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Abstract: Overcoming the diffraction limit, which enables focusing much less than the wavelength,
requires tailoring the evanescent spectrum of an aperture’s field distribution. We model and simulate
a corrugated near field plate, which can generate a sub-wavelength focus in inhomogeneous
background media. All reactive coupling, between the metasurface near field plate and the focusing
domain and among the corrugations in the metasurface, is taken into consideration with the finite
element method, which we solve in combination with a constraint to generate a desired focus. Various
geometries for the near field plate are considered and we demonstrate that the proposed method
can effectively create a deeply sub-wavelength focus within a layered medium having properties
resembling brain tissue. Such a device could find use as a detector of biological signals or for
hyperthermic treatment near the skin surface.

Keywords: sub-wavelength focusing; near field plates; diffraction limit; metasurface; evanescent
spectrum; finite element method; corrugated surface; finite element method; sensing

1. Introduction

The ability to focus to a small spot size is invaluable when it comes to enhancing the resolution of
imaging systems, increasing the sensitivity of detectors, and improving numerous other applications.
Most systems encounter a hard barrier at the diffraction limit, which renders futile any attempt to
recover spatial information significantly below the operational wavelength λ. However, there has
been a longstanding notion that the diffraction limit can be circumvented at a stand-off distance using
the near field of a system [1–3]. Interest in such possibilities has renewed in recent decades with the
advent of the perfect lens, the superlens, and near field plates [4–7]. While achieved through different
mechanisms, the common concept underlying these methods is tailoring of the evanescent spectrum
of the imaging/sensing aperture so that scene components beyond the propagating wave spectrum
can be probed. Resolution as small as λ/15 (or better) can be achieved by exploiting such techniques.
Other approaches using nano-probes and apertures have achieved resolution of up to λ/1000 [2,3,8],
but require placing a probe or aperture near the focal plane of interest and are currently unsuitable for
real-time, non-invasive measurements in inhomogeneous environments.

It is often difficult to employ near field sensors because the probe couples with the entity of
interest, altering its electromagnetic signature. Most systems concerned with near field focusing
are therefore employed in free-space and have negligible coupling with the region of interest.
Neglecting this coupling is detrimental to many applications where tight focusing is desirable in
inhomogeneous settings, for example in wireless charging of biomedical implants [9] and local heating
for ablation/hyperthermia treatments [10,11]. In such cases, it is necessary to account fully for the
inhomogeneous environment when designing the focusing device.
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Based on the notion of fields interacting with a region of interest, one can draw comparisons
with the inverse scattering literature. In inverse scattering problems, the probing wavefields are often
iteratively modeled by modifying not only the calculated image (be it a permittivity distribution
or generic contrast), but also the Green’s function. The Green’s function captures how the fields
propagate from one point to another, taking into consideration how the fields interact with the
imaging domain [12]. This inverse scattering imaging problem is known to be ill-posed and is
still an active area of research [13]. There has also been research into other iterative approaches
to solving inverse problems, such as machine learning and the adjoint method that can result in
appropriate designs with sufficient computational training [14,15]. Rather than considering the
active imaging case (with both transmitters and receivers), here we concern ourselves only with
transmission (for focusing/ablation) or reception (as in passive imaging). Additionally, we assume
a priori information about the background media including its geometry and properties. While such
a case seems restrictive, this situation can be expected in biomedical applications where magnetic
resonance imaging (MRI) is used as a precursor to find the relative permittivity and conductivity
throughout a voxelated volume. For example, in the context of neural ablation, the MRI data serves
to inform the design of a focusing device. For a persistent sensor, the MRI data can give information
on the background media in a large region, and then, the signals of interest (e.g., blood-oxygen level
dependent (BOLD) signatures [16,17]) can be monitored in a subset of the volume.

A sub-wavelength focusing system for biomedical applications can take many form factors.
A particularly promising architecture has been outlined by Merlin [6] and studied by Grbic et al. [7,18–21]
in the form of near field plates (NFPs). Such devices are typically defined as tailored surfaces containing
inductive and capacitive elements, which, through mutual interactions, sustain a field distribution that
generates a focal spot [18]. Importantly, NFPs can be designed to operate at microwave frequencies,
where a fair trade-off of penetration depth and resolution can be found for applications taking place in
biological samples. Such NFP devices have been demonstrated for the generation of Bessel beams [22]
and focal spots [18,20,21] in the evanescent near field. To date, NFPs have only been designed and
demonstrated in homogeneous (free-space) settings based on semi-analytic propagation techniques
in the region of interest. Further, in the past, the mutual interactions among the grooved elements in
the surface have been computed analytically, which can lead to sensitivities and inaccuracies. For the
mutual interactions and impedances based on lumped elements, more sophisticated models have
improved the accuracy of these methods [21].

In this paper, we consider near field plates in inhomogeneous environments, a necessary extension
for applications in biological sensing, imaging, and ablation. We begin with a corrugated metasurface
NFP, as seen in Figure 1, that generates a focal spot with a full-width at half-maximum (FWHM) of
λ/15. The structure is modeled via the finite element method (FEM) using a constraint imposed on the
field in the focal plane. Whereas earlier methods made assumptions about interelement coupling and
operated solely in free-space settings, our method takes full account of interactions among elements in
the NFP surface and interactions between the NFP and the domain of interest. We begin with a planar
two-dimensional (2D) simulation and then investigate axisymmetric geometries and also show an NFP
realized with lumped circuit elements. The sensitivity of analytic assumptions and errors induced by
non-homogeneous backgrounds are explored in detail. Finally, we implement a multiphysics model to
study thermal effects and the possibility of utilizing NFPs in ablation application.
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Figure 1. (a) A schematic depiction of a planar near field plate with a center feed and flanking grooves.
(b) The geometry utilized in the finite element method simulations, with infinite extent in the z axis,
a focal plane at an offset x, and inhomogeneous media in the region of interest. The groove width,
spacing, and length are 3.7 mm (λ/80), 7.5 mm (λ/40), and 74.9 mm (λ/4), respectively, at a frequency
of 1 GHz.

2. Design of Near Field Plates

Here, we will give a broad overview of some near field plate concepts and outline the traditional
approach used to design them. We discuss the conventional analytic treatment and mention some
potential pitfalls. The proposed model is then discussed, including a description of how the NFP’s
geometry or surface impedance can be optimized using a constraint equation and Lagrange multipliers.
This allows for sub-wavelength focusing in inhomogeneous settings, which is demonstrated in
subsequent sections.

2.1. Underlying Concept and Analytic Treatment

We begin with a 2D geometry that is invariant in z, as depicted in Figure 1. It is assumed that
the fields exhibit TM polarization, with nonzero magnetic field Hz and electric field components in
the xy plane. A focal plane is defined at a distance x = L away from an NFP’s surface. The NFP
aperture plane at x = 0 can contain reactive transmission line elements [7], lumped elements [21],
or corrugations [20]. We restrict our discussion to the 2D geometry with grooves while explaining the
concepts, but then delve into designs with lumped elements and axial symmetry in Section 4.

All grooves are shorted except for the central groove, which is used to excite the NFP with
a transverse electromagnetic (TEM) plane wave. The groove width w and separation a are deeply
sub-wavelength so that homogenized surface parameters can be used to model the NFP. Specifically,
the surface impedance:

Z(y) =
Mz

Hz,NFP

∣∣∣∣∣
x=0

(1)

can be used to design the surface, where Hz,NFP = Hz|x=0 is the total magnetic field in the plane of
the aperture and Mz is the equivalent magnetic surface current density. Note that the components
considered here are based on our specific geometry and must be generalized for more complex systems.

The surface impedance gives us a means to design the magnetic field in the focal plane Hz, f oc(y) =

Hz|x=L. Considering the fields in the spatial frequency domain, Hz, f oc(ky) where ky =
√

k2
0 − k2

x, often
provides insight for focusing applications. As discussed in [6], the choice of the pattern in the focal
plane is essential to the design procedure. To overcome the diffraction limit, evanescent waves must be



Sensors 2019, 19, 4534 4 of 16

included in the support of Hz, f oc(ky), and the domain of the transverse wavenumbers must therefore
exceed the free-space wavenumber k0.

For the field/source distribution along the aperture plane, it is ideal to have negligible
contributions in the propagating portion of the spectrum |ky| < k0. As seen in Figure 2, confining the
plane waves in the source plane to the evanescent regions k0 < k1 < |ky| < k2 is desirable to mitigate
radiation. If the spatial frequency spectrum in the focal plane is given as a rectangular function,
e.g., Hz, f oc(ky) ∝ rect(ky/(2k2)), then the focal pattern will take the form Hz, f oc(y) ∝ sinc(k2y). Using
these functions in a specific example, the support of Hz, f oc(ky) should extend to k2≈6k0 to achieve
a λ/10 FWHM in the spatial domain. Examination of the necessary source distribution to achieve
such a pattern, as was done in [18], reveals that there are negligible fields in the propagating band at
the NFP surface. To remain consistent with comparable works in the literature, here we will define
a desired magnetic field Htheory = sinc(qy) where q = 10k0 in the focal plane and use this as the basis
for designing the NFP.

Figure 2. The desired portions of the normalized spatial frequency spectrum are highlighted as the
blue regions. To mitigate radiation, there should be negligible contributions in the propagating wave
region, highlighted in orange.

Creating the desired pattern in the focal plane can be achieved by tailoring the effective magnetic
current density in the NFP plane. The focal plane field is related to these effective sources by:

Hz, f oc(y) =
∫

r̄′∈NFP
Mz(~r′)G(~r′,~r)d~r′, with {~r ∈ (x, y) : x = L}, (2)

where G(r̄′, r̄) is the Green’s function from a point on the aperture r̄′ to a point in the focal plane r̄.
In practice, the grooves in the NFP can be discretized and are summed over a finite extent containing
N-many grooves. Assuming a time-harmonic variation of the form exp(jωt), the Green’s function in
a homogeneous background media is analytically given by the zeroth order Hankel function of the
second kind, H(2)

0 . In this case, Equation (2) turns into:

Hz, f oc(ym) =
−ωε0

2 ∑
n∈N

Mz(y′n)H(2)
0

(
k0

√
(ym − y′n)2 + L2

)
(3)

where ω is the angular frequency and ε0 is the vacuum permittivity. Inserting Htheory for Hz, f oc,
this equation can be inverted to find the necessary effective sources. Certain geometries admit
exact solutions for Mz [6], but most scenarios require numerical techniques such as the method of
moments [20].

With a target Mz known, we can now find the total field along the NFP aperture Hz,NFP.
This total field will be the summation of the incident field with the fields from the desired Mz

sources. Extra attention must be given to the center slot (at y = 0) to normalize the fields/currents
correctly and achieve a good impedance match; this is discussed in detail in [20], but is not critical
to the conceptual understanding, and we omit these details for brevity. Here, we simply normalize
the incident excitation field at the center slot to be a constant magnitude. Knowing the desired set of
sources from the inversion of Equation (2), we put these sources back into the same equation with the
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modified condition {r̄ : x = 0}. Similarly, Equation (3) is updated by setting L = 0. Once the total field
Hz,NFP is found, it can be substituted into Equation (1) with Mz to find Z. The design procedure then
becomes finding the geometry that achieves the necessary surface impedance.

The approach to determine the groove depths is akin to other metasurface design procedures,
such as modeling the surface as an effective susceptibility [23,24] or as a collection of discrete
dipoles [25–27]. There is also a large body of literature on the impedance of corrugated surfaces [28,29].
Previous approaches employed to design corrugated NFPs have modeled the grooves as shorted
transmission lines. The input impedance of the transmission line, which is equivalent to the surface
impedance in our case, is given by:

Zin(d) = jZ0tan(k0d) (4)

for a groove with depth d. While this model, shown as the black, dotted line in Figure 3, is reasonable,
it is based on some approximations. For instance, it does not take into consideration the mutual
interactions between the slots. Additionally, when the aperture is finite and not perfectly periodic,
the impedance model will start to have greater deviations from any analytic estimation. While these
discrepancies seem to have small effects, it turns out that the desired groove depths are very close to
the resonant length of the transmission line (λ/4) and the asymptotic behavior of the tangent function
in Equation (4), which dramatically increases the sensitivity of the design process.

Even in the purely periodic case with deeply sub-wavelength spacing, if the structure is simulated,
there is a discrepancy between the model in Equation (4) and the extracted surface impedance (based
on the method in [23,30]). This difference is plotted in Figure 3 for a variety of periods. For a deeply
sub-wavelength spacing of λ/40, there will be a deviation of 20% between the analytic expression and
the extracted impedance at d = 0.243λ. In several earlier works [21,22], it was seen that the operating
frequency of the designed NFP device had to be slightly detuned from the intended frequency,
a behavior that may be caused by this type of discrepancy. Since many of the slot lengths fall into the
0.24λ−0.25λ range, the tangent curve can be slightly shifted (equivalent to frequency detuning) to
create a better match. We will explore this possibility in Section 3.

Finally, it is worth noting that the impedance in Equation (4) is purely imaginary, while the desired
impedance from Equation(1) will have some real components. This will lead to further discrepancies.

In addition to these approximations, it is worth mentioning that all of this analysis is contingent
on free-space operation, whereas our desired application requires the consideration of inhomogeneous
media in the focusing domain. Within the above analysis, the Green’s function in Equations (2) and (3)
was based on the analytic solution in free-space, and the groove lengths were designed based on
Equation (4). Both of these restrictions represent drawbacks for our application. To address these
shortcomings, we modify the design process, which is outlined in the next subsection.

Figure 3. The imaginary part of the homogenized effective impedance of the surface when loaded with
corrugations of given periodicities. As the period decreases from λ/10 to λ/40, the result approaches
the analytic model, but the error remains non-negligible near resonance. The width of the groove is
half of the periodicity.
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2.2. Rigorous FEM and Lagrange Multiplier Model

We implemented a numerical model to address the the shortcomings outlined in Section 2.1.
Starting from a known geometry and associated material properties, this model solves for the
electromagnetic fields throughout the domain and accounts for the physical implementation of
the desired impedance profile of the NFP. This design methodology directly accounts for the
inhomogeneous geometry and material properties in the focusing domain (e.g., skull and brain
tissue) and any modifications to the NFP implementation due to mutual coupling between elements
or coupling between elements and the dielectric domain. We implemented this model using the
commercial numerical package COMSOL Multiphysics, but emphasize that this is not an endorsement,
but rather an explanation of the method implemented in this work. We expect that other commercial
solvers or home-built code could accomplish a similar implementation.

In this model implementation, we directly solve for the physical parameters of interest by adding
a constraint equation and a number of Lagrange multipliers. If the design of interest is a corrugated
sheet, the Lagrange multipliers correspond to the depths of individual grooves. Later, we use lumped
circuit elements to implement the needed surface impedance profile, and in that case, the Lagrange
multipliers will instead represent the impedance of the lumped elements. Regardless of the physical
implementation, we need one multiplier per unique element. Using the nomenclature of the calculus
of variations, the constraint equation is represented as:

g(~r, u, u′) = 0 (5)

where u is the function to be optimized and u′ is its spatial derivative. Since FEM itself can be thought
of as a variational problem, adding the Lagrange multiplier method is a natural extension [31]. Here,
we focus solely on the constraint handling and how to incorporate it with the commercial solver. Upon
taking the variation of the constraint over the simulation domain, we have:

0 = δ
∫

Ω
Λng(~r, u, u′)dV = δΛn

∫
Ω

g(~r, u, u′)dV + Λn

∫
Ω
(

∂g
∂u

δu +
∂g
∂u′

δu′)dV (6)

where Λn is a Lagrange multiplier (note that we use λ for the wavelength and Λ for the Lagrange
multiplier to avoid ambiguity). It is then left to incorporate this equation into the simulation. In our
case, we are interested in specifying a desired field, so that the constraint equation of interest is
g(~r, F) = FTheory − F = 0, where FTheory and F are the desired theoretical and simulated fields,
respectively, and could represent either an electric or magnetic field. To enforce the constraint’s domain
of applicability, we insert a Dirac delta function into the integrands so that the integration domain is
reduced to the focal plane (FP). For the second term, we see that ∂g

∂F = 1, and the integral evaluates to
a constant that can be neglected. This reduces Equation (6) to:

0 = δΛn

∫
FP

g(~r, u, u′)dS + ΛnδF. (7)

At this point, we have reduced the constraint to a form that can be readily incorporated into
the software.

2.3. Model Implementation

We begin by discussing the specific model implementation shown in Figure 1b, which models a 2D
corrugated NFP, and later extend our discussion to 2D axisymmetric geometries and lumped circuit
elements. In any of the model implementations, we want to determine the physical parameters that
achieve the desired field profile in the focal plane using the Lagrange multiplier method described in
Section 2.2. In this particular implementation of a corrugated sheet, that means determining the groove
depths and magnitude of the source excitation, and the focal plane is the vertical line in Figure 1b.
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Since this is a 2D model, we assumed translational invariance in the out-of-plane direction. To compare
with previous work, we chose a desired field of:

Htheory(y) = sinc(qy) (8)

For clarity in the following section, we will explicitly mention the software features used, using the
COMSOL software terminology, and indicate these with italics. We assume that the corrugated sheet
is a perfect electric conductor (PEC), and this boundary condition is applied to the surfaces bounding
the central waveguide, the 38 grooves, and the remainder of the metallization at x = 0. Note that the
PEC could be replaced with a lossy metal, such as copper, to characterize more accurately a particular
realization. The outer layer of the hemispherical domain is a perfectly matched layer (PML) that truncates
the simulation by absorbing any outgoing waves without reflection. Because of symmetry and the
polarization of the desired field, the long central groove is a 2D waveguide excited by a TEM mode.
Since we do not know the magnitude of the incident wave a priori, we used global equations to add
a Lagrange multiplier, Λ0, to the simulation and used this variable as the magnitude in a surface
magnetic current density boundary condition. This pre-existing boundary condition handles the second
term on the right-hand side of Equation (7), and we incorporate the first term using a weak contribution
on the focal plane. This weak contribution allows us to add equations directly to the variational
problem the software is solving. In this case, we added (Htheory − H) ∗ test(Λ0), as we needed to
replace variational operator δ with the test() function incorporated in the software.

The grooves shown in Figure 1b have a depth of λ/4, which is their initial value, but are deformed
during computation to achieve the desired field in the focal plane. We implemented this by adding
a deformed geometry interface. The open face of the groove at x = 0 is fixed in place using a prescribed
mesh displacement boundary condition. The remaining boundaries are subject to the same boundary
condition, but are allowed to move in x, but not y, so that they can stretch and compress while the
width of the groove remains constant. Lastly, the displacement of the groove bottom is specified by Λn,
where n corresponds to the groove number. As before, the pre-defined boundary condition satisfies
the second term of Equation (7), and we incorporated the first term through the addition of another
weak contribution.

Through the incorporation of the constraint and Lagrange multipliers into the finite-element
method, we reduced the optimization problem to a single nonlinear matrix equation Ax = b. In solving
the design problem in this way, there are two points that are worth mentioning explicitly. The first
point is that care must be taken when setting up the nonlinear problem, as the solution convergence
can depend significantly on initial conditions and solver settings. As a specific example, the simulation
in Section 4 is solved readily when focusing on a homogeneous environment, but not so in the
inhomogeneous environment that we demonstrate. As a result, we multiplied the inhomogeneous
material properties by a dummy variable that we scaled from 0 to 1 over the course of the simulation.
In this way, we used the homogeneous solution as an initial guess and slowly “walked” the solution
to the desired inhomogeneous environment to achieve model convergence. The second point is that
we expected this method to scale extremely well with regards to the number of unknown design
parameters. This is because each additional Lagrange multiplier will only add one additional row
to the matrix equation, whereas more traditional parameter optimization techniques generally scale
poorly with the number of parameters. While we have not done a quantitative comparison against
other optimization techniques, the 2D model in Section 3 was computed in 6 s, and the 2D axisymmetric
models in Sections 4.1 and 5 took 36 s and 7 s, respectively, and the 3D sector model in Section 4.2
taking 2 min 15 s. All of these were computed on a dual socket 2x8 core Intel Xeon E5-2630 @ 2.40 GHz.

3. Results for the 2D Planar Geometry

As a first study, we looked at a near field plate design and its resulting fields in free-space.
We compared the proposed technique with the previously developed analytic framework. The planar
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and grooved NFP was employed at a frequency of 1 GHz. A total of 19 grooves appeared on each side
of the central feed. The width of each groove was w = λ/80, and they were spaced with a periodicity
of a = λ/40. A focal length of λ/15 was selected, and the target field was Htheory = sinc(10k0y).

For the analytic case, we used two different models for the surface impedance based on
Equation (4). We employed a strict application of this model and also considered a slightly tweaked
version, which was similar to the frequency detuning mechanisms used in [20–22]. The frequency
detuning is akin to shifting the input impedance defined in Equation (4). The amount of shift required
is determined by matching the extracted surface impedance in Figure 3 with the analytic tangent
function. This is achieved by adding a constant offset, equal to 0.011, to the argument of the tangent
function. Note that we shifted by a positive amount because most of the groove lengths fall between
0.24λ and 0.25λ. The argument of the tangent function can be refactored as:

k0d + 0.011 = d(k0 +
0.011

d
) =

2πd
c

(
f0 +

0.011c
2πd

)
︸ ︷︷ ︸

f ′

, (9)

where f ′ is the equivalent detuned frequency. For a groove of length 0.242λ, this amounts to
an approximate 0.7% shift in the frequency, a value commensurate with the result reported in [20].
While this phenomenon was not discussed in detail in [20], the explanation and result reported above
seem to explain the behavior as seen in previous works. The shift of 0.7% may seem minor, but, as
seen in Figure 4a, it can have a dramatic effect. Note that when following this process, the focus occurs
at the true design frequency, 1 GHz, rather than having to tweak by an arbitrary offset, as was done
in [20]. Operating at the true design frequency allowed us to make a more fair comparison with the
proposed method that we have introduced in Section 2.2.

Figure 4. (a) Focusing results for three different methods and their comparison to the theory. (b) The
associated groove depths for each model. Blue represents the pure analytic model; green is a minor
tweak to better fit the extracted impedance result; and red is the proposed method that includes the
groove depth as part of the FEM process. All results are in free-space.

By employing the FEM with Lagrange multipliers, we arrived at the desired focus without any of
the nuances or tweaks required for the analytic method. The result is also shown in Figure 4a and is
seen to have better agreement with the theory than either of the other results. For all three cases, we also
plotted the lengths of the grooves in Figure 4b. In this plot, it can be seen that the differences between
the three methods are minor, even though the focusing result is starkly improved. It is also interesting
to note that the proposed method has groove lengths that lie in between the two other methods, but the
grooved pattern cannot be explained as a constant offset from the others. In summary, the presented
approach improved on previous methods and also allowed for the extension to inhomogeneous cases,
as we show next.
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To demonstrate focusing in an inhomogeneous setting, we place a pair of dielectric slabs with
refractive index n = 2 in the domain, as shown in Figure 5a. The slabs had a length of λ/30 in x
and λ/4 in y. They were offset by a variable distance ∆y, shown in Figure 5a, which is swept from
a value of λ/2 to a value of 0. For some of these separation distances, the blocks were overlapping,
and the intersecting area maintained the same refractive index. Figure 5b,c shows two examples for
the block placements and the fields throughout the domain. Note that the groove depths changed for
the different block locations to maintain the desired field in the focal plane.

Updating the groove design for the different block locations allowed us to maintain the focus for
a variety of different inhomogeneous settings. In contrast, in the analytic approach the grooves did not
depend on the environment. In this case, the focus deviated from the desired pattern, creating different
field magnitudes and altering the side lobe levels. These trends can be seen in Figure 6: in Panel
(a), the grooves are left as the free-space design would dictate, and in (b), the grooves are updated
according to the proposed method. As can be seen, the Lagrange multiplier method allowed us to
maintain the desired field profile regardless of the dielectric objects in the focusing domain. The results
in Figures 5 and 6 represent snapshots in a simulation, which can be found as a Supplementary
Multimedia File in the online version of this article.

Figure 5. (a) Geometry for the inhomogeneous focusing study, with two blocks having n = 2.
(b,c) Spatial distribution of the magnetic fields, log10(|Hz|), for ∆y = 0.65 and ∆y = 0, respectively.
Note that the groove depths have changed, but the focused field remains the same.

Figure 6. Profile of the magnetic field in the focal plane for a variety of separation distances for the
geometry in Figure 5. (a) Without correcting for the contribution of the dielectrics and (b) correcting for
the full domain with the constraint imposed in the FEM model.
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4. Flat, Axisymmetric Near Field Plate

In the previous section, we assumed a geometry that extends infinitely in the z direction. To create
a physically-realizable version, such a device would need to be truncated to create a finite aperture.
An alternative geometry that is worthy of consideration is an axisymmetric structure, which was
pursued in [21,22]. Here, we will look at a groove-based geometry (similar to Section 3) and also
a geometry based on a printed circuit board (PCB). Minor differences exist between the two, but it
should be kept in mind that both grooves and PCB lumped elements can be utilized to create a desired
impedance profile, which is the crux of the method outlined in Section 2. For reference, we will use the
cylindrical coordinate system (ρ, φ, z).

4.1. NFP with Grooves

The first axisymmetric geometry closely resembles the corrugated infinite structure (see Figure 7),
but the flat grooves instead take the form of a concentric circle around a central feed. A two-dimensional
simulation can capture the field profile in this setting with the condition that the fields have no variation
in the φ dimension. More sophisticated models may allow for variation of E(φ), H(φ), and Z(φ),
but since we will be considering an axisymmetric focus, it is not necessary to include the higher order
modes needed to capture this behavior. As with the infinite geometry, the groove depths define the
impedance. Further, the groove depths are optimized with the constraint as outline in Section 2 rather
than with the analytic model in Equation (4).

Just as a desired field pattern Htheory = sinc(qy) was prescribed for the previous geometry, here we
identify a focal plane at a given z and define a target pattern. In this case, we look at the electric field
oriented along the z axis and target the pattern Ez,theory(ρ) = J1(8πk0ρ)/(8πk0ρ), where J1 is the Bessel
function of the first kind, in the plane z = λ/15. This field only depends on the radial location because
it is defined in a single z plane and has no variation in the angular dimension. Note that the field
is directed along the axis of symmetry. Alternative designs for near field focusing have considered
the creation of transversely-polarized fields at the focal spot (for example, for λ/2 focusing the in the
radiative near field in [32]); addressing this possibility remains an interesting path of future study for
our method.

For this geometry, we considered three different scenarios. In the first case, we designed an NFP
to focus in free-space. In the second case, we added a representative biological body centered on the
focal plane and then designed the NFP to focus at the center of this inhomogeneous environment.
In the third case, we used the NFP designed in Case 1, except that we applied it to the inhomogeneous
environment used in Case 2. This was done to determine whether the proposed design method that
accounts for inhomogeneous environment (Case 2) outperformed the naive design approach (Case 1),
which did not consider an inhomogeneous setting. The biological entity was composed of tissue
that would be found in the human head. Specifically, there were two layers with the inner radius
being 2 cm and a thickness of 1 mm for the outer layer. The outer “skull” layer had εskull = 20.6 and
σskull = 0.364 S/m. The inner “brain” layer had εbrain = 48.9 and σbrain = 1.31 S/m. These values,
which were taken from the IT’IS database [33], were used as a proof of concept demonstration in
this paper, but more appropriate sizes and properties could be incorporated based on the application
at hand.

The results for the three different cases are compared with the targeted focal field in Figure 7b.
It is seen that the NFP that is optimized for a free-space setting (Case 1) operates well when utilized
in free-space, but once the biological tissue is included (Case 3), the focus is completely annihilated.
For Case 2, where we optimized the NFP with the tissue taken into consideration, the result matched
the desired field extremely well. Some deviations can be seen at ρ/λ = 0.04, which was where the
interfaces/discontinuities occurred in the material. The complete breakdown of the focus when the
inhomogeneous setting was not considered constituted a clear demonstration that our method was
successful and necessary for such environments. A final isometric plot in Figure 7c shows the fields
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in the grooves and in the volume, as well as the Ohmic heating (~J·~E) that would occur within the
targeted volume.

Figure 7. (a) A slice of the axisymmetric geometry, (b) the field in the focal plane, (c) and full field
results. For the isometric view, we show Ohmic heating, log10(

~J·~E), in the biological tissue; a slice of
the electric field, log10(|~E|), in the air between the grooves and target; and a measure of the H-field,
ρ · Hφ in the grooves. Note that the color bars are Ohmic heating (left) and E-field (right), but we do
not show a color bar for the grooves so as not to clutter the figure. The relevant H-field information is
that the phase oscillates from groove to groove and the amplitude vs. radius decays faster than linear.

4.2. NFP with Printed Circuit Board

The grooved structure explored in the previous structure was cumbersome, heavy, and would not
be cost-effective for bulk fabrication. Instead, a favorable architecture can be found in PCB fabrication
processes [21,34]. A planar PCB with copper cladding on both sides can be fed at the center to create
a cylindrically-symmetric parallel plate waveguide mode. Cutting concentric annular slots into the
top copper layer of this PCB results in leaked fields that can be focused. The concentric annular
slots represent capacitive slots in the transmission line, but can generally be viewed as impedances if
lumped components (such as capacitors and inductors) are used to load the device. Designing the
impedance profile through this mechanism gives a route to tailoring the effective sources across the
aperture, which enables the desired sub-wavelength focusing.

A semi-analytic method to design such PCB-based NFPs was developed in [21], but suffered from
similar drawbacks to those outlined in Section 2. Specifically, the model was incapable of handling
inhomogeneous background environments. Further, the model can suffer from sensitivities and
inaccuracies when operating near the elements’ resonance frequencies. In our treatment, the constraint
and Lagrange multipliers that were previously applied to the depth of the grooves were now associated
with the impedance of the loading lumped components. A reactive impedance model was used, which
can be realized by way of a series of parallel LC circuit attached across each annular slot.

In contrast to the groove-based geometry, the PCB architecture was simulated as an angular
section covering a range of 0<φ<π/8 (see Figure 8). This had the effect of creating 16 lumped
components per annular ring that were uniformly placed along the φ dimension. The slots were
separated by a distance a = 6 mm and had a width w = 0.4 mm, and the overall radius of the device
was R = 42 mm. The same focal distance was used, and the desired field was a truncated Bessel
function, Ez,theory = exp (−ρ2/2σ2)J0(qρ), where σ = 23 mm and q = 7.6k0. The match between
theory and simulation is shown in Figure 8b. It can be seen that there were minor deviations beyond
a distance of ρ/λ = 0.14. This deviation was attributed to the fact that this radial distance fell outside
of the circumference of the NFP. Finally, the fields in free space can be seen in Figure 8c. Such a device
can also be fabricated for use in an inhomogeneous setting, but this result was omitted for brevity.
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Figure 8. (a) The geometry for the PCB-based NFP, with only a single sector comprising 1/16 of the
surface shown. (b) A free-space result comparing the desired and resulting field profile. (c) Logarithmic
plot of the electric field, log10(|~E|), in the NFP and focusing domain.

5. Curved, Axisymmetric Near Field Plate

The methods above can be further generalized to alternative geometries, including arbitrary
shapes or structures that are conformal to the desired target volume’s surface. For example, one can
imagine placing an NFP over a patient’s head to ablate a tumor within neurological tissue. In this
setting, it may be advantageous to have a curved device that fits comfortably on the subject.

To show that the above techniques and concepts can be generalized to other geometries,
we introduced the NFP in Figure 9, which is both axisymmetric and curved. Because neither the
grooved geometry nor the PCB geometry in Section 4 are easily defined/fabricated in this geometry,
we restricted ourselves to only defining the necessary phi-directed effective magnetic current density
Mφ. In this sense, we omitted the step of calculating the impedances in Equation (1). The radius
of curvature of the conformal surface can be modified while maintaining the same focusing pattern
within the region of interest. The results for a variety of radii are shown in Figure 9a–d. The fields in
the focal plane are also shown in Figure 9e. For this study, we reused the same focal pattern as for the
axisymmetric corrugated plate, Ez,theory(ρ) = J1(8πk0ρ)/(8πk0ρ).

In Figure 9e, it can be seen that the pattern for the 5-cm-radius case significantly deviates from
the target function. As can be seen in Figure 9d, this is because the focal plane is located in close
proximity to the curved surface. To circumvent this issue, one could imagine a focal curve rather than
a focal plane. This curve might be defined to be concentric with the curved NFP geometry or the
curve could follow an arbitrary path. It is also worth noting that there is no guarantee that the desired
pattern will be achievable, as it could be possible that the target pattern has significantly higher spatial
frequency components than are physically realizable. It may also be possible that the necessary mutual
interactions among the tunable impedances may not support the necessary field that generates the
desired effective sources Mφ (and therefore, the target field). Investigations of these limitations are left
to future works.
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Figure 9. (a–d) The geometry and electric field for various radii, including 100 cm, 25 cm, 10 cm,
and 5 cm, respectively. (e) The electric field in the focal plane, which generally exhibits a good match
between the desired theory and the achieved pattern. Notable deviation is seen in the case of the 5-cm
radius because of the close proximity between the focal plane and the designed surface.

6. Heating Effects and Ablation

When considering near field plates for an ablation application, an additional study of interest is to
observe the heating profile of such devices. To do this, we employed a COMSOL Multiphysics model
including both EM and heating effects. The heating distribution is taken into consideration by using
the bio-heat equation, which models the specific heat, thermal conductivity, metabolic heat, and other
effects [10]. For simplicity, we reverted to the 2D planar geometry and included a background media
resembling biological tissue. A tumorous body (radius = λ/80) was also included with different
material properties. All properties (EM, heat-related, and biological, as seen in Table 1) were taken
from [10], which studied the ablation of breast tumors based on an ultra-wideband, time-reversed,
far field array of antennas. The approach pursued by Converse et al. in [10] represents a promising
alternative to our approach, but can be more costly due to the numerous antennas and the wide
bandwidth required [35,36]. To simplify our study and obtain a focused electric field, we modeled the
NFP surface as effective electric currents (rather than a magnetic current). We applied a temperature
boundary condition along the NFP surface such that the neighboring region remains at a temperature
achievable with cold water (3 ◦C). For the heating module, the z domain is truncated to model the
volume as a 30 cm-thick slab rather than an infinite volume.

Table 1. Electromagnetic and heating properties used in the heating simulation. Both regions share the
same properties for: arterial blood temp = body temperature, specific heat of blood = 1 J/(kg·K), blood
perfusion rate = 1 Hz, and density of blood = 1000 kg/m3.

Background Tumor

Relative Permittivity 15.66 50.74
Electrical Conductivity, S/m 1.03 4.82

Density, kg/m3 1069 1182
Heat Capacity, J/(kg·K) 2279 3049
Thermal Conductivity, W/(m·K) 0.306 0.496
Metabolic Heat Source, W/m3 350 5500

The result of this simulation is shown in Figure 10. The temperature in the focal plane was
warmest near the tumor, as expected, as that is where the magnitude of the focused electric field was
greatest. However, it is also seen that there was a larger temperature spike within the volume at
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a distance of 1 cm, whereas the tumor was located at 2 cm. This is because the NFP inherently created
an exponentially-decaying field along the x direction. Such behavior is physically necessary for the
generation of the sub-wavelength focused evanescent fields. Based on this heating behavior, it seems
likely that such a technique would only be successful at ablating tissue located in close proximity to the
surface. It can also be concluded that a sensing/detection or power transfer application may be a better
fit for this technology [37,38]. A potential application could be monitoring a sub-wavelength region
within a larger volume to detect changes in electromagnetic properties. This eliminates the concerns
associated with heating non-targeted tissue since the fields are of a significantly lower intensity.

Figure 10. (a) Temperature distribution within a biological volume when attempting to ablate tumorous
tissue with an NFP. The focal plane is represented by the black line at x = 2 cm, and the tumor outline
is shown centered at x = 2 cm, y = 0. (b) A plot of the temperature along the line y = 0 with the
boundaries of the tumor marked by black dots. Maximal heating does not occur within the tumor,
but is generated at a shallower depth due to the evanescent nature of the fields.

7. Conclusions

In this paper, we explored the use of microwave near field plates in the context of inhomogeneous
settings. Deeply sub-wavelength focuses were demonstrated numerically in both free-space and
inhomogeneous environments. Whereas previous methods only considered analytic or semi-numerical
approaches, our method took the complete geometry of the system into account to design the NFP.
We included the surface impedance of the NFP directly into a finite element method solver, which can
compute the necessary geometry or lumped components to create the desired pattern. This method was
shown to generate the desired focus in inhomogeneous environments, and for comparison, we showed
that a design optimized for free-space operation, when applied to the inhomogeneous environment in
question, resulted in a decimated focus.

The proposed method was applied to a variety of geometries, including 2D planar, flat
axisymmetric, and curved axisymmetric. Biological bodies resembling neurological matter and breast
tissue were investigated, and heating inside of a biological media was studied. Such a device could be
used for sensing/detection or for ablation applications if the target is near the surface. Our method
presents a viable option for the future development of near field plates, opening up potential routes to
using such devices in practical inhomogeneous settings.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/20/4534/
s1, Video S1: Fields in an inhomogeneous environment without updating, Video S2: Fields in an inhomogeneous
environment with updating.
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