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Abstract: An accurate and reliable Indoor Positioning System (IPS) applicable to most indoor
scenarios has been sought for many years. The number of technologies, techniques, and approaches
in general used in IPS proposals is remarkable. Such diversity, coupled with the lack of strict and
verifiable evaluations, leads to difficulties for appreciating the true value of most proposals. This paper
provides a meta-review that performed a comprehensive compilation of 62 survey papers in the area
of indoor positioning. The paper provides the reader with an introduction to IPS and the different
technologies, techniques, and some methods commonly employed. The introduction is supported by
consensus found in the selected surveys and referenced using them. Thus, the meta-review allows
the reader to inspect the IPS current state at a glance and serve as a guide for the reader to easily find
further details on each technology used in IPS. The analyses of the meta-review contributed with
insights on the abundance and academic significance of published IPS proposals using the criterion
of the number of citations. Moreover, 75 works are identified as relevant works in the research topic
from a selection of about 4000 works cited in the analyzed surveys.

Keywords: indoor positioning; indoor navigation; smartphone-based positioning; meta-review;
surveys; citations

1. Introduction

It is difficult to imagine our lives without positioning systems giving us support. GPS or similar
GNNS constellations have shaped our modern life. From direction indications in a tourism trip to
personalized advertisements, many of us enjoy the benefits of the development of Location-Based
Services (LBS). Apart from GNNS services, LBS has been boosted by smartphones popularity [1,2].
An increasing number of the world’s population owns a smartphone and has Internet connectivity.
People want their services provided in their smartphones and have their smartphones next to them at
almost all times, they create excellent possibilities to deliver LBS. Position is also important for research
in certain fields, such as medicine [3]. The global market knows that, and it is why LBS and their
supporting technologies draw a lot of interest and investment [4,5]. In developed countries, people
spend most of their time indoors. As the whole world develops, this tendency will expand to other
countries. However, the position estimation indoors still lacks a generally applicable, low-cost solution
that allows LBS tailored for indoor scenarios.

The position estimation of subjects, mainly mobile application users, in indoor environments
is the topic of lots of works in academia, ranging from bachelor projects to doctoral dissertations
to well-funded cross-national projects. The number of publications on the topic, of varying quality
and in a variety of media, is so large that it is difficult to fully survey them all. It is also difficult to
find all the reasons behind this thirst for publishing about indoor positioning. Some likely answers
may include a general urge for publication in academia; a variety of new publication media; the ease
of implementing a simple and cheap positioning system (thus encouraging its further research and
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publication); the elusiveness of a system that is accurate, cheap and applicable to many indoor
environments at the same time; and the promise from industry of rapid adoption and billionaire
investments for such golden system.

This work contributes with a meta-review (a systematic review of systematic reviews) of
IPS research, deepening on Bluetooth Low Energy (BLE)-based and WiFi-based fingerprinting for
smartphones. The meta-review addressed 61 selected surveys of IPS topics. Unlike regular reviews,
our meta-review addresses topics of IPS from the point of view of surveys and not specific works.
Every definition or explanation is the result of a consensus found on, or inferred from, several
reviews. The paper provides three description sections, devoted to the introduction to IPS, a review
of technologies used in IPS, and brief descriptions of methods and challenges for WiFi-based and
BLE-based IPS for smartphones. The explanations in the description sections were supported, whenever
possible, using references to the selected surveys works. Thus, the compiled meta-review allows the
reader to view IPS current state at a glance and have direct links to deepens on the technology of her/his
choosing. The meta-review detected that, currently, no survey focuses on BLE-based indoor positioning
or radio map enrichment methods. Thus, this paper included brief reviews of proposals that belong to
those two topics. The description sections are followed by a discussion section, in which the abundance
and academic significance of published IPS works are analyzed. The analyses were performed based
on the number of citations of each work, first attending to the references of the selected surveys and
later using the Google Scholar citation counts for some selected works. The results showed that most of
the works referenced in the surveys lack a significant impact on the IPS literature. Therefore, the three
main contributions of this work are:

• A curated compilation of IPS surveys published in the last 5 years.
• Brief reviews of IPS solutions that addressed BLE-based indoor positioning and radio map

enrichment methods.
• An analysis of IPS current state based on citations to works found in the selected surveys.

The paper proceeds with a short introduction to indoor positioning systems (Section 2), including
the definition of accuracy and other IPS evaluation metrics. Later, Section 3 describes the main
technologies used for indoor positioning, including the description of techniques and some methods
applied to each of them. Section 4 then addresses smartphone-based indoor positioning using WiFi and
BLE fingerprinting, including its associated challenges. Later, Section 5 performs the comprehensive
analysis over 62 well-known surveys that draws insights on the works’ academic impact. Finally,
Section 6 presents some concluding remarks.

2. Positioning in Indoor Scenarios

Positioning systems can be global or local. Global positioning systems can provide position
estimations world-wide. The global positioning systems currently available are collectively called the
Global Navigation Satellite System (GNSS). The GNSS-based positioning has had large success as a
result of its availability, coverage, and the existence of receivers that are both cheap and compact-sized.
However, it is not adequate for all scenarios and applications because of accuracy requirements
and the degradation of satellite signals. Local positioning systems are the ones applied for those
specific scenarios and applications where GNNS positioning is not appropriate. The locality or
coverage of those positioning systems varies significantly. They range from systems based on networks
of pseudolites that can cover very large areas to light-based systems that are typically applied to
rooms. This paper focuses on local positioning systems indented to provide position estimation inside
buildings, which are known as Indoor Positioning Systems.

The materials and structures of modern buildings may influence notably on the signals from
GNNS. At indoors, those signals reach receivers with a level of degradation that makes the
civilian-graded accuracy of GNSS insufficient for many indoor applications. Furthermore, indoor
environments are normally crowded with fixed and moving obstacles, including people. The obstacles
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interact in undesirable ways with the signals, causing reflections and absorption. Given that people are
increasingly spending most of their time indoors [6], the large efforts devoted along the past 15 years
to find new solutions to IPS seems reasonable.

Even if GNSS signals were not so significantly degraded by buildings, local positioning systems
will still be needed for indoor LBS applications. Some applications require positioning accuracies far
beyond those that GNNS can provide. For example, a robot performing precise operations and whose
next move could not be determined in an offline planning step will probably require a millimeter level
accuracy. Furthermore, the accuracy requirements for pedestrian applications may be related to the
size of the target environment. The comfort thresholds of people regarding the positioning accuracy
can be related to the free space they have around, as depicted in Figure 1. The typical accuracy for a
smartphone’s GNSS receptor under open sky conditions is 4.9 m [7], which is fine for someone at a
park or wide street. However, that distance may be misleading in indoor environments. For example,
a mean accuracy of 5 m would be insufficient to tell apart consecutive lanes among bookshelves in a
library, which sometimes are less than 1 m apart from each other. Therefore, an IPS applicable to most
indoors environments and applications would preferably have mean accuracies around 1 m to 2 m.

5m

20m

Figure 1. The magnitude of a positioning error matters differently to a person depending on the context.

Accuracy is the degree of conformance, or the closeness, between an estimated or measured
position and the true position of a subject or object at a given time [8]. The above accuracy definition
is wide. However, given the significant number of different existing (indoor) positioning systems,
it is difficult to have a narrower definition or only one metric [9,10]. Even though accuracy is of
utmost importance, it is not the only criterion taken into account for assessing an IPS. Coverage,
complexity, robustness, scalability, cost, privacy and power consumption are metrics typically used for
IPS evaluation and comparison [11–15]:

• Coverage refers to the range of the signals from the technology that supports an IPS [11]. A high
coverage can translate into the IPS’ applicability to large areas using a low number of emitters [15].

• Complexity refers to the efforts required for the construction, deployment or configuration of the
hardware and software of the IPS [12–14].

• Robustness is the system’s resilience to conditions beyond those that are considered nominal [12].
• Scalability relates to the system’s ability to provide positioning for a large number of users in

large spaces [12,15].
• Cost refers to any kind of cost related to the positioning devices or the required infrastructure [11,12].
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• Privacy is related to system restrictions that avoid the collection of information that may be used
to identify or track the users [11,13,14].

• Finally, the lower power requirements, the better. In user devices, a low power requirement
translates into a low battery drain. For the IPS infrastructure, a low power consumption may
translate into that only small efforts are required for the maintenance of, e.g., battery-powered
devices [11,15].

3. An Overview of IPS Solutions

The high demand for IPS has driven an increasing number of research works along the past
15 years or more. The number of IPS proposals found in this period is very large, which is reflected
in the number of references of recent IPS-related survey works. Some IPS-related reviews have over
200 references [16–21] or even over 300 references [22]. The insights presented in the rest of this
paper are mainly based on 62 IPS-related survey works [6,11–72] published between 2015 and 2019.
Of them, 47 were published in periodic publication journals. Surveys that only briefly mentioned
indoor positioning techniques or whose content was not available online, such as Aparicio et al. [73],
were not considered. Table 1 shows the number of the selected surveys that were published each year.

Table 1. Publication year distribution of the selected surveys.

Year 2015 2016 2017 2018 2019

Number 12 16 13 13 7

The notable number of surveys has driven them into narrow focuses. However, some of them
have addressed a broad spectrum of solutions applicable to indoor positioning [11–15,45–48,57]. It is
common that these “general” surveys difference from previous surveys not only by providing updates
of new IPS solutions but by proposing new taxonomies or by discussing more than others about
specific aspects such as specific applications or challenges. Xiao et al. [45] provides a valuable division
between device-free and device-based IPS solution across several technologies. [47] states that hybrid
systems are the ones most suited to mass-market applications, and thus focus on reviewing some
solutions that combine several techniques. Yassin et al. [14] devotes a section to limits of positioning,
though it is brief and has a small number of references to other works. It also features a section devoted
to cooperative positioning and data fusion, which provides interesting examples but lack of a clear
definition that separates the two concepts. Sakpere et al. [13] is relatively recent, deals with almost
all technologies, makes no restriction on specific applications, has a large number of references and
discusses the challenges and drawbacks of each technology. Brena et al. [46] is comprehensive, and tells
apart “passive” from “active” solutions, considering passive those in which only the infrastructure
generates the signal used for positioning. Basiri et al. [11] provides a review of the IPS research
status supported by a literature review and a survey whose responders were mainly LBS ordinary
users, LBS researchers, LBS market analysts, and LBS application developers. Such a survey was a
necessity, given that the usages and goals of IPS are clearly beyond the published academic works.
Zafari et al. [15] is, to the best of our knowledge, the most recent IPS survey (2019). This survey stands
out for its Internet of Things (IoT) flavor that links IoT and indoor positioning. Also, it devotes a section
to IPS applications and provides a summary of the main IPS challenges and their suggested solutions.

Other surveys restricted the reviewed solutions by technology. For example, Maghdid et al. [41]
and Davidson and Piche [48] described solutions that were applicable to smartphones. In particular,
Davidson and Piche [48] is relatively recent which is remarkable because of conciseness that properly
weights explanations and references, while addressing every major aspect of smartphone-based
IPS. If the goal of the reader is positioning for smartphone applications, Davidson and Piche [48] is
recommended as a first reading.

There is not a clear consensus among this “general”, or other, surveys on a strict taxonomy for IPS.
The most commonly found classification attends to the underlying technology. The technology then
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determines which physical quantities the system can measure. The physical quantities are also used
for IPS classification and are commonly addressed as the applied techniques. On top of technologies
and techniques, there is a myriad of methods that, from the measured quantities, create position
estimations. The methods also tend to be classified into range-based or range-free methods, depending
on whether they estimate distances or angles to known landmarks like, e.g., the signal emitters.

The following list briefly introduces the most common techniques employed with technologies
used in IPS. They are addressed in almost all the selected surveys and they are often mentioned
in the rest of this section. Some general surveys [12,22,41] include explanation and usages of other
techniques such as Received Signal Phase (RSF), Roundtrip Time of Flight (RTF) or Channel State
Information (CSI).

• Time of Arrival (TOA). It measures the time of arrival of the signal from an emitter, as recorded
by the receiver. It is used for estimating the distance to each emitter, as the propagation speed of
the signal (sound, radio frequencies) is known for the transmission medium (air).

• Time Difference of Arrival (TDOA). It is similar to TOA. It measures the differences in the time
of arrival of signals from different emitters. It is used for estimating differences in distances to
each emitter.

• Angle of Arrival (AOA). It refers to the angle at which the signal reaches the sensor. Angles are
then used to obtain a position fix.

• Received Signal Strength (RSS). It is the intensity at which the signal from an emitter is measured.
The signal strength decreases as the distance to the emitter increases, although their relation may
be affected by attenuation and interference.

The technique employed for a solution determines how the position is estimated. TOA, TDOA,
and RSS are used for estimating distances to signal emitters. The estimated distances to a set of
emitters are then used in what is called lateration to find the position estimate that best fit the set of
distances (see Figure 2a). Lateration is called trilateration if three distances are used, while it is called
multilateration if more than three are used. The angles obtained in AoA are used to compute a likely
fix on the target position, as shown in Figure 2b, in what is known as angulation. Both lateration
and angulation are commonly classified as range-based—or ranging—methods, and they require the
previous knowledge of the positions of the emitters.

The RSS technique is also employed for a range-free method, very popular in IPS, called
fingerprinting or sometimes scene analysis. The fingerprinting encompasses two stages. In the first
stage, also known as offline stage, the signal quantity of each detected emitter at a given time
and position (a fingerprint) is measured at several places the target scenario and stored to create
a characterization of the signals in that scenario as comprehensive as possible. The collected database
is called the training database. If the measured signals are radio frequencies (RF), the database is also
called radio map. The collection process of the database is called site survey, war-driving, radio map
creation or training fingerprints collection. In the second stage, also known as online stage, the position
corresponding to new measured signal quantities is estimated using the positions associated with the
stored fingerprints that are the most similar when compared to the new measurements (see Figure 2c).

Apart from the previous methods, another two relevant ones are not based on measuring signals
from an emitter and are also considered range-free methods: hop count and vision analysis. A hop
occurs when a packet passes from a network segment to the next one. The number of hops from
known nodes is then used for (coarse) distance estimations [18] or to infer positions through a graph
embedding problem [20]. Vision analysis refers to the application of computer vision approaches
to images gathered using some imaging technique like, e.g., cameras. The analyses detect relevant
features in the scene that allow the estimation of the positions of entities in the scene or the position of
the recording imaging device [74].

Another relevant high-level classification is device-based or device-free positioning [45]. In the
former, there is a positioning device that acts as an active agent of the positioning process by measuring
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or emitting a signal. The positioning device is normally a portable device such as a smartphone
or a tag. Device-based solutions are the most commonly addressed in surveys and IPS literature in
general. Device-free positioning is found mainly in the form of presence detection or radar-like systems.
The importance of the device-based vs device-free division is supported by the fact that one of the
driven forces for the growth of LBS is the widespread usage of smartphones. Some surveys explicitly
focus on IPS solutions applicable to smartphones [41,48] and others on device-free positioning [53,55].
The distinction on whether an IPS is applicable to smartphones or not is necessary given that even
modern smartphones have a limited number of sensory capabilities. Another classification is whether
the solution requires the deployment of dedicated infrastructure or not, being the former called an
infrastructure-based solution and the later an infrastructure-free solution [6].

(a) Lateration (b) Angulation (c) Fingerprinting
Figure 2. Most common methods used in IPS.

The underlying technology does matter, and its particularities should be taken into account
when creating an IPS. This section proceeds by providing a review of the technologies most
commonly applied for IPS solutions. In each case, relevant references to the applied techniques
and the applicability to range-based vs range-free or device-based vs device-free classification will
be mentioned.

3.1. Light

Visible Light Communication (VLC) IPS appear as device-based solutions, while infrared IPS
may appear both as device-based or device-free (passive) solutions. The VLC-based IPS rely on the
idea that LED lighting is increasingly popular, and LEDs can switch the intensity level in a way that
is fast and imperceptible to the human eye. The intensity level switches are then used to encode
information. Settings that have several LEDs emitters use a multiplexing protocol, either by frequency
or time. The receiver is commonly equipped with a photodiode array that captures signal properties
such as RSS, TDOA, and AOA, or with a camera that takes images of the transmitters. For the former,
positioning approaches such as lateration, angulation or fingerprinting can be applied. For the later,
the coordinates that the LEDs have in the image are translated into coordinates of the environment,
usually using several images and additional support hardware such as accelerometers. The mean
accuracies reported by VLC-based IPS are measured in centimeters [37,64,65]. However, as stated by
Do and Yoo [37], the reported results should be taken with caution as the test scenarios and conditions
vary significantly among these solutions. Also, challenges such as emitters time synchronization [24]
and robustness to sunlight [37] remain.

Infrared signals have been also used for light-based IPS, either for device-based or device-free
solutions. A notable example of the former is the pioneering work of the Active Badge Location
System [75], where a tag emitted a code carried by an infrared signal that was captured by a network of
sensors. Examples of the latter are Passive Infrared (PIR) solutions, which could use infrared cameras
for imaging or thermopile arrays that provide AoA measurements [21,45,46,55]. According to the
performed searches for this work, there is no infrared-based IPS survey and the number of such system
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proposals is low when compared to other IPS technologies, which may be motivated by the LOS
requirement of infrared-based solutions.

Most of the light-based proposals agree that one of their motivations is the possibility of reusing
existing LED lighting infrastructure. In particular, the consulted surveys expected a growth of VLC
systems that would lead them to be used for positioning in a way similar to that of WiFi [24,37,51,64].
Some years ago, the capabilities of the smartphones were a concern for light-based IPS [24], which led to
even performing some computations through external services [37]. Those capabilities are higher now,
enabling camera-based designs and shifting the concerns to challenges such as power consumption of
the camera, daytime lighting conditions, and accuracy improvement [64]. However, camera-based
designs do not achieve the accuracies of photodiode-based designs and require LOS situations.
Furthermore, VLC systems are not as ubiquitous as WiFi. Thus, light-based IPS are sometimes
acknowledged to be in early stages of development [65]. The surveys of Zhuang et al. [64] and Afzalan
and Jazizadeh [65] are comprehensive and recent enough to grasp general but solid knowledge of
light-based IPS.

3.2. Computer Vision

Apart from their support in VLC-based or infrared-based positioning, vision techniques are also
used in camera-based IPS without any supporting light framework apart from those common to any
modern building. Even though Simultaneous Localization and Mapping (SLAM) is mainly based
on cameras for sensory input presently, one should not enclose SLAM into vision-based methods.
SLAM is possible using, for example, laser scanners, sonars or odometric data provided by wheel
encoders [16].

For device-based solutions, one of the most straightforward solutions is based on markers like,
e.g., printed QR codes. Marker-based IPS may even provide continuous estimations if the markers
are processed in a stream of images (video) of the scene and perspective is used for refinement [13].
Visual odometry is commonly applied to the input from one or several cameras. The cameras can be
monocular, stereo or omnidirectional. The cameras motion and subject speed are usually determined
by applying methods such as feature tracking or optical flow [16,74]. Visual odometry surpasses other
odometry technologies regarding cost and accuracy [74] and is supported by modern computer vision
techniques and the computation power found in robots and mobile devices, such as in the applications
of Google’s ARcore [76].

For device-free solutions, it is common that several cameras are installed in the target environment.
The collection of images is then used to identify the targets in conjunction with environment details
recorded for the target scenario [12].

Position determination using computer vision techniques is likely to be increasingly used in
the near future. Apart from visual odometry and vision-based SLAM, other applications such as
self-driving cars and immersive applications such as those of virtual and augmented reality in video
games have boosted and will further boost the usage of computer vision to determine subject positions.
Those applications have not only driven the development of software techniques but also specialized
hardware such as depth cameras [16]. In addition, the drift provided by visual odometry is smaller
than the drift of wheel encoders and low-precision Inertial Navigation Systems (INS) [74]. Despite
being devoted to SLAM, the survey of [16] provides a necessary context to explore the application
of computer vision techniques to positioning, from the perspective of 2016. Although [16] is a
recommended reading, new survey works on this topic are required. Those works could include the
examination of device-free solutions.

3.3. Sound

The selected surveys that focus on acoustic signals make a distinction between systems operating
on ultrasound—frequencies beyond 20 KHz—and those using audible frequencies [13,45,46,61].
They reference as pioneering works the “Active Bat” [77], “Cricket” [78] and “Dolphin” [79] systems
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for ultrasound, and the “BeepBeep” system [80] for audible frequencies. The ultrasound-based IPS
generally use TOA or TDOA to perform lateration, although RSS has also been used [21,46], even for
fingerprinting [45]. To improve the accuracy, the ultrasound pulses are complemented with RF
pulses [78] or BLE advertisements [81].

Even though the acoustic solutions have reported accuracies of a few centimeters [14], they present
notable changes as sound speed is affected by temperature and humidity. Furthermore, they suffer
from interference of bouncing pulses and, in the case of ultrasonic systems, they require specialized
hardware that is expensive to deploy [15,61]. Most of the acoustic IPS presented in the surveys refer
mainly to device-based IPS. There are examples of device-free IPS in the form of audible sound source
positioning, and as ultrasonic radars [12], although they face strong challenges due to noises, echoes,
and multiple sound sources [53].

Early proposals of acoustic-based IPS were published in the late 1990s and early 2000s [77–79].
However, they have not become largely adopted by IPS solutions, despite their high accuracy.
They require deployments which are relatively cheap for just one room but whose affordability
may become a concern for large environments. Also, the acoustic sensing capabilities of modern
smartphones are not enough for the proposed acoustic-based IPS. Ureña et al. [61] provides a
comprehensive and recent (2018) survey on acoustic local positioning systems, with a moderate
number of references that should suffice as an introduction and update to works in this topic.

3.4. Magnetic Fields

Pasku et al. [54] classifies the magnetic-based solutions into those that use the natural Earth
magnetic field, those that use DC (static) artificial magnetic fields, and those that use AC (time-varying)
artificial magnetic fields. Other general surveys, such as Zafari et al. [15], do not make such distinction,
while others such as Brena et al. [46] do make the distinction but concentrates on those that only use
the Earth magnetic field, as a result of considering that it is the approach followed by most modern
solutions. Indeed, the selection made by Brena et al. [46] is supported by the facts that such systems
do not incur in deployment costs, they are readily applicable to smartphones [48], and their reported
accuracies are in the range of a few meters.

Magnetic IPS use strength variations in the measured magnetic field to infer a position estimate.
In the case of the ambient (Earth) magnetic field, such variations are usually caused by steel structures
in the target indoor scenario, requiring the creation of a database with the recorded variations of the
magnetic field strength [6]. The created database is later used by a fingerprinting method to compute
position estimations. One of the most known works using this approach is Magicol [82], which is
referred by several surveys [12,48,54].

IPS based on the Earth magnetic field require a collection effort and typically have lower accuracies
than those based on artificially generated magnetic fields. However, they have a low cost, a low system
complexity, and a large operating range [48]. Those based on artificial fields require coil-based systems
that are power hungry and operate at short ranges, but they are able to produce accuracies in the range
of several centimeters [54]. All magnetic-based IPS are device-based IPS solutions, to the best of this
work’s knowledge.

IPS based on artificially generated magnetic fields still require the miniaturization transmitters
and receivers and the reduction of the power consumption Pasku et al. [54]. Pasku et al. [54]
reported commercial systems from 2013 to 2016, mainly devoted to artificially generated magnetic
fields. Pasku et al. [54], despite providing a comprehensive general introduction and update to
magnetic-based IPS, devotes more content to the artificial magnetic fields IPS than to the naturally
occurring ones. Naturally occurring magnetic fields are mainly used in IPS intended for smartphones,
and thus the survey presented in Davidson and Piche [48] is recommended as a brief complementary
reading. For a survey of the application of Earth magnetic field to smartphones-based IPS,
He and Shin [50] is recommended. That survey explains how the measurements are obtained, how the
database is created and how the positioning is performed, presenting for each aspect relevant and
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recent—for its time—works. Also, the survey is comprehensive and presents measurement ranges
from several devices.

Given that IPS that use Earth magnetic fields are common in IPS literature, mainly combined with
other technologies such as WiFi and Pedestrian Dead Reckoning (PDR), and He and Shin [50] reviews
works mainly from before 2017, a new magnetic-based survey is suggested. The survey should provide
an update on academic and commercials proposals based solely on magnetic fields and an update on
proposals that combine Earth magnetic fields with other technologies, explaining how the combination
is performed.

3.5. Dead Reckoning

Dead Reckoning (DR) is applied to device-based IPS. When specifically targeted for pedestrian,
it is called Pedestrian Dead Reckoning (PDR). Dead Reckoning refers to the estimation of the current
position of a target based on a previously known position (a fix) of it and measurements of quantities
that are used to describe its movement, e.g., heading and speed [13]. Such measurements are commonly
obtained using accelerometers that sense translations, i.e., provide the acceleration magnitude at each
of the three axes; gyroscopes that sense rotations, i.e., provide roll, pitch and yaw measurements;
and magnetometers (compasses, which are not inertial sensors) that give orientation regarding the
Earth magnetic poles, i.e., provide field strength measurement along three axes.

Modern smartphones include most of those sensors and have the computing capabilities to
perform PDR. PDR works have also used units that assemble inertial sensors, which are called Inertial
Measurement Units (IMUs). IMUs are mounted mainly in feet and legs, although it has been reported
also for waist mounts [62,70]. The shoe-mounted setting has been the most popular, given that the
mechanics involving the walking process and the foot allow re-calibrations at every step applying the
Zero-velocity UPdaTes (ZUPT) method [70]. Filtering algorithms such as (Extended or Unscented)
Kalman Filtering and Particle Filter (PF) that combine all information are at the core of DR [13,62].

The movement or trajectory is usually estimated using two approaches. The systems that use the
first approach are called Inertial Navigation Systems (INSs), and they perform the integration of the
sensor data. The systems that used the second approach are called Step and Heading Systems (SHSs),
and they detect and quantify steps and their headings [12,13,62,83]. If possible, other inputs such as
maps and constraints are applied using filters to improve the resulting accuracy [62]. PDR has a low
cost, it does not require external references, and it has a high accuracy when new positions are not
estimated far apart from the last fix. However, it suffers from accumulative errors or drifts [13]. That is
why PDR is usually used coupled with other technologies that support IPS and provide periodical
estimations that help in correcting drifts.

Dead reckoning is widely used in position estimation and navigation systems, not only for indoors.
Unless a system can deliver very high positioning accuracies with high certainties for moving targets,
it will certainly benefit from using DR. Similarly, PDR for smartphone-based IPS benefits from fixes
provided by other supporting technologies. The smartphone’s IMU sensors have limited accuracy in
comparison to other (bigger and more expensive) IMUs, which make the accumulated drift to become
a problem [62]. However, miniaturized IMUs are improving, as seen in the now popular mHealth
gadgets, which will make PDR less dependent on other technologies to solve drift problems [70].
Despite the survey of Diaz et al. [70] is very recent (2019), the works of Wu et al. [62] provides a recent
(2018) and more comprehensive survey about PDR based solely on inertial sensors. To explore the
combinations with other technologies for the case of smartphone-based IPS, Davidson and Piche [48]
is suggested as reading. The work of Vezocnik and Juric [71] is recommended for an exhaustive and
up-to-date survey on step length estimation models, a key part of many PDR solutions.

3.6. Ultra-Wideband (UWB)

UWB is highly acknowledged as an IPS technology. The three UWB surveys [30,33,52] agreed in
using the USA Federal Communications Commission (FCC) definition of UWB, which states than it
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refers to RF signals whose bandwidth is greater than 20% of the center carrier frequency, or is greater
than 500 MHz. That large bandwidth is related to a key characteristic that is acknowledged in many
works: UWB works by emitting precisely timed very short pulses, of ≈ 200 ps (pulse width), with very
low transmission power [84]. The low transmission power avoids interference to WiFi, BLE or similar.
The very short pulse modulation renders UWB almost immune to multipath issues. Given that the
inter-pulse period is large enough to unambiguously perform multipath resolution, NLOS paths are
detected after the main pulse detection [52]. Also, UWB has penetration capabilities considerably larger
than WiFi and BLE, being LOS situations less relevant for it [33]. Furthermore, the energy consumption
is lower than other WLAN technologies such as Bluetooth or WiFi [52].

UWB device-based positioning requires the deployment of tags. UWB emitters have been reported
either in fixed or mobile configurations, with tags having different sizes and shapes and being mounted
or worn at different places on the positioning subject, e.g., mounted on the feet or the head [21,46].
With UWB, the positioning is performed using any of the RSS, ToA, AoA, or TDoA techniques,
depending on the tags design and their resulting capabilities. Therefore, the reported methods used
for positioning are fingerprinting, lateration or angulation [30,33,52]. Given the effort implied in the
radio map creation for fingerprinting, it is the least used method for UWB. The reported accuracies are
typically below the 50 cm [52], which makes UWB attractive for many applications, as long as they
can afford the UWB tags, both in terms of cost and the application requirements. However, the short
nominal range of UWB [52] and the cost of UWB equipment [33] makes the scalability a severe issue.

For device-free positioning, UWB has been used by applying the principle of radar [33], which is
attractive given the UWB capability of penetrating through walls. In a room with UWB emitters and
receivers, a subject creates reflections of the signals that, using the TOA and TDOA techniques, can be
used to estimate the subject’s position [12,13].

One of the biggest hurdles for UWB is the lack of support for it in almost all smartphones,
apart from some specific attempts [85]. However, a recent announcement of the incorporation of UWB
chips inside new versions of Apple’s iPhone [86] may change the IPS landscape, at least for small scale
scenarios. Many customers will choose deployment cost higher than WiFi or BLE to obtain significantly
higher accuracies.

Regarding reading suggestions, Mazhar et al. [52] provides a short but helpful comparison of
BLE, WiFi, ZigBee, and UWB and explains the advantageous multipath resolution in UWB. Ref. [52] is
suggested as introductory reading to UWB-based IPS that can be deepened by reading Alarifi et al. [33].
Given that Alarifi et al. [33] and Mazhar et al. [52] were published in 2016 and 2017, a new survey on
UWB-based IPS will have a notable value. However, its value would be remarkably high if include
foreseen applications of the new UWB chips of Apple’s iPhone.

3.7. WiFi

WiFi, or Wi-Fi, is the IEEE standard 802.11 for WLAN [27]. WiFi-based positioning is sometimes
addressed by the name of WLAN positioning [13,14,46], which is the result of WiFi being the default
technology for setting up a WLAN. WiFi is mentioned as an IPS supporting technology in all selected
surveys. Furthermore, to the best of this work’s knowledge, it is acknowledged in all published
IPS proposals.

WiFi operates on the of 2.4 GHz and 5.0 GHz [27], with typical channel widths of 20 MHz, 40 MHz,
and 80 MHz. The signals from bands of 2.4 GHz travel farther, while the those from bands of 5.0 GHz
have wider channels and are more robust to fast fading [87]. Works that report the usage of CSI,
ToF and AoA techniques are not uncommon [15]. However, the main applied technique is RSS,
given that is the technique applicable to many modern smartphones [48]. Although they are very
popular, IPS based on WiFi have many challenges that arise from the alterations that the RF signals
suffer in indoor environments. Also, the WiFi-based proposals use the existing WiFi networks to
achieve low-cost solutions, but those networks are commonly deployed for communication purposes
and not for positioning [15]. Solutions for WiFi RSS positioning may apply lateration based on a
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propagation model if the AP positions are known, which is also known as model-based approach [19].
However, the most popular approach is fingerprinting [46] because of its consistently better accuracy
results in comparison to lateration. Given their direct applicability to many smartphones, WiFi-based
IPS are mainly device-based solutions.

There are also device-free solutions [88], which commonly perform anomaly or motion detection
first and then determine the position of the entities using techniques such as RSS or CSI [45].
Fingerprinting, link-based schemes, and Radio Tomographic Imaging are among the employed
methods [45,88].

Along the years, WiFi-based IPS surveys and solutions have acknowledged the known
challenges and forecast improvement actions. However, is not commonly recognized that the widely
acknowledged typical accuracies of WiFi-based IPS have not significantly improved in recent years.
Forecast techniques such as CSI [17] have not finally had a large success. WiFi-based IPS, mainly
those that use fingerprinting, have enjoyed popularity because they are cheap and easy to implement.
However, its popularity may be affected by new changes to Android smartphones [89].

We recommend the reading of Khalajmehrabadi et al. [19], as it provides an easy to follow
survey that addresses the most important works by the time of its publication. The survey from
Khalajmehrabadi et al. [19] is as comprehensive and more recent than that of He and Chan [17]. Also,
it provides a summary of the reported accuracy of several solutions along with the testbed conditions.
Makki et al. [27] and Konings et al. [88] provide surveys of the very specific topics of WiFi device-free
and WiFi time-based solutions, respectively. The survey from Konings et al. [88] is recent (2019) and
provides experimental result obtained by the authors. The publication year of the main surveys that
addressed WiFi fingerprinting is 2016 for He and Chan [17] and 2017 for Khalajmehrabadi et al. [19].
Thus, a new survey on WiFi-based IPS is suggested. The new survey should provide a general inclusive
overview of WiFi-based solutions, which is missing from the consulted surveys. However, it should
devote most of its content to WiFi fingerprinting, given the popularity of this topic.

3.8. Bluetooth Low Energy (BLE)

To the best of this work’s knowledge, no survey focuses on BLE-based IPS currently, although
surveys covering wider BLE topics do exist [90]. BLE follows Bluetooth classic in the usage of frequency
hopping to communicate. The BLE emitters are commonly called BLE beacons. They are small,
advertisement-emitting devices available in many configurations that are attractive for IPS given
their cost, privacy, and a low footprint on the smartphone’s battery and network traffic [48,87].
BLE advertises at three channels of 2 MHz of width in the 2.4 GHz band [87]. The small channel
width translates into a larger fast-fading effect than that seen for WiFi, even for the 2.4 GHz band [87].
Thus, solutions to reduce the fast-fading effects on BLE-based IPS are very relevant [91]. Nevertheless,
BLE is sometimes seen as the most suitable positioning technology for indoor navigation and tracking
currently [11]. Its suitability is supported by the relatively low cost of BLE emitters, their very low
power consumption that let them run on batteries for months, and a generalized capability of modern
smartphones to read their advertisements [46].

BLE shares many similarities with WiFi at the 2.4 GHz band [48], and thus it has been used
for positioning by applying the RSS, AoA, and ToF techniques, being RSS the most often applied
technique [15]. To the best of this work’s knowledge, BLE has been used only for device-based IPS.
BLE has a low detection range, typically under 20 m [11]. Such a short detection range reduces its
applicability to device-free solutions. The accuracies achievable using BLE is typically higher than
those of WiFi, which is related to the usually higher density of deployed emitters [48]. Even though BLE
beacons are generally cheap, the scalability to large scenarios may be an issue if dense deployments
are required [13]. Given the lack of BLE IPS surveys, we provide here a brief review that addresses
topics that we considered to be the most relevant for BLE-based positioning.

Attempts to use Bluetooth for indoor positioning date back to the early 2000s, using
proximity [92,93] and lateration [94]. However, scanning times were too large [95], thus rendering
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Bluetooth not suitable fine-grained low latency positioning [96]. After the development of BLE (2012),
the iBeacon specification by Apple, and the increase in the supply of cheap BLE beacons, Bluetooth
(BLE) notably increased its popularity for positioning.

One of the most important early works on BLE for positioning is Faragher and Harle [87].
That work showed a BLE comparison between WiFi and BLE. Also, it showed how BLE measurements
are affected by an uneven channel gain (which creates different measurements for different channels).
Thus, it showed one of the most important challenges of BLE positioning, a fast-fading effect that is
more significant than the one seen for WiFi. Also, Faragher and Harle [87] gave guides on the usage of
a moving window for averaging measurements and improve signals measurement errors, attending
to criteria such as possible walking movement, fast fades, and client advertisements receive rate.
Palumbo et al. [97] proposed a method that dealt with BLE fast fades by using a map that simulated a
trail diffusion. Kriz et al. [98] showed the relation between higher advertisement frequency and denser
beacon deployments to better the positioning accuracy.

Unlike WiFi, with BLE it is possible to decide the deployment of the emitters considering only the
positioning purpose. However, it creates the challenge of finding the most suitable combination of
beacons and the broadcasting settings for a given environment. Oftentimes, the environment creates
hard restrictions on where it is possible to deploy the beacons, and sometimes a uniform deployment
is just assumed. Faragher and Harle [87] acknowledged that an exhaustive search of the parameter
space was infeasible, and the authors chose a convenient deployment for the environment that set an
upper bound on the positioning error after trying several parameters that included moving windows
size, windows aggregation method (mean, median and maximum), beacon advertising frequency,
and transmission power (beacons range). Budina et al. [99] proposed a method of iBeacon optimal
distribution for indoor localization, where a predefined number of beacons are situated over the area,
so their coverage is optimized. The procedure they proposed divides the target area into cells for their
independent evaluation and take into account the building layout. They stated that optimization is
in line with detecting enough devices with enough signal intensity. Castillo-Cara et al. [100] studied
the beacon setup parameters, namely transmission power, density, and topology. They recommended
splitting the target area into large sectors, keeping gaps separating areas between them to improve
the classification. Also, they suggested to use low or medium transmission powers and to take into
account the materials composing walls and avoiding positions near windows. Also, they recommended
placing beacons at the corners and one in the center of the area, with a beacon at least every
6 m. In their experiments, they tested a grid deployment. Newer proposals include the work of
Rezazadeh et al. [101], which analyzed in an environment the vertical and horizontal positions of
beacons to increase the measured intensity of each beacon and thus increase the chances of seeing at
least three of them at any position.

With WiFi, the default approach to use is fingerprinting. However, a higher density of emitters
and their shorter detection ranges allow other strategies for BLE depending on the deployment
and environment. Aman et al. [102] used the center of the bounding box of the detected beacon
positions as the position estimate. Bouchard et al. [103] showed that higher values of mean RSS,
received advertisement count ratios, and variance were correlated with shorter distances to a
beacon. Thus, the authors chose the position of the beacon that had the highest value of the
weighted combination of the three metrics as the position estimate. Muñoz-Organero et al. [104]
tested the centroid of detected emitters, either giving or not predefined weights to each emitter.
More recently, Mendoza-Silva et al. [105] tested the centroid of the positions of the detected beacons in
two environments, weighing each position according to the RSS of the beacon. The accuracy obtained
using the weighted centroid was higher than using fingerprinting. [97] applied a technique referred by
the authors as stigmergy, which iteratively updates a map that simulates a trail diffusion created by a
sequence of position estimates. Only a few works have used lateration in BLE-based IPS. [106] used it
with specialized equipment (i.e., not smartphones or off-the-shelf BLE emitters) considering only LOS
conditions with senders and receivers at the same altitude. Huang et al. [107] and Huang et al. [108]
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also used lateration, but improved the estimations using either PDR and Kalman filtering or a heuristic
for improving the distance estimation through channel separation.

Fingerprinting has been an important approach for BLE positioning since its beginnings. As shown
in Mendoza-Silva et al. [105], fingerprinting is a better option than proximity or lateration when the
number of BLE beacons is small. Zhang et al. [109] used fingerprinting using two configurations of
neural networks, Support Vector Machines (SVM) and k-Nearest Neighbors (kNN) with or without
map enrichment with regression. SVN provided the best accuracy results. Zhao et al. [110] and
Lohan et al. [111] presented comparisons between the usage of WiFi and BLE for positioning. In the
case of Lohan et al. [111], the experiments considered propagation models, fingerprinting, and the
weighted centroid method, with the latter providing the best accuracy results. Faragher and Harle [87]
used Gaussian Process Regression for radio map enrichment. The entire area of interest was divided
into grid cells of side 1 m. Map cells with moderate or high variance were ignored completely for
the operational stage. The authors used a Gaussian Kernel posterior probability on each cell for
the current fingerprint, and estimated the position using the maximum a-posteriori probability.
Kriz et al. [98] tested the combination of WiFi and BLE under one distance in the signal space for
kNN fingerprinting, giving the same weight to both measurements. Wang et al. [112] used kNN
once the radio map was transformed using the Isomap-based manifold data dimensionality reduction
technique. Castillo-Cara et al. [100] tested weighted kNN and SVM, and provided recommendation
of their parameters when using low and high transmission powers. Zuo et al. [113] combined the
fingerprinting and lateration approaches, and further improved the estimates by applying PDR.

Table 2 presents a summary of some of the BLE-based IPS proposals already described. The table
presents only those works that reported their achieved accuracy using either the median (Q2 in the
table) or the mean (µ in the table). Also, the selected works reported the dimension of the environment,
how the beacons were deployed and configured. We consider that a more comprehensive survey for
BLE is required. Apart from the comparison of BLE to other technologies, such as in the case of [111],
the survey should pay attention to proposals that provide, at least, the characteristics compiled in
Table 2, in order to make comparisons easier for the reader.

Table 2. Selected BLE IPS proposals.

REF Method Accuracy Environment Beacons Notes

[87] Probabilistic Q2 ≈ 1 m 50 × 15 m,
several offices 19 (−12 dBm, 10 Hz) Best of several selected deployment

configurations.

[97] Stigmergic
(trail map) Q2 ≈ 1.5 m 6 × 6 m, 1 office 8 (−16 dBm, 3 Hz) Deployed uniformly at environment

edges.

[98] kNN Q2 = 0.77 m 52 × 43 m, 1
building floor 17 (0 dBm, 10 Hz) Combination of WiFi and BLE under

one distance, using 4 WiFi APs.

[112] Isomap and
kNN µ ≈ 1.5 m 6 × 18 m 30 (−8 dBm, 2 Hz) Uniform deployment in grid.

[100] SVM µ ≈ 2 m 4 × 3 m 5 (−12 dBm)
Uniform deployment at the edges of
the environment, LOS conditions.
No adv. frequency provided.

[105] Weighted
Centroid

µ ≈ 2 m and
2.5 m

151 m2 and
176 m2

24 and 22 (−12 dBm,
5 Hz)

Two environments, rooms with tall
obstacles. Uniform deployment.

[108] Lateration µ ≈ 2 m 9 × 12 m, a few
obstacles 4 (0 dBm) Deployment in environment corners.

No adv. frequency provided.

The accuracy reported by the selected works is 1 m to 3 m, which is below the accuracies
stated in surveys such as Basiri et al. [11]. It is reasonable for a survey to choose conservative
numbers when stating accuracy ranges, as the values reported by the IPS proposals are commonly
for specific experimental settings. Five out of seven IPS proposal referenced in Table 2 correspond
to small environments. For the same number of deployed beacons, the accuracy obtained in a small
environment is likely to be smaller than the one obtained in a medium or large environment. Also,
the selected proposals tend to have used uniform beacon deployment, i.e., beacons were placed at
regular distances covering the environment or at its boundary edges.
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3.9. Radio Frequency Identification (RFID) and Near Field Communication (NFC)

The main components of RFID are electronic tags that store some data—usually an ID—and
readers capable of obtaining through RF the data from those tags. The tags can be passive, active or
semi-passive. Passive tags use energy from the reader’s signal to transmit their data. Active tags have
batteries and broadcast their data periodically. Semi-passive tags broadcast their data only upon the
detection of a reader’s signal [46].

As readers are usually larger and more expensive than tags, one common setting in RFID-based
IPS is to deploy a large number of tags across the environment and have the readers carried on, or being
attached to the positioning subjects [13,43]. The setting where readers are fixed, and tags are carried
the positioning subjects is more convenient for supporting large numbers of positioning subjects [46].
The detection range of the tags depends on whether they are active or passive. For passive tags,
the detection range also depends on the reader’s signal power. The reported accuracy in RFID varies
significantly, and it depends on how dense the deployment of tags or readers had been, with some
works reporting accuracies of a few centimeters [46]. Most of the RFID-based IPS are based on simple
proximity or RSS-based lateration [43,46].

NFC-based IPS have been considered to be a variant of RFID-based IPS [46]. NFC allows two
devices, usually smartphones, to communicate while in touch or close proximity. A few recent IPS
proposals [13] have harnessed the NFC capability of many modern smartphones in combination with
the deployment of NFC tags across an environment. However, such systems have the inconvenience
of requiring the active participation of the positioning subject, who is required to approach the
smartphone to the tag. Thus, such systems are unable to provide continuous position estimates [13,46].

The review presented in Shen et al. [43] is very brief (less than 20 references), even considering its
date of publication and the fact that the number of RFID or NFC proposals is small when compared to,
e.g., WiFi. In recent years, novel RFID-based IPS proposals, such as Sakpere et al. [114], Xu et al. [115],
Seco and Jiménez [116], Xu et al. [117], Yao and Hsia [118] to cite a few, have been published. Thus,
a new comprehensive survey is suggested. That survey should not only review recent academic work
about RFID-based IPS, but also look for its usage in commercial IPS solutions. RFID-based IPS proposal
should still be appear in the following years, given the small cost of RFID tags and its suitability for
assets tracking.

3.10. Other Technologies and Particular Cases

Cellular networks, in the form of GSM, LTE, 5G or other, are frequently mentioned but rarely
addressed in detail in the selected surveys. Cellular networks have been used for positioning [12,20,45,59]
applying proximity, RSS fingerprinting, and observed TDOA lateration, but not necessarily for indoor
scenarios. Indeed, with reported accuracies that are commonly above 50 m, there are no IPS that are
based solely on cellular networks signals to the best of this work’s knowledge. Thus, this technology is
used as a signal of opportunity in conjunction with others such as WiFi, BLE and, FM.

Basiri et al. [11] refers to other technologies such as high sensitivity GNSS receivers, pseudolites,
and tactile sensors. It explains that the first two are expensive and the third one is harder to
manage in crowded scenarios. The tactile sensors placed on the floor may have real applications.
Their sensing capability is provided by a relative simply technologies such as piezoelectric sensors,
buttons or capacitive touch surfaces that can provide high accuracy in an unobtrusive way to the user.
Xiao et al. [45] comments on the usage of FM radio signals for positioning, being mainly applied using
fingerprinting. Even though Xiao et al. acknowledges advantages of FM-based positioning such as
low power consumption in smartphones and robustness to obstacles, it cast doubts on FM usage for
IPS devoted to smartphones because of the lack of RSS readings availability.

Wireless Sensor Networks (WSNs) do not constitute a technology upon which IPS are supported.
However, they are commonly mentioned in the selected surveys as they may be applied to indoor
scenarios and network node position determination is a relevant problem for them. A WSN is a
collection of nodes able to communicate among them—or at least to the nearest neighbors—and
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perform some sensing task [58]. If the positions of some nodes are unknown, the communication
technology or some extra ranging capability is usually used for determining the nodes’ positions [60].
If a ranging capability is used, then the TOA, TDOA, AOA and RSS techniques are used with the angulation
and lateration methods, among others. Ranging may be energy prohibitive for some WNS, which thus
mostly rely on interpreting the connectivity information between the nodes, i.e., using hop count [20].

Much like WSN, a highly heterogeneous network of devices organized under the concept of
the Internet of Things (IoT) uses the connectivity or ranging capabilities of their nodes for position
determination [15]. However, in IoT, the node’s connectivity is generally less restrictive than in
WSN. Thus, IoT is expected to boost the device-free positioning to enable applications such as smart
environments [22,59,68].

ZigBee is a standard for WPAN focused on providing short-range, low power and low data rates
communication. ZigBee is prone to interference from signals operating at the same frequency. It has
been used for device-based IPS using the RSS, TDoA, ToA and AoA techniques [22,45,46]. It has also
been used for device-free positioning by analyzing the signal fading induced by human movement [45].

Among the technologies with less academic publications on IPS proposals, 5G is the one that
draws the largest expectation. For some, it may be the definitive answer to most IPS applications.
However, it is still at an early stage of deployment. Despite it already exits surveys on 5G-based
positioning [119], IPS based on non-experimental 5G networks are not a reality yet. Thus, a survey in
the topic will have higher value if it is created after the deployments of 5G networks and their support
in modern smartphones notably increase.

3.11. Accuracy Summary of Technologies

Table 3 presents the typical accuracies reported for the technologies most commonly used for
IPS. The accuracy values were inferred from values reported in the selected surveys, either from those
whose main topic was the specific technology (“Main S.”) or those that only briefly addressed the
technology (“Sec. S.”). The table also includes notes on the surveys, stating whether they provided
accuracy summaries for comparisons or any particularity of their summaries.

Thought accuracy is a key factor in the election of an IPS, it is not the only factor. Usually,
an important factor is whether the IPS will apply to smartphones or not. The ones providing the highest
accuracies are commonly not applicable to smartphones. The technologies that can provide the best
accuracies are Light, Sound, UWB, Artificial Magnetic Fields, and Computer Vision. The remarkably
high accuracy of light technologies is mainly achievable under specific techniques (TDOA), equipment
(photodiode array) and conditions (LOS). The accuracy of (Ultra)Sound, UWB and Artificial Magnetic
Fields technologies is also high. However, they require techniques (TOA, TDOA, and AoA) that are
not supported by off-the-shelf smartphones. Almost every modern smartphone has an integrated
camera, thus enabling the application of computer vision. However, using the camera for position
determination requires the user to focus its attention on the position task and orient the smartphone
accordingly. Natural Magnetic Fields, WiFi, BLE, and PDR are technologies commonly applied
to IPS that support smartphone applications. The accuracy of PDR drops as the distance from the
last fix (known position) increases, thus it is most commonly used in combination Magnetic Fields,
WiFi, or BLE. The Magnetic Fields-based and WiFi-based IPS for smartphone applications commonly
require the collection of a fingerprint database, which is a very time-consuming process. However,
they are popular choices because they do not require the deployment of any hardware. The BLE
technology provides better accuracies than WiFi and natural magnetic fields, at the expense of a
relatively cheap deployment of BLE beacons. Other technologies such as RFID, Cellular, WSN or
ZigBee are less considered than BLE or WiFi, although they can achieve comparable accuracies.
The position determination based on cellular network has low accuracy. WSNs are per se a specific
type of application that is not commonly linked to smartphones. The RFID and ZigBee technologies
require particular hardware deployments that vary regarding range, receptor requirements, and cost.
Thus, they have not had the success of other technologies such as BLE or WiFi.
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Table 3. Typical accuracies of selected technologies and their related selected surveys.

Tech. Main S. Sec. S. Typical Accuracy Notes on Surveys

Light [24,36,37,
51,64,65] [21,46]

Depends on technique and setup. From
median < 1 mm [120,121] to median < 2 m
[122,123].

All Light surveys provide accuracy summaries. Luo et al. [51] addresses visible light
IPS and gives positioning accuracy for each type of its taxonomy. Zhuang et al. [64]
divides the accuracy into 2 tables, for camera-based and photodiode.

Computer
Vision [74] [12,13,16,

46]

For odometry, from 0.25% [124] to 8.5% of
path length [125]. For maker-based
solutions, median < 1 m [126,127].

Aqel et al. [74] addresses odometry and mentions limitations of each method, but
provides accuracy for only a few methods.

Sound [61] [13,45,46] For ultrasound, median < 1 cm [61]. For
audible sound, median < 10 cm [128]. Ureña et al. [61] does not provided accuracy summary.

Magnetic
Fields [50,54] [6,12,15,46,

48]
For artificial fields, median < 1 m [129,130].
For the natural field, median < 5 m [82,131]. Pasku et al. [54] and He and Shin [50] provide accuracy summaries.

PDR [31,62,70] [12,13,20,
47,71]

0.3–1.5% of walked distance [132,133],
median as low as 2 m for specific
environments [134] but commonly above
5 m [135]. For SLAM, median 1 m to 10 m
[136,137]

Diaz et al. [70] does not provide accuracy indications on the methods. Wu et al. [62]
provides accuracy summary only for motion classification. Yang et al. [31] provides
summaries for step count and heading errors, and for position accuracy of IPS mixed
with Magnetic or WiFi. Laoudias et al. [20] provides accuracies for SLAM.

UWB [30,33,52] [21,46] Commonly, median < 50 cm [138].
Shi and Ming [30] and Alarifi et al. [33] provide no accuracy summary, though Alarifi
et al. [33] gives summary table of 39 proposals. Mazhar et al. [52] provides brief
accuracy summary of a few, most relevant solutions.

WiFi
[17,19,27,
34,56,67,
88]

[6,15,46,48]

For fingerprinting, median < 5 m are
common [19,139]. For time-based
techniques, median < 2 m [140,141]. For
CSI techniques median < 2 m [142,143].

Makki et al. [27] and Kandel and Yu [67] address time-based and CSI techniques,
respectively, providing an accuracy summary. Konings et al. [88] addresses device-free
solutions, without providing an accuracy summary. Basri and Khadimi [34], Xia et al.
[56] and He and Chan [17] address fingerprinting, without providing accuracy
summary of IPS based solely on WiFi. Khalajmehrabadi et al. [19] provides an accuracy
summary of selected fingerprinting methods.

BLE [11,13,15,
18,46,48] Median between 2 m to 5 m [110,111]. No survey provides accuracy measures for several BLE IPS. Davidson and Piche [48]

deals with BLE in more details than the others.
RFID [43] [13,46] Median < 2 m [115,144]. Shen et al. [43] provides accuracy for only two methods.

Cellular [12,20,45,
59] Median < 50 m [145,146] Laoudias et al. [20] presents accuracy summary for some cellular-based IPS.

WSN [28,58] [20,35,60] Median < 2 m [147,148], but higher values
can be found [60]. Mistry and Mistry [28] and Chowdhury et al. [35] provide no accuracy summary.

ZigBee [22,45,46] Median < 5 m [149,150]. No survey provides accuracy summary for several ZigBee methods.
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4. WiFi and BLE RSS Fingerprinting for Smartphone-Based IPS

The IPS solutions applied to smartphones normally use technologies that depend on the
propagation of RF signals in indoor environments. The indoor environment, however, is not benevolent
for RF signals. Multipath originates because of reflections of the signals on obstacles. The multipath
appreciated outdoors at a large scale is more significant indoor, given that obstacles are abundant and
close to each other. In multipath, a signal pulse reaches a receiver as several components that may
have an additive or subtractive effect on the signal power [8]. The effect of multipath depends, at least
in part, on the bandwidth of the signal pulse. As reviewed in Section 3, UWB is less affected than WiFi,
which in turn in less affected than BLE. Additionally, all measurements are affected by the random
noise that results from, e.g., thermal and circuit noise. Also, the collisions that result from using a
shared medium are common [27]. Furthermore, the human body significantly attenuates the signals
from the 2.4 GHz band [151], which leads to obtaining measurements that notably differ depending on
the receiver device orientation when it is held by a person.

The above challenges, in conjunction with the common difficulty of knowing the actual position
of RF emitters, hinders the obtainment of proper accuracies for lateration methods. Thus, RF RSS
fingerprinting has become widely popular among the solutions for smartphone-based IPS, mainly for
those using the WiFi or BLE. Fingerprinting is applied using either deterministic, probabilistic or
machine learning approaches [19,48].

The deterministic approach commonly refers to the k-Nearest Neighbors (kNN) method or a
variant of it. In kNN, the new fingerprint used for position estimation is compared for similarity
against fingerprint values previously stored in a database. The positions associated with the k most
similar fingerprints are used to infer a position for new fingerprint. Apart from the k value and the
way that the k positions are combined, the distance metric used for determining similarity among
fingerprints is an important aspect to consider in kNN [152].

In probabilistic approaches, the stored fingerprint values are used to compute the probability
distribution of the signal of each emitter at each point. Those distributions are used later to select
the most likely positions for the new fingerprint using Bayesian theory based on signal strength.
Given that the Gaussianity of RSS behavior is commonly acknowledged, the computation of the
probability distribution normally determines the µ and σ parameters of a Gaussian distribution.
However, some studies state that Gaussianity assumption does not necessarily hold [19]. Probabilistic
approaches include Bayesian networks, expectation-maximization, Kullback–Leibler divergence,
Gaussian processes, and conditional random fields [17].

The machine learning approaches harness the development of methods and tools created in recent
years for the field of Artificial Intelligence. The radio map is used to train Support Vector Machines
(SVM), Artificial Neural Network (ANN), among others [56], normally in a supervised fashion. Then,
the trained models are commonly used for regression on 2D positions, and classification for floor or
building estimates.

It is acknowledged that IPS based solely on WiFi fingerprinting can offer 2 m to 3 m of mean
accuracy, although most common figures show 6 m to 7 m. BLE can provide better accuracies than
WiFi, in the order of 1 m to 2 m, but larger values are also possible [105]. The variations in the previous
numbers not only relate to specifics of the approach applied, but also to the characteristics of the
environment and the collected training fingerprints. Indoor environments are not equally detrimental
for RF fingerprinting, varying significantly in the number and materials of the obstacles, the influence
of electronic equipment and the dynamics of the people moving around. Also, the number and
disposition of the emitters are highly relevant [56,153]. An increase in the number of emitters (WiFi AP
or BLE beacons) found in a scenario can improve IPS accuracy [105]. Furthermore, relying only
on distant emitters leads to little differentiability among fingerprints of distinct reference points,
thus deteriorating the accuracy.

The number and distribution of reference points can also influence the obtained accuracy. On one
hand, large mean errors are expected for sparse collection over large environments [154], assuming
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that no densification strategy is used. On the other hand, the mean error tends to be small in small
environments that are densely surveyed [155]. Additionally, the devices that measure the signals—the
chipsets in smartphones—have different levels of sensibility [17] and identify the signal strength in
distinct ways [56]. Thus, the strength reported for the same signal may have distinct values for distinct
devices. Furthermore, one device may measure and report the RSS of a signal while another device
may not report any value for the same signal because the signal strength is beyond its sensibility
threshold. The RSS values measured at a given point are also affected by the device orientation [56],
which is a result of the type and disposition of the antennas in the device and the partial absorption of
the WiFi and BLE signals by the human body.

The previous difficulties have long been known for studies on WiFi, and later BLE, fingerprinting
IPS solutions. To cope with them, the most straightforward strategy is to collect for the target
environment a large database of fingerprints that covers as much as possible the given scenario, that has
as many as possible reference points and that collects several fingerprints at several directions using
distinct devices. However, such collection is very time-consuming. Apart from being cumbersome, it is
not affordable sometimes. Therefore, one of the main challenges for (particularly WiFi) fingerprinting
positioning has been the effort reduction for collecting the training fingerprints. The proposed solutions
for alleviating the collection efforts mainly include:

• Do the collection using crowdsourcing.
• Apply a propagation model to estimate the expected RSS values.
• Perform a small site survey and apply regression techniques to enrich the radio map.

The crowdsourcing approach harness the potential of the explicit or implicit participatory
actions of users [19]. In the explicit modality, the users manually tag the positions of the recorded
measurements. The users’ participation can occur during the offline stage or the online stage.
During the offline stage, the participants supply the position tags required to have an operational
positioning service [19]. During the online stage, the participants only supply position tags when
the system is unable to provide an estimate [25]. In the implicit modality, the user is not requested
to provide position labels. Instead, the labeling is performed by the positioning system whenever is
possible using occasional fixes provided by, e.g., the GNNS receiver. Also, the IPS can infer fixes using
heuristics or learning methods based on the existing radio map and inertial measurements [19,25].

The approach of creating the radio map by applying a propagation model is attractive and has
been proposed [56]. However, this approach requires either previous information on the positions and
broadcasting parameters of the emitters, or to estimate that information using a few samples. The radio
map densification using regression has been effectively used in several studies using regressors such
as linear regression, nonlinear Gaussian Process, Gaussian Kernel Learning, and augmented path-loss
model, Support Vector Regression, and Random Forest [19,156,157].

Apart from the radio map creation, another acknowledged challenge in WiFi or BLE
fingerprinting-based IPS is the energy consumption reduction [6]. WiFi scans are very energy
demanding. BLE scans demand less energy than WiFi scans. Furthermore, the deterministic approaches
must deal with large databases for large scenarios, which implies performing many comparisons of
vectors of potentially large dimensionality. Pérez-Navarro et al. [6] and He and Chan [17] mention
several approaches to deal with the former issue. Also, Khalajmehrabadi et al. [19] mentions approaches
to deal with large fingerprint databases. Those approaches are mainly based on techniques such as
clustering by Binary AP Coverage, K-means clustering, Affinity propagation, and spectral clustering.

Other acknowledged challenges are to detect and adapt to changes in the infrastructure that affect
the positioning [17], which is also related to radio map construction; the detection of outliers [19];
the device diversity issue, i.e., the adaptation to heterogeneous devices [19]; the proper evaluation
of IPS proposals [6,48]; and the accuracy improvement. Solutions based solely on WiFi or BLE have
known accuracy limitations [6]. Accuracy improvement is the challenge most often addressed. It is
not commonly addressed for approaches based solely on WiFi or BLE, but for solutions that combine
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several technologies and techniques. For example, WiFi or BLE is normally combined with PDR,
and the position estimates are corrected using filters such as Kalman or particles filter [56] and
map-matching [6,20].

Section 3 already mentioned survey works specifically devoted WiFi fingerprinting [17,19,56].
Other surveys such as Pérez-Navarro et al. [6] addressed fingerprinting across several technologies.
A trait common to all of them is that, when addressing the reduction of the effort for radio map
creation, they devoted more content to crowdsourcing-based solutions than to radio map enrichment.
Crowdsourcing has been called to be the most promising solution for radio map creation, and thus
several surveys have addressed this topic.

Pei et al. [42] focused on crowdsensing (implicit user participation). It reviewed the most relevant
crowdsensing works for indoor positioning using opportunistic signals by the time of the study.
The study is a recommended reading because it follows a clear order on explaining signals of
opportunity and how to infer position tags for collected data (e.g., using dead reckoning and indoor
maps) and its relation to fingerprinting for indoor positioning. The survey presented in Zhou et al. [63]
gives an introduction to indoor positioning and devote sections to (mainly WiFi) crowdsourcing,
automatic construction of floor plans, self-deployable indoor positioning and navigation systems and
their associated challenges. Lashkari et al. [68] provides a survey on crowdsourcing that, despite a
slight IoT flavor, is comprehensive and addresses solutions not conceived originally for IoT. The survey
differences crowdsourcing (explicit user intervention) from crowdsensing and it explains detailed
insights into each considered solution.

Radio Map Enrichment Approaches

Currently, no survey has devoted at least a large part of its content to radio map enrichment.
Thus, we provide a brief review of selected academic works. The radio map enrichment methods can
be classified into four large groups: methods based on sparse recovery, interpolation or extrapolation
methods, propagation models, and regression methods. Only the first group has a small number
of proposals. Examples of the first group are Gu et al. [158] and Khalajmehrabadi et al. [159].
Gu et al. [158] applied compressive sensing using Singular Value Decomposition (SVD) formulated as
an optimization problem to reduce the sparsity of the output matrix. Also, the authors applied kNN
to infer some extra measurements in the matrix. Khalajmehrabadi et al. [159] performed radio map
interpolation using sparse recovery, which employed a Fourier transform and minimization using
sparse group Lasso.

Remarkable examples of the second group are the evaluation of alternatives performed in
Ezpeleta et al. [160] and Talvitie et al. [161]. Ezpeleta et al. [160] considered interpolation of RSS
signals, using ZigBee. As interpolators, the authors considered radial basis functions: Euclidean
distance linear, multiquadratic, thin plate spline and polyharmonic spline, being thin plate the best
performing one. Xie et al. [162] also tested RBF interpolators, considering several shape parameters for a
multi-quadric function on BLE samples. Talvitie et al. [161] tested, for each floor and AP, a combination
of Linear Interpolation with extrapolation methods based on the minimum detected value, the mean
detected value, and on the signal gradient on triangulation edges. Also, the authors applied the
Nearest Neighbor and Inverse Distance Weighting (IWD) methods, which can be used directly for
interpolation and extrapolation. The IWD method consistently provided the best recovery results
across the analyses. Another example in this group is Bong and Kim [163], which used an interpolation
for WiFi signals based on discontinuity preserving smoothing. According to the authors, the method
preserves discontinuity over walls in accordance with the signal gradients. Other examples are
Zhang and Cai [164], where a multivariate polynomial interpolation was tested using simulations;
Racko et al. [165], which tested Linear and Delaunay triangulation-based interpolations; Chai and
Yang [166], which performed linear weighted interpolation of RSS distributions, for probabilistic
fingerprinting, instead of interpolating the RSS values; and Moghtadaiee et al. [167], which placed
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samples and estimation points into rings according to the distance from the AP, and used the mean of
the samples in a ring as the value for the estimate points inside that ring.

The third group (propagation models) includes many proposals. One of the models commonly
used is the log-distance path-loss model Seybold [168]. Ali et al. [169] applied the path-loss model
considering a fixed wall attenuation factor and distinct values of the path-loss coefficient differed
for LOS and NLOS situations. Narzullaev and Park [170] modified the log-distance path-loss model
to consider the power and distance associated with the sample point closest to the AP instead of
the traditional power of AP at close distance (usually 1 m). He et al. [171] applied the log-distance
propagation model, assuming knowledge of the AP positions, to estimate RSS at points lying in the
lines defined by collection points and APs. Moghtadaiee et al. [167] proposed to fit the path-loss model
independently in each zone delimited by architectural divisions, assuming knowledge of the APs
position, which performed better than the other tested interpolation methods. Li et al. [172] fitted a
log-distance path-loss model for each target position, giving distinct weights to samples in the fitting
process according to their distances to the target position.

The ray tracing model and the radiosity model are another two techniques used for modeling RF
propagation [173,174] that have been used for RSS database creation. Ayadi et al. [175] tested the ray
tracing and radiosity models along with the log-distance path-loss model and the Cheung model [176].
The ray tracing and radiosity models performed significantly better than the other two regarding mean
and the standard deviation of recovery error. The work of Belmonte-Fernández et al. [177] also tested
the radiosity model for WiFi RSS radio map creation in a floor of an office building where the authors
deployed four WiFi APs.

The group of regressions also has many proposals. In particular, the Gaussian Process Regression
(GPR) has been widely used. Faragher and Harle [87] used GPR for BLE radio map enrichment.
Sun et al. [178] evaluated GPR using six distinct kernel functions and some combinations of them.
Richter and Toledano-Ayala [179] suggested the usage of GPR with constant mean function and
Matérn class covariance function, instead of the commonly used zero mean squared exponential kernel.
Atia et al. [180] proposed to first fit a log-distance path-loss model and then fit GPR on the residuals
produced by the log-distance model. Zou et al. [181] applied a similar approach than Atia et al. [180],
but fitting a bidimensional second-degree polynomial function instead of the log-distance model.
Ai et al. [182] and [183] applied GPR over samples from in route-based (walking) collection for BLE
and WiFi samples, respectively. Li et al. [184], Liu et al. [185], Jan et al. [186], Kram et al. [187] applied
Kriging, which can be seen as a variant of GPR. Other works using regressions are Du et al. [188],
which used Geography Weighted Regression (GWR) for WiFi samples, and Hernández et al. [157],
which used Support Vector Regression (SVR).

Table 4 present examples of the accuracies reported by four proposals. The table contain one
example per group because there is a wide variety in the experiment settings and reported metrics
among proposals, which make comparison difficult. For example, Ayadi et al. [175] tested several
propagation models, but considered RSS differences instead of absolute RSS difference, and thus the
reported mean values are close to zero. Even within the selected work, we could not find all target
information. The position accuracy using real samples instead of estimated intensities could not be
inferred for Narzullaev and Park [170] and Sun et al. [178]. For them, it is difficult to tell how much the
reduction in the number of collected samples affected the positioning accuracy. The solutions shown in
Table 4 reported tests in a building, and the tag of “Medium” or “Large” indicate that the test included
1 or 4 floors, respectively. Only Talvitie et al. [161] performed experiments in a large environment with
a large number of detected APs. In general, recovery accuracy values higher than 5 dBm seem common
when using 20% of for fitting the models or functions and 80% for test estimates. Apart from the sparse
recovery group, the recovery accuracy seems similar among the groups. The purpose of Table 4 is not
only to show some information about radio map enrichment proposal, but also to highlight which are
the most relevant characteristics of such proposals. One of the traits that may have not given enough
importance is the selection of training and test samples to validate a proposal. While [159,178] selected
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random points for training and testing, [170] did a manual selection and [161] assured that there were
large areas with no training points create challenging conditions for interpolation and extrapolations
methods. Also, the best performing method regarding recovery accuracy is not necessarily the best
performing regarding positioning accuracy [161].

Table 4. Selected examples of radio map enrichment proposals. RAC represents the recovery
accuracy; OPA represents the positioning accuracy using actual measurements; and PAC represents the
positioning accuracy using estimated intensities.

Sparse Recovery Interp. and Extrap. Propag. model Regression

Method Group Sparsity [159] IDW [161] Log-distance [170] GPR [178]
Environment Medium Large Medium Medium
No. of APs 19 422 32 6
RP removal Random Empty blocks Manual Random
RAC (dBm) Q2 ≈ 11 for 20% Q2 ≈ 6 − 7 for 20% µ ≈ 4 − 5 for 20% µ ≈ 6 for 40%
OPA (m) Q2 ≈ 1 µ ≈ 5 Not reported Not reported
PAC (m) Q2 ≈ 2 for 20% µ ≈ 12 − 13 for 20% µ ≈ 2 − 3 for 20% µ ≈ 5 for 21%

5. Discussion on IPS Current State

Researchers working in the field of indoor positioning share the notion that one of the traits of
the current status of IPS is that there is no clear prevalent technology or method for IPS. The variety
of environments and applications makes it difficult to find a general solution applicable to most
situations. Some surveys include evaluation metrics to compare the reviewed works and inform the
reader about the characteristic of the most notable works selected by the survey’s authors. Accuracy,
cost, and scalability are among the most common metrics found in the surveys, as mentioned in
Section 3.

Another trait of the current status of IPS is the large number of solutions that have been proposed
along the years, while only a few have had large academic significance. To deepens in the exploration
of this trait, this paper compiled and linked the publications referenced by the surveys introduced
in Section 3. The linkage is based on DOIs [189]. The idea is to construct an undirected graph that
links the surveys and the publications referenced by them, using the DOI associated with each of
them as link information. We acknowledge that this approach does not include every single academic
paper. There are old papers, papers published in low profile conferences, technical reports, patents,
books and online resources that do not have DOIs assigned to them. During the curation, there were
publications [190–199] with no DOI that were cited up to 11 times in the selected surveys. Most of the
publications with no DOI were cited two or three times in the surveys. The DOI approach was used
given that it is relatively simple and allows for automatic analysis. Furthermore, most recent academic
papers published in known resources are given a DOI.

The curation was performed using automatic and manual means. The automatic means included
web scraping for the reference extraction and DOI discovery using the Crossref’s Link References
matching tool [200]. After the application of automatic means, a manual revision was performed
to correct inconsistencies produced both by the web scraping and by the DOI discovery processes.
The processing of the 62 selected surveys resulted in 3943 unique works, including surveys distinct
from the 62 original ones. Figure 3 shows the resulting graph applied to all surveys, visualized using
a force-directed approach [201]. Some surveys stand apart from others and lie in the outer parts
of the image. Those divergent surveys are those with narrow focuses such as SLAM [16], visual
odometry [74], RFID [43], multidimensional scaling techniques [60], and those published in conference
proceedings [23,26,32,58]. It is of relevance to remark that some conferences apply a strict page limit,
which in most of cases make the author to shorten the list of references to the most relevant ones.
The surveys lying close to the center of the graph are those that reference works that are commonly
referenced by other works. Those surveys mainly address WiFi-based solutions [17,34], solutions
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that avoid or reduce the site survey efforts [25,66], inertial sensors solutions [31], WLAN-based
solutions [19], solutions specific to pedestrians or smartphones [47,48] and general surveys [14,45,46].

Figure 3. Graph of surveys and their referenced works. The selected surveys are identified by red
(journal-published) and black (conference proceedings-published) dots. Their referenced publications
are represented by blue (more than 5 citations) and dark green (5 or less citations) dots.

Figure 3 highlights the works that were cited more than 5 times by the selected surveys.
The number of citations of a work is determined by the degree of the node that represents it in
a graph, i.e., the number of its incident edges. The number of highlighted works is 62. It is a rather
low number compared to the total number of referenced works, even without taking into account the
selected surveys. Indeed, the mean number of citations of a work without considering the selected
surveys is 1.46. Such low number is significant not only because it hints at that most publications are
cited only once, but also because the considered works also included surveys—which were published
before 2015 and therefore were not among the selected surveys for this study.

Table 5 presents the number of citations of non-survey works, i.e., those that were not among
the selected surveys, they do not include in their title the words “survey” or “review”, and were
not known to be a survey. Most of the referenced publications are only cited once in the selected
surveys, while some of them are cited twice. The number of works that are cited more than five times
is very small. The distribution in the number of citations might suggests that (1) the surveys tend
to be very specific and barely intersect in content, (2) the proposed solutions quickly get obsolete or
(3) it is hard for surveys in IPS to assess the relevance of the proposed solutions. The weight of the
first conjecture seems to be low, given that although some of the surveys are very focused, such as
Saeed et al. [21], most of them deal with several techniques, which should result in a large number of
intersecting works. The weight of the second conjecture seems more significant than the one from the
first conjecture. Although the obtained accuracies and the acknowledged challenges [6] have remained
similar for several years [25], authors may try to incorporate the latest proposals to add value to their
surveys, regardless of the actual importance of the proposals. The third conjecture is supported by
works on IPS that plead for better evaluation procedures and reproducible research [10]. With so many
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proposed solutions, the value of a work is not always correctly assessed without a proper evaluation
that includes tests on publicly available data featuring well-known characteristics. The lack of usage of
a common objective evaluation framework may lead to unworthy citations or simply the dispersion
appreciated in Table 5 and Figure 3.

Table 5. Number of citations of non-survey works.

Citations Percentage

1 80.0%
2 11.2%
3 4.1%
4 2.0%
5 1.2%
≥6 1.6%

The works that had the largest number of citations were classics of the IPS literature: RADAR [202],
Horus [203], LANDMARK [144] and Zee [204]. RADAR (28 citations, year 2000) is the best known of
the first IPS solutions that applied WiFi-based fingerprinting, so it is commonly cited when a proposal
deals with RSS fingerprinting, mainly for WiFi or BLE. Horus (17 citations, year 2005) is also one
of the best known first applications of WiFi fingerprinting. The difference between RADAR and
Horus is that the former applied a deterministic approach, while the latter used a probabilistic one.
LANDMARK (15 citations, year 2003) is an early IPS based on RFID. Zee (15 citations, year 2012) is an
early solution to the radio construction effort, which is one of the most acknowledge challenges of
fingerprinting. It successfully combined PDR with map-matching to make the WiFi radiomap grow
with self-tagged samples. Other works that have more than 10 citations are related to IPS based on
UWB [205]; PDR and map-matching [206]; a combination of light, sound, WiFi and inertial sensor
inputs [207]; WiFi without site survey [208,209]; a combination of WiFi, magnetic, PDR and inertial
sensor inputs [210]; visible light [211]; and RF and ultrasound [78]. Apart from the value of their
respective contributions, the previous works may be highly cited because they were early proposals of
IPS using solutions that were novel at their times.

To analyze the focus of the selected surveys regarding technology, they were assigned a category.
The selected categories and the number of surveys that belong to each category are presented in
Table 6. Despite the fact that the data from the table may suggest that light-based IPS are as popular as
WiFi-based IPS, many of the surveys that were classified in the category “Several” do not deal with
light-based IPS, either because they are restricted to network-based technologies or technologies that
are fully supported by smartphones. Furthermore, the category “Several” include surveys that are
not devoted WiFi but focus on topics that are very relevant to WiFi-based IPS, such as crowdsourcing,
fingerprinting, radiomap construction, and IPS for smartphones. To further explore the focus of the
current IPS research, this study extracted the 55 non-survey works most cited (more than 5 citations) in
the selected surveys. We excluded surveys among the 55 works because our focus was on IPS proposals.
Furthermore, surveys tend to have many citations because they are used as references on general
descriptions on a subject and they are acknowledged by later, related surveys. For example, the work
of Hui et al. [212], published in 2007, have 33 citations in the selected surveys. In Google Scholar [213],
it had over 4000 citations by the time this paper was written. Figure 4 shows the result of taking
the titles of the extracted works [75,77,78,80,82,121,133,136,139,144,202–211,214–248] and creating a
word cloud that highlights the occurrence frequency of each word in the titles of the extracted works.
Punctuation signs as well as words non-relevant for comparison such as ‘indoor’, ‘system’ or ‘and’
were removed.

The image presented in Figure 4 gives further support to the notion that WiFi is the technology
most prevalent among IPS proposals. WiFi seems to be followed by light and wireless technologies—in
which WiFi is also included. The 55 non-survey most-cited works were published before 2017,
and almost half of them belong to the period 2011–2013. The trend in their publication years was
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expected given they are mostly pioneers in the indoor positioning field which have maintained their
research value. It is difficult to forecast how long will they remain valuable. WiFi, BLE, and light
seem to be the front-runners until a new technology—at least cheaper than UWB—becomes widely
available for its use with smartphones. The chosen reviews that focused on light are from the years
2016–2019, which highlights the increasing importance that is given to this technology. Regarding
WiFi, as long as smartphones keep being able to perform WiFi scanning at reasonable rates to provide
near real-time positioning, research on WiFi-based IPS will persist given it is a technology that requires
no infrastructure apart from the pervasive AP already in place. The new Android version (9.0) [89]
restricted the number of WiFi scans to a maximum of 4 scans every 2 min. WiFi scanning was
already restricted for iOS phones [249]. Thus, the restriction for Android devices should decrease the
importance given to WiFi in some IPS solutions. The new scan rate is too low for pedestrian navigation
solutions based solely or mainly on WiFi. However, some applications such as in-home monitoring
and presence detection for data analysis only require coarse non-real-time position estimates and they
should have little affectation from the new scan restrictions. BLE, which provides better estimates than
WiFi, will also remain on the choices for IPS. Indeed, it is popular among IPS provider companies.

Table 6. Number of selected surveys per technology.

Technology Surveys

Light 6
WiFi 6
PDR 4
UWB 3

Magnetic 2
Sound 1
RFID 1
Vision 1
Several 38
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Figure 4. Word cloud of the works most cited (more than five citations) by the selected surveys.

The final batch of analyses from this section included the number of citations according to Google
Scholar of the 55 non-survey most-cited works. Figure 5 contrast the number of citations according
to the selected surveys and the number of citations according to Google Scholar. Also, a Pearson
correlation test was applied to the two citation measures. The correlation results indicate a moderate,
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positive and statistically significant correlation between the two citation measures. However, some
works with a small number of citations in the surveys may also have many citations in Google Scholar.
An example is the work of Arulampalam et al. [214], which provided a tutorial on particle filters.
That work has only 9 citations in the surveys but over 10,000 citations in Google Scholar. Although it
is applicable to IPS, it does not focus on IPS and it is relevant for a broad spectrum of topics related
to positioning and navigation. The work that introduced the RADAR IPS [202] has fewer citations in
Google Scholar that the work of Arulampalam et al. [214], despite the fact of having 28 citations in the
selected surveys.
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Figure 5. Number of citations in selected surveys vs citation from Google Scholar for the 55 non-survey
most-cited works. A logarithmic transformation was applied to the y-axis to reduce the represented
distance among data points.

The trend visible in the scatter plot from Figure 5 shows that works with many citations in the
surveys tend to have a large number of citations in Google Scholar. An additional search for works in
indoor positioning was performed in Google Scholar to find works with many citations that were not
referenced in the selected surveys. The search resulted in a few works [250–257] published before 2011
with around 200 to 400 citations according to Google Scholar. Numbers of citations between 200 and
400 are not highly significant given that the median value of Google Scholar citations for the 55 works
is almost 400. Thus, the notion that a work that has many citations from surveys is likely to have a
large number of citations in Google Scholar is further supported.

Figure 6 explores the relation of the number of citations according to the selected surveys with
the year of publication of the extracted works. Figure 6 shows that, regarding the selected surveys,
the number of citations of a work does not depend on the number of years since its publication.
The works corresponding to data points 35, 39, 40, 41 and 47 [204,208–211], published in or after 2010,
have more citations than all other works apart from those corresponding to the data points 8, 19 and
29 [144,202,203]. Further analyses regarding the number of citations from Google Scholar showed a
steady decrease in the number of citations along the years. Such decrease creates difficulties to assess
the importance of a published work. Thus, Figure 7 presents the mean number of citations per year
in Google Scholar. Figures 6 and 7 used the same numbers for identifying works. Some works that
Figure 6 showed to be relevant, such as those from data points 8, 19, 39, and 40, are still noticeable
in Figure 7. However, the mean number of citations per year seems to decrease along the years,
thus suggesting that the mean number of citations per year for a published work may indeed increase
every year.
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Figure 6. Citations in the selected surveys of the 55 extracted works. The x-axis represents the year of
publication of the work.
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Figure 7. Mean number of citations per year in Google Scholar of the 55 extracted works. The x-axis
represents the year of publication of the work.

Finally, 62 new IPS works from 2018 with 5 or more citations [91,116–118,177,178,258–312] and
46 new IPS works from 2019 with 1 or more citations [105,313–356] were selected using Google Scholar.
The selected works from 2018 were mainly published in periodic journals, although some works
from conferences proceedings were also included given their high number of citations. The works
were found through Google Scholar queries, using the search terms “indoor positioning OR indoor
localization”. Table 7 presents the aggregated numbers of works by their main applied technology—the
one that provided position fixes, if any—and by the two selected years. The table does not account for
works that did not consider a specific main technology or the technology was not typically addressed
in indoor positioning works (e.g., pseudolites). We decided to perform a general IPS query (instead of
one per each technology) and to apply a filter on the number of citations to reduce the number of
references added to this manuscript. The numbers presented in Table 7 support the previous notions
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that WiFi-based and light-based solutions dominate the published IPS academic solutions. The number
of WiFi-based works is only slightly higher than the number of light-based works. BLE works also
have a significant presence in IPS publications. For most technologies, the number of works from
2018 is higher than those from 2019. Despite the filter for 2018 is more restrictive than the one for
2019, the works for 2018 have been available for reader (and thus for citations) during more time.
For the WiFi, light and BLE technologies, the number of works for 2019 is almost the same as for 2019,
which may be in part a result of the applied filters. However, for PDR and 5G (cellular), the number
for 2019 is higher than for 2018. The case of 5G is notable, given that for 2019 it has more works
than traditional IPS technologies such as Sound or ZigBee, indicating the raising relevance that 5G is
gaining for indoor positioning.

Table 7. Number of selected recent IPS works by year and technology.

Year Cit. Filter 5G BLE Light PDR RFID Sound UWB Vision WiFi ZigBee

2019 ≥1 2 5 12 4 0 1 3 2 14 1
2018 ≥5 1 7 13 3 3 3 5 4 15 2

According to analyses presented in this section, the set of IPS-related surveys seems to be a
good mean to compile the works that had fundamental academic contributions to the IPS topic.
However, each survey incorporates many works whose appreciated relevance is not shared among
other surveys or even among the IPS literature in general. The number of citations is one of the
metrics traditionally used to measure the scientific impact of a work in academia [357]. Furthermore,
citations play important roles in academia such as acknowledging others’ ideas and provide the reader
with useful additional information. Thus, relevant and known works in academia tend to have large
numbers of citation. However, we acknowledge that not all citations are meaningful, and the number
of citations is not the only tool to measure the significance of a work, especially in areas beyond the
academia [358]. Also, we do not imply any kind of relation between the number of citations and the
quality of the development presented by a work.

6. Conclusions

This paper presented an analysis of indoor positioning systems based on previous surveys.
In contrast to traditional surveys, where the different indoor positioning technologies and
state-of-the-art works are analyzed, this work analyzes the current status of indoor positioning based
on the works cited and referenced in previously published surveys.

The paper addressed the main technologies that currently support indoor positioning systems,
briefly stating the techniques and methods applied in each of them. The description of each technology
is supported by references to other surveys, thus enabling the reader to use this paper as a collection that
provides links to more specialized surveys. The paper also compiled the most-recognized challenges
in indoor positioning and deepens into positioning based on WiFi and BLE fingerprinting, which is
the most popular method for indoor positioning.

The meta-review shows that most of the cited papers within a review are not disruptive. A total
of 3943 works (with DOI number) were cited in the context of 62 reviews, but most of them (more than
3200) were cited once within the selected surveys. On the other hand, only 55 works were cited more
than 5 times in the selected surveys, being considered well-known or disruptive works. In some cases,
the surveys cite recent papers that do not attract the indoor positioning experts.

Finally, the meta-review also shows that a few papers published in early 2000s were disruptive
and have had a huge impact on further developments. Radar has more than 10,000 citations
(around 550 average citations per year). There are only a few works with moderate impact
(around 100–200 average citations per year since they were published) in the period from 2005 and
2010. Most of the relevant works in the surveys are in the period 2010–2016, which match the born of
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smartphones as we currently know them and the proliferation of new conferences related to the topic,
such as the International Conference on Indoor Positioning and Indoor Navigation (IPIN).
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AOA Angle of Arrival
BLE Bluetooth Low Energy
DOI Digital Object Identifier
DR Dead Reckoning
GPR Gaussian Process Regression
IDW Inverse Distance Weighting
IMU Inertial Measurement Unit
IoT Internet of Things
IPS Indoor Positioning System
LED Light-Emitting Diode
LOS Line of sight
NFC Near Field Communication
NLOS Non-Line of sight
PDR Pedestrian Dead Reckoning
RF Radio Frequency
RFID Radio Frequency Identification
RMS Root Mean Square
RSS Received Signal Strength
SVR Support Vector Regression
TDOA Time Difference of Arrival
TOA Time of Arrival
UJI Universitat Jaume I
UWB Ultra-Wideband
WLAN Wireless Local Area Network
WPAN Wireless Personal Area Network
WSN Wireless sensor networks
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