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Abstract: Precise and robust localization in three-dimensional underwater sensor networks is still an
important research problem. This problem is particularly challenging if there are some malicious
anchors among ordinary anchor nodes that will broadcast their locations falsely and deliberately.
In this paper, we study how to self-localize large teams of underwater sensor nodes under the
condition that some malicious anchor nodes mixed with ordinary anchors. Due to malicious
characteristic of some deliberate anchor nodes, an iterative and cooperative 3D-localization algorithm
for underwater sensor networks in the existence of malicious anchors is proposed in this paper.
The proposed robust localization algorithm takes advantage of distributed reputation voting method
within 1-Hop neighboring reference nodes to detect and eliminate malicious anchor nodes. Moreover,
one kind of Minimum Mean Squared Error estimation based iterative localization method is applied
to determine accurate location information. Additionally, we analyze and prove that our localization
algorithm would have a bounded error when the number of malicious anchors is smaller than a certain
threshold. Extensive simulation results are provided to demonstrate performance improvements
comparing to traditional Minimum Mean Squared Error and Attack Resistant Minimum Mean
Squared Error based localization methods in terms of localization accuracy and coverage ratio.

Keywords: underwater sensor networks; robust localization; cooperative localization; malicious
anchor nodes; reputation voting

1. Introduction

Localization in Underwater Sensor Networks have attracted significant interests in recent years [1].
Position information accompanying with sensory data are vital to many monitoring activities in sensor
networks. For example, in environmental monitoring applications, it is necessary to know the specific
regional position corresponding to the collected environmental information, which is the basis on
further measures and decisions. Currently, the simplest and most straightforward way to determine
sensor node’s location is of course using the Global Positioning System (GPS). However, GPS is
unsuitable to use in underwater environments [2]. Compared to radio wave, sound wave has good
propagation characteristics in water, so it has become a more suitable underwater communication
carrier. Although traditional relative distance estimation methods, such as ToA (Time of Arrival) or
TDoA (Time Difference of Arrival), would suffer from severe multi-path propagation and Doppler
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effects in underwater acoustic channel, underwater localization system generally follows acoustic
communication and measurement approach. As we all know, Ultra-Short BaseLine (USBL) and Doppler
Velocity Logs (DVL) are too costly to install on all underwater nodes, therefore, it is no guaranteed
that all sensor nodes can locate themselves. Moreover, underwater nodes are often deployed sparsely
because of their high costs, so direct communication from anchor nodes to ordinary nodes may not be
available, resulting in lower localization coverage. Consequently, some underwater nodes may lack of
the required number of reference nodes within their communication range to aid localization.

Numerous localization methods [3,4] have been proposed for UWSN in recent years. RSS-based
underwater localization algorithms are discussed in [5,6], which determine the location of an unknown
normal sensor from a certain measurement set of potential anchor nodes. However, RSS-based
localization suffers from harsh underwater environments, such as measurement noises, heavily.
In recent years, there have been many studies on the localization of underwater sensor networks.
The problem of three-dimensional localization of underwater sensor networks with unknown water
currents using only range measurements is investigated in [7]. This scheme applies the rigidity theory
and maintains a virtual rigid structure through projection. Since underwater nodes move constantly
with ocean currents and measurement noises vary with distances, a novel beacon-free algorithm is
proposed in [8] considering additional challenges posed by harsh underwater environments. Recursive
Location Estimation (RLE) algorithm [9], a hierarchical localization scheme for stationary underwater
acoustic sensor networks, uses an extended Euclidean distance estimation to determine its distance
measurement. RLE algorithm performs well in dense underwater sensor networks, but it suffers from
low localization coverage in sparse networks. Moreover, localization error will propagate when the
distributed RLE algorithm is used in large-scale networks, and impacts by measurement error on
localization accuracy of RLE algorithm have been analyzed in [10].

Nevertheless, in many hostile environments, there may be malicious attacks to mislead the
location estimation of sensor nodes, so the positioning process is highly vulnerable to malicious attacks
from some enemies intentionally [11]. As a result, anchor nodes are at higher risk of being caught at
any time. Malicious anchor nodes formed after being captured can initiate multiple attacks, giving
wrong location information and threatening the security of localization system seriously. Many existing
localization methods become vulnerable in such attacks. Authentication can provide some, but limited,
reliability through cryptography. Even with encrypted location references, it is still possible for
attackers to compromise some anchor nodes or simply replace location references intercepted at
different locations. Therefore, in the model studied of this paper, we assume that there are k malicious
anchor nodes among these m anchor sets.

In the past, researchers have followed two approaches towards overcoming the problem of
malicious nodes in localization algorithms [12]. One is to find inconsistencies in the communication
process of sensor nodes and eliminate them before localization. The other is to minimize the position
error in the presence of malicious nodes by certain algorithms, so as tolerate the interference by
malicious nodes. Pires et al. [13] propose a method to identify malicious nodes by detecting the
signal strength of malicious message transmissions in sensor networks. In [14], an attack detection
module is proposed for detection boundary error. The damaged anchor nodes can be detected by
this secure localization module, but it is only suitable to single-hop positioning. Curiac et al. [15]
propose a neural network and an autoregressive model to estimate output values from sensor nodes,
and then compares and obtains the difference, so as to determine which malicious nodes are. Later,
they propose malicious node self-destruction algorithm in [16]. Wei et al. [17] propose two centralized
node position verification algorithms named GFM (Greedy Filtering by Matrix) and TI (Trustability
Indicator). However, both algorithms must collect location information of all nodes and corresponding
observations to verify positioning results. Generally speaking, the robustness of these algorithms
are poor, and attackers can easily tamper with neighboring observation and interference detection
algorithm. Du et al. [18] give a Localization Anomaly Detection (LAD) scheme to detect abnormal
anchor nodes during positioning process. The LAD scheme relies on the distribution information
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of sensor nodes. If the accurate distribution probability cannot be obtained, the LAD detection
result will be greatly affected. Moreover, the LAD scheme only stays in the detection phase of the
anomaly, but does not give how to handle the exception and how to improve localization accuracy after
anomalies are discovered. Moore et al. [19] describe a distributed, linear-time algorithm for localizing
sensor nodes in the presence of range measurement noise. They formulate the localization problem
as a two-dimensional graph realization problem. Li et al. [20] explore robust statistical methods to
make localization attack-tolerant. The advantage is the least squares computation when there is no
attack and it will switch to the robust mode when attacked. However, this method is only suitable for
triangulation and RF-based fingerprints based localization. Buchegger et al. [21] propose CONFIDANT
with predetermined trust measurement. They cope with the localization performance by retaliating
for malicious behavior and warning affiliated nodes. Anchor nodes learn not only from their own
experience, but also from observing their neighborhood. In [22], a probabilistic nested packet marking
method (PNM) is proposed. In order to protect the upstream nodes from marking on data packets, each
forwarding node marks data packets in a nested manner, preventing the collusion node from covering
the data packet. However, as anchor nodes are continuously marked cryptographically, packets will
become larger and larger and thus increase traffic overhead significantly. However, these algorithms
do not involve cooperation between anchor nodes, and thus severely limit the performance to detect
compromised anchors. Attack-resistant minimum mean square error (ARMMSE) [23] is a greedy
algorithm based on an iterative Least Trimmed Squares (LTS) approach to identify and eliminate
malicious anchors one by one. In [24], two methods for robust localization in the presence of malicious
anchor nodes are studied. The first method filters out malicious beacon signals on the basis of the
consistency among multiple beacon signals. The second method tolerates malicious beacon signals
by adopting an iteratively refined voting scheme. The disadvantage is that the greedy algorithm has
to be used to obtain an approximate solution due to the explosion of combination number. But grid
size and number will affect localization performance, such as solution time. Srinivasan et al. [25]
propose an anchor trust scheme based on distributed reputation mechanism for excluding malicious
anchor nodes that provide false location information. This algorithm is simple, but the robustness and
accuracy still need to be improved. The above documents all propose various methods for eliminating
or ignoring malicious nodes for positioning, but due to the complexity of underwater environment
and limitations of each algorithm, most of them are only applicable for two-dimensional environment.
In the underwater environment, sensor nodes are deployed randomly in particular three-dimensional
space. However, the performance may be reduced significantly if just apply general localization
algorithms of two-dimensional space to three-dimensional space directly. Therefore the positioning
in three-dimensional underwater sensor networks faces great challenges and so it is very crucial for
underwater monitoring system.

Moreover, there are some researches for eliminating malicious nodes in recent years. Liu et al. [26]
present a suite of methods to detect malicious beacon signals and identify malicious anchors, so avoid
false detection and revoke malicious anchors. Their revocation scheme works on the basis of two
counters maintained in each anchor node. The concept of weighted trust proposed in [27] determines
the ratio between data transmitted by sensor node and the final fusion result. This method has a
certain detection ratio for detecting malicious nodes with lower complexity. However, when the
number of malicious nodes is large, the fusion result and the weight of sensor node will be greatly
affected, which is prone to produce false positives (no malicious nodes detected) and false negative
detection (normal nodes are incorrectly detected as malicious nodes). Ganeriwal et al. [28] investigate
an approach to allow sensor nodes to develop a community of trust. In their framework, each sensor
node maintains reputation metrics which both represent past behavior of other nodes and inherent
aspect in predicting future behavior. Based on the reputation-based authentication model proposed
in [29], the literature [30] proposes an entity authentication model based on reputation and trust groups.
However, this scheme is only on basis of trusted authentication of the key group. If the malicious node
obtains the key, the resilience of this model will be greatly reduced.
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Referring to the idea of confidence value and weight in the above literature, and considering
the characteristics and difficulties of three-dimensional underwater localization, we propose a robust
and cooperative 3D-localization algorithm for underwater sensor networks in the existence of some
malicious anchor nodes. The proposed localization algorithm takes advantage of distributed reputation
voting method within one-hop neighboring reference nodes to detect and remove malicious anchors.
Moreover, position-unknown sensor nodes use MMSE (Minimum Mean Squared Error) [9] based
iterative positioning algorithm to make the just positioned sensor node become new reference node,
thus help to localize other sensor nodes that do not know their locations.

Statement of Contributions: The main contributions of this paper are summarized as follows:
(1) Providing a reputation voting based malicious anchors detection and elimination mechanism
within 1-Hop neighborhood; and (2) design an iterative and distributed 3D localization algorithm
in the existence of malicious anchors. To the best of our knowledge, this is the first report to design
robust and iterative localization for three-dimensional underwater sensor networks in the existence of
malicious anchor nodes.

The rest of this paper is organized as follows. Section 2 presents preliminaries and problem
statement. In Section 3, a distributed and iterative localization method for UWSN to overcome
the impacts by malicious anchors is presented in detail. Extensive simulation results to verify the
robustness of our localization algorithm are shown in Section 4, followed by the conclusion in Section 5.

2. Preliminaries and Problem Statement

As depicted in Figure 1, there are n sensor nodes (Si, i = 1, 2, · · · , n) (the brown ball) to be
localized and m anchor nodes (Aj, j = 1, 2, · · · , m) (the blue ball) with known positions aj =

[xj, yj, zj] ∈ R3 deployed randomly in a W ×W ×W cubic underwater space. With a multi-hop
transmission manner, sensor nodes have the ability to transmit information to any SonyBuoy via
acoustic communication, while surface SonoBuoy can transmit collected data to Service Station through
Satellite or RF communication finally. It is assumed that powerful and immobile anchor nodes can
get their positions with USBL (Ultra-Short BaseLine), but ordinary sensor nodes communicate only
with its 1-Hop neighbors hence they can be localized with the help of its neighboring reference
nodes, which include anchor nodes and sensor nodes with known locations already. On the basis
of actual employment situation of underwater sensor networks, the maximal transmission ranges of
sensor nodes and anchor nodes are similar usually, herein they are set to the same threshold value R.
In addition, compared to vast underwater monitoring region, the drifting movement of underwater
sensor nodes by oceanic current can be ignored. As a result, the proposed localization algorithm only
needs to be executed once or at fixed intervals. For simplicity, we assume that the IDs of sensor nodes
employ both software and hardware encryption to enhance security, so they could not be tampered by
malicious anchors easily.

Generally speaking, anchor nodes represent those sensor nodes with locations that are known
prior to the localization process, and it is assumed that the position information provided by anchor
nodes is correct and accurate. However, in hostile environments, there may be some malicious attacks
in order to sabotage or mislead the localization process of sensor nodes. Unlike existing assumptions,
we suppose that k anchor nodes within m anchor nodes are malicious anchor nodes, and others are
honest anchor nodes. Let the set of honest anchors and malicious anchors be denoted byH andM,
respectively. That meansM⊆ A,H ⊆ A,M⋃H = A. It is assumed that malicious anchor nodes will
broadcast their locations falsely and thus pose negative effect on localization accuracy and robustness.
Besides, malicious anchors percent p is defined as the ratio between the number of malicious nodes
and that of anchor nodes, which is p = k

m . It is important to note that k or p is not necessarily known
to any underwater sensors or anchor nodes. Moreover, we assume that the identity number of each
anchor node is unique and cannot be maliciously tampered easily.

In order to illustrate the detailed methodology of proposed algorithm, we summarize the
simplified notations in Table 1 for convenience.
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Table 1. List of Notations.

Notation Definition

S set of sensor nodes
A set of anchor nodes
V set of reference nodes
n number of sensor nodes
m number of anchor nodes
v number of reference nodes
Si i-th sensor node, i = 1, ..., n
Aj j-th anchor node, j = 1, ..., m
Vt t-th reference node, t = 1, ..., v
Ct confidence value of Vt

Y = [s1, s2, ..., sn] coordinates set for sensor nodes
si =< xi, yi, zi > coordinates of sensor node Si
s̃i =< x̃i, ỹi, z̃i > measured coordinates of sensor node Si
Ỹ = [s̃1, s̃2, ..., s̃n] measured coordinates of sensor nodes
X = [a1, a2, ..., am] coordinates set for anchor nodes
aj =< xj, yj, zj > coordinates of anchor node Aj

H set of honest anchor nodes
M set of malicious anchor nodes
k number of malicious anchor nodes
p percent of malicious anchor nodes
R maximal transmission distance

dst(Vi, Vj) Euclidean distance between Vi and Vj

d̃st(Vi, Vj) measured distance between Vi and Vj
NBi neighboring reference nodes of sensor node Si
VPt positive voting number for reference node Vt
VNt negative voting number for reference node Vt
VP positive voting
VN negative voting
ζ inconsistent malicious degree
η inconsistent distance threshold
ε a small constant
δ average localization error
c underwater acoustic velocity

µij Gaussian random variables
σ2 variance of µij

Regardless of being honest or dishonest, each anchor node Aj provides a measurement of the
distance between sensor nodes and itself. In the case of anchor node Aj is honest, the difference
between the estimated and actual distance is assumed to be very small, i.e., |d̃st(Si, Aj)− dst(Si, Aj)| <
ε, ∀Si ∈ S , where ε is a small constant. Otherwise, the above formula does not always hold when Aj is
a malicious anchor node. The precise distance between Si and Sj is the Euclidean distance between
position coordinates of si and sj, which is denoted by ‖ si − sj ‖. The operator ‖‖ denotes the distance
calculation between two coordinates in R3. The distance measurements between sensor nodes and
anchor nodes are defined as d̃st(Si, Aj), which are assumed to be random variables that follow some
fixed probability distributions due to noise and interference among sensor nodes.

d̃st(Si, Aj) =‖ si − aj ‖ +µij, ∀Aj ∈ H. (1)

For each anchor node Aj ∈ M, d̃st(Si, Aj) is a value selected arbitrarily by the adversary. In other
words, the above equation will not always necessarily be hold.

d̃st(Si, Aj) 6=‖ si − aj ‖ +µij, ∀Aj ∈ M, (2)
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where µij s are i.i.d. Gaussian random variables with zero mean and variance of σ2. For honest anchor
nodes, there are E(d̃st(Si, Aj)) =‖ si − aj ‖. Ideally, this difference should be zero when the anchor
node is honest, but such discrepancies in distance estimates can occur due to measurement errors.
That is to say, the expected value of the estimated distance d̃st(Si, Aj) for each anchor Aj ∈ H is the
trustworthy distance between anchor nodes Si and Aj. For malicious anchor nodes, E(d̃st(Si, Aj)) 6=‖
si − aj ‖. In other words, malicious anchor will cause measurement outliers so that it cannot produce
trustworthy position estimates.

Figure 1. Localization topology of three-dimensional underwater sensor networks.

Let δ be the average localization error of all sensor nodes in underwater sensor networks, which is
defined as the Euclidean distance between actual position and the one output by localization algorithm.
si and s̃i denote actual coordinates and measured coordinates of sensor nodes Si, respectively. Therefore,
the optimization objective of robust localization for underwater sensor networks in the existence of
malicious anchors is given as,

Objective:

minimize δ =
1
n
·

n

∑
i=1
‖ si − s̃i ‖, (3)

subject to:

d̃st(Si, Aj) =‖ si − aj ‖ +µij, ∀Aj ∈ H (4)

d̃st(Si, Aj) =‖ si − aj ‖ +ζ + µij, ∀Aj ∈ M, (5)
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where d̃st(Si, Aj) denotes the distance measurements between sensor node Si and anchor node Aj,
and ζ denotes certain inconsistent malicious degree caused by malicious anchors. Equation (3) is
our objective function representing the average localization error of all available sensor nodes for
localization. The constraints (4), (5) denote bounded error and unbounded error caused by honest
anchors and malicious anchors, respectively. In other words, each underwater sensor nodes wants to
compute its own location using distance estimates with reference nodes that know their own locations,
but anchor nodes may or may not cheat in our localization model. Since we assume a distance-based
localization strategy, the output of our localization algorithm can be defined by a function of measured
distances from the neighbouring reference nodes: si ← Locate(NBi).

3. Robust and Cooperative Localization with Malicious Anchors

In this section, we describe the detailed algorithm of acoustic distance-based localization for
underwater sensor networks in hostile environments. The Malicious anchors Voting-based Cooperative
Localization (MVCL) algorithm is to use a few trustworthy anchor nodes with known locations mixed
in malicious nodes to derive the locations of other nodes deployed in underwater region. However,
malicious anchor nodes are confused with ordinary anchor nodes and hard to be distinguished. In this
paper, the whole localization process is divided into two parts: malicious anchors elimination and
ordinary nodes localization. In the first phase, we propose a reputation voting in 1-Hop neighbors
based malicious anchor nodes detection and elimination method. In the second phase, we use an
iterative localization method for each un-localized sensor nodes using honest anchor nodes and already
localized sensor nodes.

As we know, accurate clock synchronization is not possible if underwater nodes belong to
different clock domains. In this paper, we use an improved ToA method for ranging. Sensor node Si
sends a ranging request packet which records transmission start time T0. After receiving the request
packet, sensor node Sj records transmission arrival time T1, and then sends a reply packet containing
information, such as its own location, reception time, and transmission time at time T2. Node Si
records the time T3 when receiving the reply packet. We can find that T0, T3 and T1, T2 belong to the
clock domain of Si and Sj, respectively. However, no time synchronization is required between Si and
Sj. The distance between Si and Sj is calculated as follows,

d̃st(Si, Sj) =
(T3 − T0)− (T2 − T1)

2
× c. (6)

3.1. Reputation Voting-Based Malicious Anchors Detection and Elimination

Due to malicious environments, we assume malicious anchor may declare a wrong location in its
Hello beacon packets, or carefully manipulate anchor signals to affect the distance measurement. In this
section, the proposed malicious anchors detection and elimination method is based on observation that
malicious location references introduced by attacks are intended to mislead a sensor node about its
location, and thus are usually inconsistent with the honest anchors. Moreover, we develop an iterative
and distributed method that allows neighboring reference nodes cast reputation votes so that it can be
executed in resource constrained underwater sensor nodes. Since our techniques only utilize distances
measured from anchor nodes, there is no extra communication overhead involved when compared to
the other localization schemes.

Intuitively, location information introduced by a malicious attack is aimed at misleading a
reference node about its location. To take advantage of this observation, we use distance difference
among the location references to identify and remove malicious ones. The distance difference value
between measured distance and calculated distance is defined as:

Djt ← |dst(Vj, Vt)− d̃st(Vj, Vt)|, (7)
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where dst(Vj, Vt) denotes Euclidean distance between Vj and Vt, which is calculated by coordinate
values declared in Hello beacon messages, and d̃st(Vj, Vt) denotes measured distance between Vj and
Vt in practice, which can be calculated with Equation (6).

To harness this observation, if Djt < η, it will cast a positive vote VP, otherwise it will cast a
negative vote VN . Quite evidently, η is bounded by inconsistent malicious degree ζ. Moreover, in this
paper, we select and use a simple, threshold-based confidence value to determine if the location
reference is malicious or honest. The mentioned confidence value Ct of reference node Vt is defined as
following equation,

Ct =
VPt + 1

VPt + 1 + VNt + 1
. (8)

The reference node Vt will be judged as a honest anchor if Ct > 0.5; otherwise, it will be regarded
as a malicious one. Malicious anchors can be identified and removed one by one using our predefined
confidence equation, and repeat the above process until all anchor nodes have been checked.

For example, in Case-1 of Figure 2, there are three honest anchor nodes A, B, D and one malicious
anchor node C in the 1-Hop neighbors of anchor node N, that is to say, |dA − d̃A| < η, |dB − d̃B| < η,
|dD − d̃D| < η, |dC − d̃C| ≥ η. As a result, anchor node N can acquire three VP and one VN ballots
from its four neighbor nodes A, B, C, D, thus C > 0.5, therefore anchor node N will be regarded as a
honest anchor node. In Case-2 of Figure 2, there are one VP ballot from anchor node C and three VN
ballots from anchor nodes A, B, D, thus C < 0.5, so anchor node N will be regarded as a malicious
anchor node. This process will repeat until all anchor nodes have been checked, thus anchor collection
A can be divided into two parts at last: malicious anchor setsM and honest anchor setsH.

(a) (b)

Figure 2. Reputation voting principle: (a) Case-1; (b) Case-2.

3.2. Iterative Localization after Malicious Anchors Elimination in 3D Underwater Region

After previous malicious anchors detection and elimination, we then utilize an iterative
localization method within trusted reference nodes to locate the whole underwater sensor nodes.
Iterative localization sequentially merges the position-known reference nodes in underwater sensor
networks to locate position-unknown ordinary sensor nodes finally. The arrows shown in Figure 3
mean localization assistance direction, which are from reference nodes to nodes with unknown
locations. Taking advantages of recursive location estimation procedures, a large number of
un-localized sensor nodes are positioned and become reference nodes.
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Figure 3. Principle of iterative localization.

In our iterative location estimation algorithm of Figure 4, ordinary sensor nodes obtain their
positions with assistance of reference nodes comprising of anchor nodes and sensor nodes having been
already localized. Since MMSE (Minimum Mean Squared Error) based location calculation method [9]
can deal with stochastic measurement errors better if there are more honest reference nodes, however
it needs to keep as many reference nodes as possible when malicious anchors are removed. Suppose
q > 3 reference nodes with coordinates (x1, y1, z1), (x2, y2, z2), · · · , (xq, yq, zq) around certain sensor
node with coordinates (x, y, z), measured relative distances between sensor node and reference nodes
are d1, d2, · · · , dq, respectively. Therefore, we get a series of linear equations with assumption that q
reference nodes around this sensor node,

(x1 − x)2 + (y1 − y)2 + (z1 − z)2 = d2
1 + ω2

1
(x2 − x)2 + (y2 − y)2 + (z2 − z)2 = d2

2 + ω2
2

· · · · · ·
(xq − x)2 + (yq − y)2 + (zq − z)2 = d2

q + ω2
q ,

(9)

where ω1, ω2, · · · , ωq are white Gaussian noise with unit value caused by measurements. On
subtracting the last equation from the first q− 1 equations set, hence we obtain,

PZ = B + ω, (10)

where Z = [x y z]T , ω = [ω2
1 ω2

2 , · · · , ω2
q ],

P =


2(x1 − xq) 2(y1 − yq) 2(z1 − zq)

2(x2 − xq) 2(y2 − yq) 2(z2 − zq)

· · · · · · · · ·
2(xq−1 − xq) 2(yq−1 − yq) 2(zq−1 − zq)

 and B =


x2

1 − x2
q + y2

1 − y2
q + z2

1 − z2
q + d2

1 − d2
q

x2
2 − x2

q + y2
2 − y2

q + z2
2 − z2

q + d2
2 − d2

q
· · · · · ·

x2
q−1 − x2

q + y2
q−1 − y2

q + z2
q−1 − z2

q + d2
q−1 − d2

q

.

As a result, the estimated position information Ẑ = [x̂ ŷ ẑ]T can be obtained as,

Ẑ = (PT P + Iω)−1PT B, (11)

where I is an identity matrix.
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Finally, the detailed flow chart of iterative localization is described in Figure 4. Once localization
process begins, each anchor node broadcasts a Hello beacon message containing its position
information. After that, these sensor nodes having received Hello beacon messages from at least
four reference nodes calculate their own positions using measured distances between reference nodes
through ToA or TDoA method, afterwards become reference nodes. As a result, while more sensor
nodes acquiring their positions and joining in reference nodes collection, the number of reference
nodes increase gradually.

Figure 4. Flow chart of iterative localization method. MMSE = Minimum Mean Squared Error.

3.3. Whole Process of Iterative and Cooperative Localization Algorithm

Finally, the proposed reputation voting based cooperative localization algorithm in order to
tolerate malicious anchors and improve localization robustness has the following key steps.

• Step 1: Each anchor node broadcasts Hello beacon message to its 1-Hop neighbours, which
comprises of node ID, coordinates and etc. After that, distance-based acoustic ranging processes,
such as ToA algorithm between itself and its 1-Hop neighboring reference nodes, are carried out
to compare to calculated distance by Hello beacon messages.

• Step 2: For each anchor node, its 1-Hop neighboring reference nodes cast reputation votes
according to the difference between Euclidean distance and measured distance. The voting result
is that most of malicious anchor nodes can be detected and eliminated step by step.

• Step 3: After previous malicious anchors detection and elimination, an iterative localization
method is applied within trusted reference nodes. Some sensor nodes become reference nodes
and help to localize other sensor nodes if they are available for localization.

• Step 4: For each un-localized sensor nodes, MMSE-based localization method is applied to
calculate position information. Such iterative process will not stop until all sensor nodes are
checked or localized.
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For clarity, the proposed MVCL algorithm is described as detailed pseudo-code in Algorithm 1.
The Hello broadcast process is carried out at network initialization phase, and meanwhile each
underwater node maintains its neighbor information table and perform distributed reputation voting.

Algorithm 1 Pseudo-code for Malicious Voting-Based Cooperative Localization algorithm.

Input: X , dst(S_i, A_j), dst(A_i, A_j) ∀S_i ∈ S , ∀A_i, A_j ∈ A
Initialization: H A←−
M ∅←−
V A←−
VPi = 0, VNi = 0 ∀i ∈ [1, ..., v]

for i← 1 to n do

for j← 1 to v do

while dst(Si, Vj) ≤ R do

NBi ← NBi ∪Vj

for t← 1 to v do

while dst(Vj, Vt) ≤ R do

NBi ← NBi ∪Vt

Djt ← dst(Vj, Vt)− d̃st(Vj, Vt)

if Djt < η do

VPj ← VPj + 1

else VNj ← VNj + 1

end if

end while

end for

Cj =
VPj+1

VPj+1+VNj+1

if Cj > 0.5 do

H ← H∪Vt; M←M\Vt

else

H ← H \Vt; M←M∪Vt

NBi ← NBi \Vt

end if

end while

end for

while |NBi| ≥ 4 do

Si ← Locate(NBi)

V ← V ∪ Si

v = v + 1

end while

end for

Output: Ỹ
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3.4. Algorithm Discussions and Error Analysis

Through malicious anchors detection and elimination approach, the proposed iterative and
cooperative localization method is robust to the existence of malicious anchors. However, in the
presence of malicious anchor nodes, what are the necessary and sufficient conditions to guarantee a
bounded error during 3-dimensional location estimation? As we know, the value of k clearly has a great
influence on whether we can achieve a bounded localization error. Four cases of distributed reputation
voting (p < 0.5, p = 0, p = 0.5, p > 0.5) are illustrated in Figure 5, where red box squares and blue
box squares denote malicious anchor nodes and honest anchor nodes, respectively. It is obviously that
reputation voting results are prone to be errors when p ≥ 0.5 with our defined confidence equation.
Then, we try to obtain the necessary condition for robust 3-dimensional localization in the presence of
a certain amount of malicious nodes.

Figure 5. Four cases of different malicious anchor percent.

In the following, we will propose the lower bound theorem and moreover prove by a contradiction
argument that if the numbers of malicious nodes k ≥ m−3

2 , the location of the unknown sensor node
cannot be calculated with great accuracy by any algorithms in three-dimensional space. The necessary
condition for getting a bounded localization error out of any distance-based localization algorithm is
as follows.

Theorem 1. Suppose that k ≥ m−3
2 , then, for any distance-based localization algorithm, for any locations of

anchor nodes, there exists a scenario in which localization error e is unbounded.

Proof. Without loss of generality, we assume there is an algorithm when the number of malicious
nodes k = m−3

2 , so that the positioning error e can always be smaller than a, where a is a constant, that
is, e is bounded. We show that this assumption can lead to contradictions.
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In our model, we consider a single adversary who controls all malicious anchor nodes and decides
measured distance for all Ai /∈ H. This is a very strong adversary model allowing malicious nodes to
collude with each other so as to mislead the location. We will prove that for a fixed set of anchor nodes,
and we do not know the identity of malicious nodes, if the above assumption is true, then at least two
different scenarios have the same distance distribution for sensor node to be positioned. This leaves no
way to distinguish between the defined two scenarios.

The specific distribution of anchor nodes is as follows. Consider the two scenarios Case-1 and
Case-2 in Figure 6. The positions of all anchor nodes are the same in both scenarios, but it is supposed
that the set of honest anchor nodes and the set of malicious anchor nodes are different in each scene.
Three anchor nodes, A1, A2, A3, are selected that are not on a straight line to determine a plane.

Figure 6. Two scenarios to prove localization bound theorem (Case-1 in upper, and Case-2 in lower).
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In Case-1, select a point X1 as the position of sensor node to be located, and make a straight line L
through X1 to make it perpendicular to the plane A1 A2 A3. It should be noted that sensor node X1 to
be positioned needs to satisfy the condition that the distance a∗ between X1 and plane A1 A2 A3 needs
to be more than the maximum positioning error e that we can accept, that is, a∗ ≥ a. In Case-2, we
place sensor node to be located on the line L and have the same distance a∗ from plane A1 A2 A3.

In Case-1, the set of honest anchors is H1 = {A1, A2, A3, A4, . . . , Ak+3}. Position-unknown node
X is located at X1. d̃st1(X, Ai) denotes the measurement distance d̃st(X1, Ai) in scenario Case-1.
In scenario Case-2, the set of honest anchors is H2 = {A1, A2, A3, Ak+4, . . . , A2k+3}. Position-unknown
node X is located at X2. d̃st2(X, Ai) denotes the measurement distance d̃st2(X2, Ai) in Case-2.

In Case-1, we can consider that the distance provided by our adversary model for
position-unknown node X is the distance between each malicious node and X2 after collusion,
such that:

d̃st1(X, Ai) = d̃st2(X, Ai), ∀i ∈ {k + 4, ..., 2k + 3}. (12)

In other words, in Case-1, we only use the information provided by the powerful adversary to
locate the position that will be calculated at X2. In a similar way, in Case-2, the distance between
malicious anchor and position-unknown X provided by the adversary model is actually the distance
between malicious node and X1.

d̃st2(X, Ai) = d̃st1(X, Ai), ∀i ∈ {4, ..., k + 3}. (13)

Since the line X1X2 is perpendicular to the plane A1 A2 A3, and the line segment X1X2 is divided
by the plane A1 A2 A3 equally, it is easy to see that,

d̃st(A1, X1) = d̃st(A1, X2)

d̃st(A2, X1) = d̃st(A2, X2)

d̃st(A3, X1) = d̃st(A3, X2)

. (14)

In this way, we can find that A1 and A2 have the same distribution for X1 and X2,
d̃st1(X, A1) = d̃st2(X, A1)

d̃st1(X, A2) = d̃st2(X, A2)

d̃st1(X, A3) = d̃st2(X, A3)

. (15)

On the other hand, by our assumption, the output errors in both scenarios are less than a,{
e = d̃st(X1,O1) < a
e = d̃st(X2,O2) < a

. (16)

Now, we can see that the distance provided by the same anchor node is roughly the same whether
it is in Case-1 or Case-2. It is assumed that the output O of the positioning algorithm can be defined by
a function F of the measured distance d̃st(X, Ai) from the position-unknown node X to each anchor
node Ai in the networks, then,

In Case-1, there is,
O1 = F (d̃st1(X, A1), d̃st1(X, A2), ..., d̃st1(X, A2k+3)).
In Case-2, there is,
O2 = F (d̃st2(X, A1), d̃st2(X, A2), ..., d̃st2(X, A2k+3)).
According to the above inference, it can be seen that the independent variables of function F are

the same in Case-1 and Case-2, so we can conclude that O1 = O2.



Sensors 2019, 19, 4519 15 of 24

Then, dst(X2,O1) = dst(X2,O2). Since our previous assumption is that the output error e is less
than the constant a, Consequently,

2a∗ = d̃st(X1, X2) ≤ d̃st(X1,O1) + d̃st(X2,O1) = d̃st(X1,O1) + d̃st(X2,O2) = e + e = 2e. (17)

We get the answer a∗ < e, but it is contradictory to our assumption a∗ ≥ a ≥ e. As a result,
the above assumption is not true.

On the contrary, if the number of malicious nodes k is smaller than m−3
2 , where m is the number of

anchor nodes providing information, then well-designed localization algorithms may provide certain
localization accuracy. The following simulation results of our proposed MVCL algorithm verify this
conclusion.

4. Simulation Results

In this section, we compare the localization performance of proposed algorithms with that of
MMSE [9] and ARMMSE [24] through simulation experiments. Simulation is set up using 100 nodes
with typical case of 80 sensors and 20 anchors randomly distributed in a cube of 50× 50× 50 unit3.
The MATLAB 2016b simulator is used as simulation tool. Figure 7 depicts an initial deployment
snapshot of our simulation scenario. The maximal transmission distance R is determined following
appropriate anchor density function from 4 to 12, which is shown in Figure 8. The anchor density
is defined as the average number of neighboring nodes. All simulation processes are repeated for
100 Monte Carlo runs to obtain average results in this paper. Performance of the proposed MVCL
algorithm is mainly evaluated in terms of average localization error and localization coverage ratio.
Average localization error means the difference value between actual position values and estimated
position values. Localization coverage ratio denotes that the percent between the number of localized
nodes and all sensor nodes at certain percent ratio of anchor nodes. Obviously, localization coverage
ratio will increase when the number of anchor nodes and sensor nodes increases. In order to make
simulation setup and results clear and easy to understand, we list some of main parameters for
simulation in Table 2.

Table 2. Simulation Notations.

Notation Value

n 80
m 20
k 1–9
η 2–6
ζ 6–30
R 20–40
p 5–45%

Firstly, we study the impact on the proposed MVCL algorithm by inconsistent distance threshold
η. Figures 9 and 10 depict the relations between localization performance and inconsistent distance
threshold η. It is apparent from Figures 9 and 10 that the localization coverage and localization error
will increase with much larger inconsistent distance threshold. It should not be hard to understand
since much more anchors are identified and removed if η is relatively small. However, this effect is not
very obvious, so we set η = 3 in the following simulations.
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Figure 9. Localization coverage with inconsistent distance threshold η (n = 80, m = 20, k = 4, R = 30,
ζ = 15).
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Figure 10. Localization error with inconsistent distance threshold η (n = 80, m = 20, k = 4, R = 30,
ζ = 15).

Subsequently, we got comparable results with related methods, respectively. Figures 11 and 12
illustrate the localization coverage ratio and average localization error varying with maximal
transmission distance R, respectively. It can be shown that localization coverage ratio of MVCL
algorithm is much larger than that of MMSE and ARMMSE, while average localization error of MVCL
is much smaller than that of MMSE and ARMMSE. This is because MMSE does not consider the
impacts by malicious anchors, which would reduce localization accuracy. Furthermore, the malicious
exclusion rule of ARMMSE is so strict that it is not robust enough for malicious anchors.
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Figure 11. Localization coverage ratio with transmission range R (n = 80, m = 20, k = 4, ζ = 15, η = 3).
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Figure 12. Average localization error with transmission range R (n = 80, m = 20, k = 4, ζ = 15, η = 3).

Moreover, we compare localization performance with different anchor percents. Figures 13 and 14
illustrate the localization coverage ratio and average localization error varying with anchor percent

m
m+n , respectively. It can be concluded from results that localization coverage ratio of MVCL is larger
than that of MMSE and ARMMSE along with different anchor percents, while average localization
error of MVCL is much smaller than that of MMSE and ARMMSE under different anchor percents. It is
worth noting that the localization coverage ratio is relatively lower of MVCL algorithm when anchor
percent m

m+n < 15%. The reason lies in the number of malicious anchors is relatively higher under that
condition when k = 4, so as to bring down localization coverage ratio. As a result, simulation results
verify that our MVCL algorithm can handle such networks case in the existence of malicious anchors.



Sensors 2019, 19, 4519 19 of 24

12 14 16 18 20 22 24 26 28 30

Anchor Percent (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
o
c
a
liz

a
ti
o
n
 C

o
v
e
ra

g
e
 R

a
ti
o

ARMMSE

MMSE

MVCL

Figure 13. Localization coverage ratio with anchor percent (n + m = 100, m = 12 30, R = 30, k = 4,
ζ = 15, η = 3).
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Figure 14. Average localization error with anchor percent (n + m = 100, m = 12 30, R = 30, k = 4,
ζ = 15, η = 3).

In addition, we study the relations between localization performance and malicious anchor
percent p. Figures 15 and 16 illustrate the localization coverage ratio and average localization error
varying with malicious anchor percent p, respectively. It shows that localization coverage ratio of
MVCL is larger than that of MMSE and ARMMSE when p < 45%, while average localization error of
MVCL is much smaller than that of MMSE and ARMMSE. However, it is noted that the localization
coverage ratio will have a sharp decline when p ≥ 40% and the average localization error will increase
at that time. Therefore, we verify that the proposed algorithm cannot handle such a case with nearly
half malicious anchors. Moreover, the above result tallies with the necessary and sufficient conditions
to guarantee a bounded localization error.
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Figure 15. Localization coverage ratio with malicious anchor percent p (n = 80, m = 20, R = 30, ζ = 15,
η = 3).
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Figure 16. Average localization error with malicious anchor percent p (n = 80, m = 20, R = 30, ζ = 15,
η = 3).

Besides, the relations between localization performance and inconsistent malicious degree are
verified. Figures 17 and 18 illustrate localization coverage ratio and average localization error varying
with inconsistent malicious degree ζ, respectively. It is clearly that localization coverage ratio of
MVCL is larger than that of MMSE and ARMMSE, while average localization error of MVCL is much
smaller than that of MMSE and ARMMSE at different ζ. In addition, the performance improvement
advantages are more obvious when ζ is larger. In most cases, our proposed MVCL algorithm can
outperform MMSE and ARMMSE roughly two-fold.
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Figure 17. Localization coverage ratio with inconsistent malicious degree ζ (n = 80, m = 20, R = 30,
k = 4, η = 3).
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Figure 18. Average localization error with inconsistent malicious degree ζ (n = 80, m = 20, R = 30,
k = 4, η = 3).

Finally, we compare the program operation time of our MVCL algorithm to that of ARMMSE.
Figures 19 and 20 denote the change of total running time of localization algorithms with the change
of maximal transmission distance and malicious anchor percent, respectively. It becomes apparent that
the running time of MVCL algorithm outperform that of ARMMSE. Going furth, unlike the existing
ARMMSE algorithm, the program running time of our MVCL algorithm will not increase with larger
malicious anchor percent. Hence, it is very suitable for large-scale underwater sensor networks with
this excellent feature.

Summarize the work, in all the four test cases, localization coverage ratio and average localization
error of MVCL outperform that of MMSE and ARMMSE. The derived good performance is
because: (1) we use a distributed reputation voting idea within neighboring reference nodes to
eliminate the impacts by malicious anchor nodes; and (2) we use MMSE based iterative location
estimation to determine accurate location information with more reference nodes, so as to improve
localization robustness.
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Figure 19. Operation time with maximal transmission distance (n = 80, m = 20, k = 4, ζ = 15, η = 3).
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Figure 20. Operation time with malicious anchor percent p (n = 80, m = 20, R = 30, k = 4, ζ = 15,
η = 3).

5. Conclusions

In many military applications of underwater sensor networks in the existence of malicious anchor
nodes, it is crucial to determine the accurate location of sensor nodes. For this matter, this paper
investigated an iterative and cooperative localization algorithm for three-dimensional underwater
sensor networks. The proposed MVCL algorithm was based on distributed reputation voting and
cooperative iteration to identify and remove malicious anchors, so as to guarantee its robustness and
effectiveness. More precisely, we analyzed the necessary condition to guarantee a bounded error in the
presence of certain number of malicious anchors. Extensive simulation results verify that the proposed
localization algorithm is more efficient than existing algorithms. In our future works, the dynamics of
sensor nodes and anchor nodes will be considered.
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