outliers, analyzing the residuals vector, and (2) by the estimated parameters, comparing
them with the official co-ordinates of the network.

Additionally, for problems based on the Gauss–Markov model, we present a new proposal for
the search space definition when using MHs. Furthermore, a comprehensive analysis of the results
achieved with different trim and median position in some REs is given, showing which equation is
best in each situation.

This paper is organized into six sections: In Section 2, we present a theoretical overview of
the LS and RE methods applied in the experiments. Section 3 presents the first contribution of the
study, showing the Independent Vortices Search algorithm. In Section 4, we present details of the
experimental setup, how we analyzed the quality of the solutions, and the implementation of the REs
and IVS. Section 5 presents the second contribution of this work, discussing the results obtained with
adjustments to the GNSS network. We compare the results of the trim and median position of some
REs and the outcomes, as well as discussing the various error scenarios. Section 6 brings the final
considerations about the research and suggests issues to explore in future research.

2. Classical and Robust Approaches

The adjustment of geodetic networks is generally conducted by employing a Least Squares (LS)
method, which is the best linear unbiased estimator when only random errors are present in the
observations [9]. When this assumption does not comply, the estimation fails, distributing errors over
many parameters. Other techniques can be applied when one suspects the presence of outliers, such as
robust estimators (REs). We present a brief explanation of the methods covered in this study below.
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2.1. Least Squares Method

The adjustment of geodetic networks applying the LS method is given by the Gauss–Markov
Model [1]:

Ax = l + v, (1)

where A is the design matrix of the partial derivatives, x is the parameter correction vector (for point
co-ordinates) of the linearized model, l is the observations vector minus the calculated data, and v
is the residuals vector. The calculation of A results in a matrix formed by the values 0, 1, and −1,
based on the partial derivatives of the observation equations:

∆XAB = XB − XA,

∆YAB = YB −YA,

∆ZAB = ZB − ZA,

(2)

representing the distance between the approximate parameters on each axis.
The solution of the conventional LS adjustment is given by [9]:

x =
(

ATWA
)−1

ATWl, (3)

where T represents the matrix transpose and −1 represents matrix inversion. The quantity W is the
weight matrix of the observations [1]:

W = σ2Σ−1, (4)

where Σ is the covariance matrix of the observations and σ2 is the a priori variance factor.
The final solution is given by Equation (5):

x̂ = x0 + x, (5)

where x is the parameters’ correction for the initial approximate parameter vector (x0), and x̂ the
vector of adjusted parameters containing the final co-ordinates of the network points.

2.2. Least Trimmed Squares

The Least Trimmed Squares (LTS) robust estimator consists of summing only the h smallest
squares of the residuals (Equation (1)), suppressing the larger ones [34]. The estimator is given by:

min
h

∑
i=1

v2
i . (6)

According to ([38] (p. 132)), h is defined by:

h = (n + p + 1) /2, (7)

where n equals the number of observations and p is the number of parameters, which is the number of
co-ordinates to be estimated.

2.3. Least Median of Squares

The Least Median of Squares (LMS) replaces the squared residuals summation of LS with the
median square residual [34], given by:

min medh
i=1,2,...,n

v2
i , (8)
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where the median position (medh) is defined by Equation (7).

2.4. Least Trimmed Squares with Redundancy Constraint (LTS-RC)

The LTS-RC extends LTS by adding a constraint to the summation of residuals. This estimator
ensures that each parameter remains associated with at least two observations represented in the
summation by their corresponding residuals. This measure guarantees observation redundancy [20].

For the adjustment of geodetic networks established only with GNSS baseline vectors as
observations, the algorithm maintains at least two residuals associated with each parameter,
guaranteeing redundancy. In estimation problems where a parameter depends on more than one type
of observation, however, the algorithm must be adapted [39]. This is to ensure that each different type
of observation is present at least twice.

2.5. Sign-Constrained Robust Least Squares

Unlike other REs presented so far, the Sign-Constrained Robust Least Squares (SRLS) has multiple
optimization functions [35]:

min
(

vTWRv
)

/rWR , (9)

where the diagonal elements of WR are defined as

wR
i =

{
wi, if |vi| ≤ Cσ̂/

√
wi,

0, otherwise,
, (10)

with C being a positive constant defined in the range [1–2], according to the estimated number of
outliers in the observations. For cases with 1% of outliers, C = 2.0; for 10%, C = 1.0. The quantity σ̂ is
a robust estimate of the standard deviation of the unit weight, in practice given by [40]:

σ̂ = 1.483×med (
√

wi |vi|) , (11)

where med
(√

wi |vi|
)

is the median absolute values of studentized residuals. The number rWR is the
rank of WR.

However, due to the presence of covariance values in the weight matrix of GNSS networks,
the matrix WR can be given by [18,37]:

WR = diag
(

wR
1 , . . . , wR

n

)
·W · diag

(
wR

1 , . . . , wR
n

)
, (12)

where diag
(
wR

1 , . . . , wR
n
)

are the elements calculated by Equation (10), distributed along
a diagonal matrix.

In addition to the minimization of Equation (9) and the constraint for WR, the SRLS is also subject
to the following summation [35]:

n

∑
i=1

sign (vi) = 0. (13)

2.6. Least Trimmed Absolute Deviations

The Least Trimmed Absolute deviations (LTA) have a formulation similar to LTS. However,
the squares of the residuals are replaced by their absolute values [36]. A summation of the h smallest
absolute residuals is carried out, ignoring the largest ones:

min
h

∑
i=1
|vi| , (14)

where h is defined as in LTS, using Equation (7).
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2.7. Iteratively Reweighted Least Squares

The Iteratively Reweighted Least Squares (IRLS) method represents a class of REs that works on
the reweighting of W to estimate the parameters. This type of estimator has its own iterative methods
to obtain a robust solution, thus not needing any external numerical method (such as MH).

The iterative method chosen was proposed in [37] and has presented good results [20,37,41].
In [37], the author presented two weight adjustment strategies. Strategy I held better results and,

therefore, is adopted in this study:

wi =

{
1, if |τi| ≤ C,

C/ |τi| , if |τi| > C,
(15)

where τi is given by

τi =
cT

i Wv

σ̂
√

cT
i W Rci

, (16)

with ci being a unit vector, only filled with a 1 in the ith position, and with σ̂ given by Equation (11).
The quantity R is the redundancy matrix [42]

R = I − A
(

ATWA
)−1

ATW , (17)

where I is an identity matrix. Strategy I is, then, computed as follows [37]:

1. Initialize the counter i = 0 and calculate the initial solution of the parameters x̂(0) using
Equation (3).

2. Increment i = i + 1 and implement the weight adjustment strategy I using Equation (15).
3. Construct the equivalent weight matrix WR using Equation (12) by applying the calculated values

to wi.
4. Stop the iteration if the difference

∥∥∥x̂(i) − x̂(i−1)
∥∥∥ is less than a threshold value, or if a maximum

number of iterations has been reached. Otherwise, return to step 2 and start a new iteration.

2.8. LMS Median Position and LTS/LTS-RC Summation Limit

As seen above, the LMS has a median position defined by h by applying Equation (7). Likewise,
the trim limits (residuals for summation) for LTS and LTS-RC are defined, based on the same equation.

Occasionally, a variation of this equation is used [19,21,43], replacing Equation (7) by
Equation (18) [38], below:

h = (n + 1) /2, (18)

where n is the number of observations.
It is clear that the only difference, regarding Equation (7), is the absence of the variable p (the

number of parameters). By defining h as above, more residuals are trimmed in LTS and LTS-RC,
and the true median position of the residuals vector becomes the median value for LMS.

We can also think about other possible values for h. In the case of LTS and LTS-RC, a lower
limit considers fewer residuals in the estimation (i.e., it will ignore more values in the residuals
vector). For the LMS, the limit defines a single residual position to be taken into consideration. With
a greater limit, the residual location considered the center will be further from the median, toward the
larger values.

Thus, besides testing and analyzing the REs presented in this study, we also will verify the
behavior of both Equations (7) and (18) for LMS, LTS, and LTS-RC estimators.
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3. Independent Vortices Search

All of the REs (except for IRLS) require a numerical optimization method. The MH has to explore
values for the parameters which generate the residuals from the Gauss–Markov model. The objective
function of the RE is then evaluated and used for the computation of the solution fitness. Then, the MH
generates new candidate solutions, continuing the process until it reaches a pre-defined limit [20].

For the numerical optimization, we developed the Independent Vortices Search (IVS), based on
the Vortex Search algorithm (VS) [32] and its modification, the Modified Vortex Search algorithm
(MVS) [33]. While VS works with one vortex, MVS can explore many vortices at once, exchanging
information. We will present more details below.

3.1. Vortex Search Algorithm

The Vortex Search algorithm (VS) is a single solution MH for numerical function optimization.
It generates new candidates around the current best result, moving along the search space when
achieving a better solution. The radius defines the limit for generating new candidate solutions and
decreases over cycles [32].

VS and MVS define the initial radius (radii) of the center (centers) by using Equation (19), covering
the whole search space. The algorithms obtain their first solution by applying Equation (20), causing
the search to begin at the center of the space:

r0j =
xmin,j − xmax,j

2
, (19)

µ0j =
xmin,j + xmax,j

2
, (20)

where r0j is the initial radius of the jth parameter, xmin,j and xmax,j are the respective minimum and
maximum limits of jth parameter, and µ0j is the center of the vortex and the initial solution for the
parameter j.

In each cycle, the radius decreases to limit the generation space for new candidate solutions.
In the later cycles, the VS produces a fine adjustment as the current candidates get closer to the best
solution. The radius decrease is obtained by Equation (21), and provides satisfactory control of the
exploration and investigation [32]:

rc = r0 · (1/R) · γ (R, ac) , (21)

where rc is the radius size in cycle c, R is a constant (set at 0.1) that controls the resolution of the
algorithm’s search, and γ (R, ac) is the incomplete inverse gamma function, given by Equation (22):

γ (R, ac) =
∫ R

0
e−ttac−1dt ac > 0, (22)

where ac is a parameter that defines the shape for each cycle, as defined by Equation (23):

ac = 1− c
Cmax

. (23)

The equation of the shape parameter uses the cycle count c and the maximum number of
iterations Cmax.

The vector of candidate solutions s is randomly generated at the center µ using the Multivariate
Normal Distribution (MND) with the standard deviation vector of r. Figure 1 shows an example of the
radius convergence by applying Equation (21) and the candidate generation limits by the MND.
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Figure 1. With an initial radius of size 10 and maximum cycles at 100, the black line shows the
decrease of radius size, whereas the colored areas indicate the standard deviations of ±1, ±2, and
±3σ. Multivariate Normal Distribution generates about 99.7% of the candidate solutions within these
intervals. At around half of the cycles, the search shifts from exploration to investigation.

The algorithm checks that the candidate values are within the search space by applying
Equation (24), where ε is a random real value between [0, 1]:

xi,j =

{
xi,j, if xmin,j ≤ xi,j ≤ xmax,j,

ε ·
(

xmax,j − xmin,j
)
+ xmin,j, otherwise.

(24)

For each candidate solution, a fitness function tests the result: If a candidate produces a better
outcome than the current one, VS moves the center (µ) to the new solution and discards the remaining
candidates. Otherwise, the algorithm keeps the best obtained result and produces new solutions.

Both VS and MVS use all the above equations. However, by using several vortices, MVS adjusts
the positions of its centers to each cycle, based on the vortex, with a better result. This separates
positioning the center µl for the generation of new solutions, and the best solution sl of a vortex l.
For this, MVS applies Equation (25):

µl = sl + ε · (sl + sbest) , (25)

where µl is the new position of the center l, sl is the best solution of the center l, and sbest is the result
of the vortex with the best solution. At each cycle, all centers (except for sbest) gain new positions using
the above equation [32].

As has been shown, VS has no crossover nor mutations between candidate solutions,
unlike Genetic Algorithms (GAs) and the Artificial Bee Colony (ABC) method. At each cycle, it saves
the best solution—either the current best or a new one—for the next cycle, discarding the remaining
ones. This way, VS has no need to use individual selection strategies, a mutation rate, or other strategies
present in other MHs. This helps to keep the configuration simple, reducing human interference in
searching for a solution to a problem.

Another interesting characteristic of VS is the transition between global and local search. In many
MHs, exploration and investigation occur from the beginning to the end of the execution. This makes
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it possible to find a good enough solution, even in the first few cycles. This way, they can interrupt
the execution if so desired. Otherwise, the global search continues through to the last iterations,
attempting to reduce the risk of local minima. In VS, the radius size is reduced over the cycles using
an inverse incomplete gamma function (Equation (22)) and considering the ratio of cycles performed
(Equation (21)). Thus, exploration and investigation occur gradually, and so are not present throughout
the entire execution, yet still providing an adequate balance. The advantage of this strategy is the
fine-tuning of the best solution found in the last cycles.

However, by analyzing the VS strategy, we can conclude that the transition between exploration
and investigation has two drawbacks. First, it has the local minimum risk: There is no possibility of
achieving the global solution in an execution if it limits the radius to a local minimum area. The radius
of the vortex becomes small and the candidates get stuck in a local search limitation. The second
inconvenience is identifying the dispensability of the processing during the execution. When defining
a limit of execution for example, by the number of cycles, it executes them in its totality because only
in the later cycles does VS carry out the investigation stage.

MVS tries to minimize the local problem by adding several vortices to VS. However, applying
Equation (25) does not mean the vortex with the so-far best solution will bring the other centers closer
to a global minimum.

With these characteristics in mind, we based the proposed IVS method on maintaining solution
fine-tuning while trying to circumvent the local minimum problem, all without increasing the
computational cost.

3.2. Characteristics of the IVS

The IVS starts from the MVS, aiming to make it simpler and more efficient. We propose three
strategies through which IVS differs from MVS.

The first major difference is the complete elimination of Equation (25), which changes the vortex
center positions, based on the vortex with the best result. By doing so, each vortex can proceed toward
a minimum, whether local or global. This is intended to minimize the local solutions, as we can add
more vortices to explore solutions independently. Figure 2 presents a hypothetical situation in which
the vortices follow their paths towards the minima.

Global minimumLocal minimums

se
ar

ch
 s

pa
ce

 li
m

it

se
ar

ch
 sp

ac
e 

lim
itVortex size Vortex size Vortex size

Figure 2. A hypothetical optimization scenario with Independent Vortices Search. The convergence of
the radius of each vortex follows its investigation to a (local or global) minimum. Points represent the
candidate solutions generated by each vortex.
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The second feature of IVS is the replacement of Equation (20) for each additional vortex.
The first vortex has an initial solution defined by applying Equation (20), whereas the remaining,
by Equation (26), are randomly distributed in the search space:

µl
0j = ε ·

(
xmax,j − xmin,j

)
+ xmin,j, (26)

where µl
0j is the initial solution for the jth parameter of the vortex l, with l > 0, xmin,j, and xmax,j are

the respective minimum and maximum limits of the jth parameter , andε is a random real value in the
interval [0, 1].

The third modification considers maintaining the amount of candidates per vortex when L > 1
(where L is the total number of vortices). In the MVS proposal [33], the experiments presented five
centers and divided the number of candidates between them. IVS, however, fixes the quantity of
candidates for each vortex. To compensate for the computational increase, IVS decreases the number
of cycles performed to keep the total Fitness Evaluations (FEs) the same.

It is still possible to verify that the first two strategies have the possibility of a higher diversity
of the candidates generated. By removing Equation (25), each vortex is allowed to go ahead with its
search, not dragging them close to a vortex, with better overall results at the moment. The second
strategy (Equation (26)) allows for greater diversification while generating the first results. This is
because the MND, which uses the center of the vortex as the mean for candidate generation, generates
more solutions near the center. With the centers of vortices more widely distributed, IVS should not
concentrate candidates in only a part of the search space.

3.3. A New Search Space Definition

For the definition of the search space in the adjustment of geodetic networks, we defined the limits
of each parameter j by xmin,j and xmax,j. By using the parameter vector x obtained from conventional
LS computation, we set the exploration area according to Equation (27):{

xmin,j = xj −maxi |vi| × [1−maxi diag (Re)i]× 1.15,

xmax,j = xj + maxi |vi| × [1−maxi diag (Re)i]× 1.15,
(27)

where maxi |vi| is the greatest absolute residual from the LS solution, maxi diag (Re)i is the greatest
absorption fraction of an error and 1.15 indicates a 15% safety margin. Additionally, Re is defined by
Equation (28) [44]:

Re =
1
σ2 Σv̂W , (28)

where Σv̂ is the covariance matrix of adjusted residuals from the LS solution.
Equation (27) presents a novel method to define the search space. It can be applied to any problem

susceptible to outliers that use the Gauss–Markov model to generate residuals and MH to explore the
solution. It is not limited to geodetic networks and can be used along with REs or other techniques—for
example, in hyperspectral image data [45,46] or 3D Point Clouds [47]. Applying this strategy to 900
scenarios, it did not omit any solution in the IVS exploration limit.
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4. Experimental Setup

4.1. The GNSS Network and Simulations

To perform the tests, we built a geodetic network from six stations in the Brazilian Network of
Continuous Monitoring of Global Navigation Satellite Systems (RBMC) (Figure 3). The observation
vectors were formed from the official co-ordinates of the points. We processed 6 h of data from the
stations to obtain the covariance matrix (Σy). This allowed us to compute the weight matrix (W) and
generate random errors for the observations. The vector l was set up by adding the official values and
the random errors generated from the covariance matrix.

Figure 3. Network of six stations of the Brazilian Network for Continuous Monitoring of GNSS
Systems (RBMC): One control point and thirteen three-dimensional observation vectors. Google Earth
V 7.3.2.5776 (13 December 2015). Sao Paulo, Brazil. 22◦57′30.85′′ S, 45◦55′16.44′′ W, Viewpoint height
297.24 km. Image Landsat/Copernicus, Data Scripps Institution of Oceanography, National Oceanic
and Atmospheric Administration, U.S. Navy, NGA, General Bathymetric Chart of the Oceans [48].

The network was structured without repeated observations and with independent baselines.
This gives six points (one control point) and 13 vectors. As they are three-dimensional, there were
a total of 15 parameters and 39 observations.

To test the RE performances, we built nine packages with 100 error scenarios each, as presented in
Table 1. Package 01 had no outlier, only random errors in all observations ranging from [0σ, 3σ) using
a normal distribution. Trimming random errors at 3σ should not have affected the results. Following
the normal distribution, the occurrence of values greater than 3σ was only 0.27%. All estimators were
tested in this condition.

The other packages contained at least one outlier per scenario. Outliers were also calculated
from the standard deviation of each observation. The packages separated small error scenarios (with
magnitude between [3σ, 6σ)) from large error scenarios ([6σ, 12σ]). Outliers were randomly distributed
over l. Packages with four outliers represented scenarios with approximately 10% contaminated
observations. In the most critical cases, the network should be resistant to two simultaneous outliers
between the same vertices, as we had at least four vectors connecting each station.
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Table 1. Packages containing 100 error scenarios each.

Package Number of Simultaneous
Outliers per Scenario

Magnitude of Outliers
(σ)

1 0 -
2 1 [3,6)
3 [6,12]
4 2 [3,6)
5 [6,12]
6 3 [3,6)
7 [6,12]
8 4 [3,6)
9 [6,12]

4.2. Analysis and Validation

In this work, we analyzed the quality of the solutions of each RE and the conventional LS method
in three ways. First, we classified the solution regarding whether the outliers were detected or not.
Second, we quantified detected, false positive, and unidentified outliers. Third, the numerical solution
of the estimator was compared to the true and known co-ordinates of the points. The two first analyses
were obtained using the residuals vector v, while the numerical comparison was extracted from the
estimated co-ordinates vector x̂.

We divide the classification into six classes, represented by capital letters from “A” to “F”:

• A: All outliers detected, no false positive;
• B: All outliers detected, with at least one false positive;
• C: Some outliers detected, no false positive;
• D: Some outliers detected, with at least one false positive;
• E: No outlier detected, no false positive; and
• F: No outlier detected, with at least one false positive.

We considered false positive to be a value bigger than 3σ in the residuals vector in a position
where no outlier was inserted, as we truncated the random errors by up to three sigma.

Comparison of the estimated solution with the true co-ordinates was carried out in order verify
the impact of the errors in the final solution of the adjusted parameters (x̂). This allows us to consider,
for example, whether an estimator was better for outlier detection or parameter estimation.

4.3. Implementation

4.3.1. IVS Parameters

The parameters of IVS were the same for all scenarios and REs. A total of 50 candidates per vortex
and 40 vortices were used, as this configuration gave the best results in our experiments. To limit the
algorithm execution time, we defined the amount of fitness evaluations (FE) to 25,000,000.

The fitness evaluation of the RE solutions was conducted by Equation (29) [20]:

fit =
1

1 + | f | , (29)

where f is the result of the objective function.

4.3.2. Robust Estimators Adaptation

In LS, the weight matrix of the observations (W) plays an important role for the estimation;
therefore, it is also necessary to consider it here. In GNSS networks specifically, observations are
correlated, rendering the problem even more complex [41]. These observations form a weight matrix
with some negative values of covariance. Hence, in LTS, the summation of the residuals has to be
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performed after extracting the absolute values of the weighted squared residuals, in order to eliminate
the influence of the signs in the ranking. This results in the following Equation (30):

min
h

∑
i=1

wi, (30)

where wi is defined by
wi =

∣∣∣〈Wσv(i), v2〉
∣∣∣ , for i = 1, . . . , n, (31)

with σv representing a permutation of the indices i = 1, . . . , n, such that 0 ≤ w1 ≤ w2 ≤ · · · ≤ wn.
The quantity v2 represents the vector that has, as components, the squares of the residuals in v.
The inner product is, then, given by

∣∣∣〈Wi, v2〉
∣∣∣ = ∣∣∣Wi,1 × v2

1 + Wi,2 × v2
2 + · · ·+ Wi,n × v2

n

∣∣∣ = ∣∣∣∣∣ n

∑
j=1

Wi,jv2
j

∣∣∣∣∣ , (32)

where Wi = (Wi,1, Wi,2, . . . , Wi,n) denote the respective rows of W .
Following this idea, for LMS, the mathematical model already adapted to GNSS networks is

given by:
min medh

i=1,2,...,n
wi, (33)

where wi is given by Equation (31), and the median position (medh) is defined by Equation (7).
Likewise, the LTA adapted for GNSS networks is given by:

min
h

∑
i=1

zi, (34)

with zi following the same idea as the LTS, except that v is not squared:

zi =
∣∣∣〈Wσv(i), v〉

∣∣∣ , for i = 1, . . . , n. (35)

For the SRLS, Equation (13) presents a constraint that needs to be implemented. In this study,
we adopted a penalty function that multiplies the result of Equation (9) given by Equation (36):

fp = f ×
(

1 +

∣∣∣∣∣ n

∑
i=1

sign (vi)

∣∣∣∣∣
)

, (36)

where fp is the penalized result for the SRLS estimation. If Equation (13) equals 0, f is multiplied by
1, and the result remains unchanged. Otherwise, it will be penalized. In the sign function, absolute
values smaller than 1× 10−9 were considered as 0.

4.3.3. Flowchart

The development and implementation of the adjustment routine using REs and IVS followed the
flowchart shown in Figure 4.
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Figure 4. Flowchart of the network adjustment based on Independent Vortices Search and a robust
estimator function. The search space is evaluated from the error contribution.

5. Results and Discussion

For better comprehension, this section is divided into three subsections: Section 5.1 presents the
optimization with IVS and comparison with the performances of other MHs. Section 5.2 shows the
estimated impact of the trim limit and median position in some REs, when applied to the geodetic
network adjustment. Section 5.3 presents the results for the network adjustments, applying IVS and
testing all the REs (including the trim limit and median position variations) in 900 error scenarios.
The adjustments were organized in three topics: no outlier case, small magnitude outliers, and large
magnitude outliers.

5.1. Performance and Discussion of IVS

We conducted several tests to compare the solutions obtained with IVS to solutions obtained
by other MHs. For a better analysis, we generated four scenarios of errors in a GNSS network.
Each scenario contained three simultaneous outliers, ranging from [3σ, 6σ), in 39 observations (about
7.8% contamination). Using the LMS estimator, the MHs executed the scenarios twenty-five times.
This allowed for analyzing the stability and quality of the results. More details of the network can be
found in the next section.
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Besides the MHs already presented, we also tested the Hybrid Vortex Search algorithm (HVS).
The HVS works with the combination of ABC and VS, trying to take advantage of the best characteristics
of each strategy. The reader can find more details in [49]. Thus, the algorithms tested were:

• Artificial Bee Colony (ABC) [23,24];
• Vortex Search algorithm (VS) [32];
• Modified Vortex Search algorithm (MVS) [33];
• Hybrid Vortex Search algorithm (HVS) [49]; and,
• Independent Vortices Search (IVS).

The configurations of the MHs obeyed the following parameters: 5,000,000 FE as processing limit,
50 candidates per center for vortex algorithms, and 50 bees in ABC (25 food sources). In addition,
we tested the MVS and IVS with five vortices, as presented in [33], and 40 vortices. Preliminary tests
showed better results from 20 to 60 vortices, so we adopted an intermediate value of 40.

It is important to note that cycle counting was not used as a configuration parameter or as a limit
for the MH executions. For more objective comparisons between MHs, we should not use the cycle
count as a stopping criterion. As each MH has different strategies in its execution, it can use a different
quantity of FE in each cycle. Using a fixed number of cycles as a parameter to limit the execution can
cause a large variation in the total amount of FE for each MH. This would favor MHs that make more
FE per cycle, since they have more opportunities to test their solutions [50]. We adapted the algorithms
to use the number of FE as the limit for suspension. This allowed for a more adequate performance
comparison. To better situate the reader, executing 5,000,000 FE was equal to 100,000 cycles in ABC
with 50 bees (25 food sources); 100,000 cycles in VS with 50 candidates; and 20,000 cycles in IVS with
five vortices and 50 candidates per center.

The MVS experiments performed in [33] divided the quantity of candidates by the number of
vortices. Thus, in executions with 50 candidates and five vortices, MVS generated only 10 candidates
per vortex every cycle. As this work uses the number of FE as the execution limit of the MHs,
each vortex generated a number of candidates established by the number of candidates parameter.
For a run with 50 candidates and five vortices, the algorithm generated 50 candidates per vortex each
cycle. This characteristic is standard in IVS.

For better representation of results, we present them in box plots. Each point represents the
result of one run. The number after “c” in brackets (e.g., “c[5]” and “c[40]”) is the amount of vortices,
where applicable. Figures 5–8 show the results for Scenarios 01, 02, 03, and 04, respectively.

Figure 5. Results of 20 runs in error scenario 01 for each metaheuristic (MH). c[X] indicates the number
of vortices, where applicable.
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Figure 6. Results of 20 runs in error scenario 02 for each MH. c[X] indicates the number of vortices,
where applicable.

Figure 7. Results of 20 runs in error scenario 03 for each MH. c[X] indicates the number of vortices,
where applicable.

Figure 8. Results of 20 runs in error scenario 04 for each MH. c[X] indicates the number of vortices,
where applicable.
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By analyzing the charts, we see that IVS performed better than other MHs. The configuration with
40 vortices overcame the alternative with five vortices, although both options showed good results.
IVS achieved the lowest minimum and presented little variation. The HVS strategy did not improve
much on the solutions, as they were similiar to those found by the original VS. ABC showed lower
variation in the results when compared to the already known MHs. This shows a certain stability in
the solutions, surpassed only by IVS.

It is also possible to note the horizontal alignments of points (solutions) in the charts. This was
common to several MHs and identifies the local minimums in which the MHs got stuck in, on some
runs. In Figure 7, it is possible to notice an alignment between the values 2, 4 and 2, 6 for MVS and
HVS. The same diagram shows another alignment between 1.8 and 2.0 for all MHs, which coincided
with the bottom of the boxes for the VS, MVS, and HVS solutions.

The MH proposed in this work overcame all other tested MH in both the mean and variation
of the solution. It needed no extra computation, producing the first scientific contribution of this
work. We applied the IVS configuration with 40 vortices in the following experiments to optimize the
RE functions.

5.2. Comparing LTS/LTS-RC Trim Limit and LMS Median Position

We performed tests with the two values for the limits of LTS and LTS-RC and for the median
position of LMS. The lower limit, h = (n + 1) /2, will be shown as hn2 and the upper limit, h =

(n + p + 1) /2, as hnp2.
Figure 9 shows that the adjustments with the limit of hn2 had worse results in the classification

for LMS and LTS. Classifications of type “A” were reduced by adopting the expected threshold,
as compared to more robust, increased “B” classifications. For these estimators, the lower limit
maintained outliers identification, but pointed out more false positives. The results for the LTS-RC
present a slight improvement to the limit of hn2.
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Figure 9. Occurrence of each classification in the 900 scenarios for the three estimators and their
variation in the trim/median position. The suffix “-N2” shows the limit of hn2, for the respective
estimator. Non-suffixed REs show the limit of hnp2.

Comparing the results of LTS and LTS-RC, we notice that the results presented almost the same
classifications, whereas the variations with hn2 presented a significant difference. This is because the
larger limit (hnp2) removed fewer residuals, hardly breaking the redundancy. Furthermore, since the
network had several observations among its three-dimensional points (although not repeated), it was
hard for any parameter to remain without at least two residuals (not breaking redundancy). Using the
limit of hn2, the classic LTS more easily broke the redundancy in the residuals trim, whereas the LTS-RC
achieved more satisfactory results, retaining the redundancy of the network.
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Figure 10 confirms a gain of false positives with the limit of hn2 for LMS and LTS, and stability
with a slight improvement for LTS-RC. There were no significant differences in outlier identification
for the different limits, while, for undetected errors, only the LTS showed a 6.6% worsening.
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Figure 10. Percent difference for each estimator divided into identified errors (false and undetected)
for the limits of hn2 and hnp2. A positive percentage value means higher occurrence with hn2.

We also compared the distance of the co-ordinates from their true values. Figure 11 displays the
mean distance difference of the co-ordinates in each scenario package, between the limits hn2 and hnp2,
for each RE. The mean differences were negligible in most situations, being below 1 mm with either
hn2 or hnp2. LTS produced inferior results with hn2, whereas the LTS-RC reduced the variation in two
cases, with one and four simultaneous outliers.
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Figure 11. Mean distance difference of the co-ordinates from their official values. The limits hn2 and
hnp2 divided by scenario packages from 0 to 4 simultaneous outliers. Negative values mean smaller
deviations with the limit of hn2.
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The redundancy constraint has proven to be interesting for any problems where the number
of observations per parameter is more limited and/or the trim limit is smaller. To the best of our
knowledge, this is the first time the h value has been analyzed for a geodetic application. As the
measurements of these networks do not contain data related to all the parameters, the redundancy
constraint also played an important role. Besides this specific treatment, the h value can be considered
in any studies that wish to apply LMS, LTS, or LTS-RC.

5.3. Results in Network Adjustments

For better analysis of the behavior of each RE, we divided the results into three topics: the no
outlier case (Package 01); scenarios with small outliers (Packages 02, 04, 06, and 08); and scenarios with
outliers of great magnitude (Packages 03, 05, 07, and 09).

5.3.1. No Outlier Case

For scenario package 01, the results confirmed the statements in the literature. The conventional
Least Squares method (LS) was the best linear unbiased estimator when the observations were free
of outliers.

The solution classifications by detecting outliers in the residuals are shown in Figure 12. LS had
excellent performance, with no false positives, getting an “A” classification in all scenarios. Most REs
showed similar results, with about half of the classifications as “A”.
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Figure 12. Classifications achieved in scenarios without outliers by estimator. “A” stands for no false
positive, and “B” one or more false positive(s).

This means that all REs presented false positives in some scenarios. Figure 13 shows the false
positive counts for each estimator. Most estimators achieved similar results, with almost one false
positive per scenario.
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Figure 13. Number of false positives for the scenarios without outliers, grouped by estimator.
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To check the solutions of each estimator, we elaborated the box-plot chart shown in Figure 14.
The LS exceeded all other estimators, showing a lower variance and a lower variation between
the scenarios. As expected, the LS estimation was superior to any other RE, when tested in the
conditions of no outliers. In addition, LS required no MH to estimate the parameters and presented
low computational cost, when compared with estimators that need MHs. It is important to point out
that the points will not reach zero, due to the random errors present in all observation vectors.

Figure 14. Scenarios without outliers organized by estimator. Each point represents the average
absolute distance from the estimated co-ordinates of each scenario, compared to the official values of
the stations in the network.

Both for outlier identification and co-ordinate estimation, LS proved to be the best method for
scenarios with no outliers. The high number of false positives in the other estimators solutions led to
discarding good observations and greater deviations in the estimation.

5.3.2. Small Magnitude Outliers

Starting with the outlier detection, Figure 15 gives the solution classifications for each RE in
the 400 scenarios. LS presents its results concentrated in the ‘no false positives’ classifications (“A”,
“C” and “E”). This shows a resistance for pointing out false positives in the residuals vector by LS
solutions. The IRLS got the highest number of solutions classified as “A”, overcoming the other
estimators. By checking the results for classifications that identified all outliers (“A” + “B”), the LMS,
LTS, and LTS-RC-N2 had the best identification ability.
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Figure 15. Solution classifications, from “A” to “F”, for the 400 scenarios containing 1–4 outliers of
smaller magnitude, organized by estimator.

Although the LTA presented many classifications of type “B”, this estimator had the lowest
number of solutions classified as type “A”, similar to SRLS. In Figure 16, we see that LTA presented
1303 false positives in the residuals vector, over the 400 scenarios. It also confirms LS as the estimator
with the least amount of false positives (43). In contrast, LS missed most of the blunders, not detecting
572 out of 1000 inserted outliers. Among the REs where IVS was applied, the LMS identified a good
part of the outliers without an exaggerated quantity of false positives, missing less than IRLS and LS.

IRLS LMS LMS-N2 LS LTA LTS LTS-N2 LTS-RC LTS-RC-N2 SRLS
Identified 641 664 671 428 710 673 657 672 673 674
False 244 553 671 43 1303 616 695 625 615 940
Missed 359 336 329 572 290 327 343 328 327 326
Total 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
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Figure 16. Number of identified false positives and undetected outliers for each estimator in the 400
scenarios with outliers of smaller magnitude.

Analyzing the estimator solutions for parameter estimation, Table 2 shows the mean distance
of solutions from the official co-ordinates. It also adds the LS result without outliers, to compare the
influence of the random errors.



Sensors 2019, 19, 4535 22 of 27

Table 2. Mean distance of the solutions for each estimator, organized in the scenarios of 1–4 concurrent
small outliers.

LS
(No Outliers) LS LMS LTS LTS-RC SRLS IRLS LTS-RC-N2 LMS-N2 LTS-N2 LTA

1 outlier 0.014 0.017 0.023 0.024 0.024 0.026 0.024 0.021 0.023 0.024 0.029
2 outliers 0.014 0.020 0.025 0.027 0.027 0.028 0.027 0.026 0.025 0.027 0.032
3 outliers 0.014 0.022 0.027 0.027 0.027 0.030 0.025 0.027 0.028 0.028 0.035
4 outliers 0.014 0.025 0.029 0.029 0.030 0.031 0.024 0.030 0.029 0.031 0.036

LS presented the smallest deviations, being the best estimate of the parameters in the case of
adopting the solution, without eliminating contaminated observations and making new adjustments.
Even in scenarios with four outliers, the LS showed a better result than the REs, although the difference
became smaller. The IRLS presented low variation in the solutions, even with an increase of blunders.
Whereas most RE presented similar solutions, LTA, in contrast, had the worst estimates.

For an application where outliers should be identified, the LS method is not the best. In these
cases, according to the results of the experiments, it is recommended to work with IRLS, or, for
a better identification with a higher cost in false positives, LMS, LTS, and LTS-RC-N2 obtained more
satisfying results.

By analyzing the estimates, LS presented a more solid estimate, even with the lowest detection of
blunders. This shows that the outliers which were not detected by LS did not exert great distortion
in the estimation. For both scenarios without outliers or schemes that present blunders of small
magnitude, LS remains as the best estimator for the parameters. The good redundancy of the network
probably contributed to this result. In networks with poorer geometry, the LS will not be as robust to
small outliers.

5.3.3. Large Magnitude Outliers

In contrast to the experiments with small outliers, all REs showed greater ease in detecting larger
outliers. Most the results were classified as “A” or “B”, and rarely as “E” or “F” (see the classifications
of the solutions in Figure 17). In this case, LS presented solutions with false positives, “B” and “D”
types, resembling the other tested estimators.

IRLS LMS LMS-N2 LS LTA LTS LTS-N2 LTS-RC LTS-RC-N2 SRLS

F 2 1 1 0 1 1 2 1 2 0

E 0 0 0 1 0 0 0 0 0 0

D 28 45 46 35 50 46 52 44 39 77

C 1 0 0 4 0 1 0 1 1 0

B 200 196 232 241 307 196 239 197 193 294

A 169 158 121 119 42 156 107 157 165 29
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Figure 17. Solution classifications, from “A” to “F”, for the 400 scenarios containing 1–4 outliers of
larger magnitude, organized by estimator.
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For classifications “A”and “B” (i.e., all outliers were identified), the estimators presented similar
results, around 90%.

By counting the detected false positives and undetected outliers, all estimators pointed out most
of the blunders, as can we see from Figure 18. For 1000 outliers, the values ranged from 906–962
for detection. As the detection of outliers is almost optimal, it remains to compare the amount of
false positives, where IRLS, LS, LMS, and LTS-RC-N2 had the lowest false positive values, ranging
from 489–587.

IRLS LMS LMS-N2 LS LTA LTS LTS-N2 LTS-RC LTS-RC-N2 SRLS
Identified 962 935 936 955 942 935 925 938 941 906
False 489 562 718 561 1826 626 791 622 587 1604
Missed 38 65 64 45 58 65 75 62 59 94
Total 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
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Figure 18. Number of identified false positives and undetected outliers for each estimator in the
400 scenarios with outliers of larger magnitude.

Table 3 presents the mean distance of solutions from the original co-ordinates. LS presented
an unsatisfactory estimate for large outliers. The solution deteriorated, even with only one outlier of
great magnitude. As we added more blunders to the scenarios, LS became one of the worst solutions
for direct parameter estimation. LTA and SRLS also showed bad estimates, whereas most estimators
presented similar, more satisfactory results, proving greater insensitivity to the outliers.

Table 3. Mean distance of the solutions for each estimator, organized in the scenarios of 1–4 concurrent
large outliers.

LS
(No Outliers) LS LMS LTS LTS-RC SRLS IRLS LTS-RC-N2 LMS-N2 LTS-N2 LTA

1 outlier 0.014 0.023 0.022 0.023 0.023 0.030 0.023 0.023 0.025 0.025 0.037
2 outliers 0.014 0.031 0.025 0.027 0.027 0.036 0.026 0.027 0.025 0.028 0.039
3 outliers 0.014 0.037 0.024 0.028 0.028 0.040 0.028 0.028 0.029 0.031 0.044
4 outliers 0.014 0.045 0.036 0.031 0.031 0.043 0.032 0.031 0.034 0.036 0.051

Mean 0.014 0.034 0.027 0.027 0.027 0.037 0.027 0.027 0.028 0.030 0.043

In general, for outlier identification, the LS, IRLS, LMS, or LTS-RC-N2 methods had better
detection. Regarding the computational cost of these solutions, LS is the best choice because it has its
own iterative method.

However, for the final estimate of the co-ordinates, the REs presented more satisfactory estimates.
This shows the sensitivity of LS to outliers of great magnitude and the strength of robust methods.

Table 4 presents the best estimator, concerning the application and scenario of errors.
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Table 4. Estimators with best results, according to the demand and scenario. (*) indicates a higher false
positives cost.

Detection Estimation
No outlier - LS
Small magnitude outliers IRLS, LMS *, LTS *, LTS-RC-N2 * LS
Large magnitude outliers LS, IRLS, LMS, LTS-RC-N2 IRLS, LMS, LTS, LTS-RC, LTS-RC-N2

6. Conclusions and Future Works

Geodetic networks are the basis for mapping, geoinformation, land cadastre, and other
location-based services. They play an important role in society in infrastructural works that depend on
accurate control points. This work tested the strategy of using Robust Estimators (REs) in geodetic
network adjustment and for detection of outliers.

Several REs were tested. A metaheuristic optimization was conducted for the LTS, LTS-RC, LMS,
SRLS, and LTA estimators, whereas, for the IRLS, an iterative process was handled.

The two main contributions of the research were successfully demonstrated: (1) the Independent
Vortices Search (IVS) overcame the VS, MVS, HVS, and ABC in all aspects; (2) we performed
a deep investigation of several REs, separating the analysis scenarios into no outliers, small outliers,
and outliers of great magnitude. This led to the classifications in Table 4, something not explored in
the literature before.

In addition, other minor contributions were also presented. One of them was the search space
proposed for applying IVS using Equation (27), which is valid not only for geodetic networks, but for
any problem based on the Gauss–Markov model. Furthermore, a more detailed analysis of the results,
obtained with Equations (7) and (18), was given in Section 5.2, showing which equation is more
appropriate in each case.

The experiments with the geodetic network were all performed by applying the IVS, built on
the Modified Vortex Search. IVS works with the vortices independently, which can also facilitate the
parallelization of procedures which require high performance. This includes exploring more complex
problems or even larger geodetic networks.

In the experiments of quality control in the geodetic networks, in situations with small outliers
or seeking outlier identification, we do not recommend the LS method. In these cases, according to
the experiments, it is better to work with IRLS, or, for a better identification at a cost of more false
positives, LMS, LTS, or LTS-RC-N2 can achieve better results. Even though LS detects fewer outliers in
these scenarios, it remains as the best estimator for the parameters, as the co-ordinates remain closer to
their true values.

For estimating the co-ordinates in scenarios with large-scale outliers, REs present a more
satisfactory estimate than LS. This showed the sensitivity of LS to outliers of high magnitude and the
strength of the robust methods.

Although the computational cost of REs that use MHs is greater than the classical techniques,
it is not possible to establish a cost-benefit at the moment. For this, it is first necessary to consider
a minimum amount of FE to get good results, based on the RE and the network dimension. However,
a disadvantage of this technique is that is it not possible to estimate the precision of the points.
To achieve that, we need an LS estimation after removing the outliers from the observation vector.

Future works can focus on a scalability study and the parallelization of the IVS to achieve better
performance. In robust estimation, other strategies can also be studied, such as testing new constraints
to REs or checking other REs not contemplated by this work.
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