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Abstract: Measuring traffic in real time is one of the main functionalities of Smart Cities. To reduce the
costs of deployment and operation, traffic measurement with mobile devices has been widely studied.
In this paper, a traffic monitoring system using mobile devices is proposed. The proposed algorithm
has the advantage of having a very low computational cost, allowing most of the pre-processing to
be done in the mobile device and therefore making possible the centralized collection of a massive
number of measurements. The proposed system is composed of three algorithms; a map-matching
algorithm to correct minor location errors, a Virtual Inductive Loop that estimates the traffic and a
traffic data collector that aggregates the information from many devices and combines it with other
information sources. The system has been tested in a real scenario, comparing its accuracy with a
traditional traffic sensor, showing its accuracy.

Keywords: Traffic monitoring system; GPS; map-matching; smartphones; traffic occupancy;
smart-city

1. Introduction

Nowadays, road networks, and especially cities, suffer from security, ecological and comfort
problems due to the massive use of private transport in our daily routine. Traffic congestion, which
often follows known patterns, has become an everyday problem in urban environments, resulting
in noticeable temporal and economic inconveniences. This has led many cities to enforce certain
measures such as restricting which vehicles can be used in a given area based on their license plate
number. Smart Cities will deal with this problem in a more sophisticated and less intrusive way, but
to be able to regulate the traffic, a basic requirement is to have real time monitoring of the traffic
conditions. The traditional methods used by public administrations are fixed measurement devices
that collect data about traffic such as inductive loop detectors, pneumatic road tubes, video cameras,
laser and other vehicle detectors. Such devices are capable of collecting information like vehicle
type, vehicle dimensions or velocity, depending on the type of device used. However, these devices
can only collect data on the specific section of road where they are installed. In addition, traffic
monitoring infrastructures built with these devices need a heavy investment to develop, deploy and
maintain them.

The last few years have seen a dramatic increase in the presence of devices with built in GPS
(Global Positioning System) capability. In this work, the focus is on smart phones, which usually have
at least two location providers (GPS and the cellular/WiFi network). These devices have two main
advantages compared to fixed devices—dynamic coverage area and zero expansion cost.

Mobile phone location data collectors are deemed valid for traffic sensing purposes, since as long
as there is a sufficient penetration rate, they will provide accurate measurements of the traffic flow,
that is, the sample of users with traffic sensors over the total cars which entered the target road should
be at least 2–3% [1,2].
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Many researchers have done groundbreaking work in order to make mobile phones, both
Global System for Mobile communications (GSM) and Code Division Multiple Access (CDMA) based,
practicable as traffic sensors [1,3–10], using either GPS, A-GPS [11], Cell-ID, or Wi-Fi, or a mix of them.

With the increasing growth in the number of mobile devices, the data obtained from them for
traffic monitoring has become more reliable. At the same time, this increased reliability comes at a
cost in processing power. Traffic monitoring systems must aggregate and process information from a
massive number of sensors in real time. This can be considered a Big Data [12] problem, where the
volume and the velocity of data generation require special computation strategies. In this case, the
high volume of data is due to the large number of devices that report the traffic information. Therefore,
in order to increase the capacity, the processing required per report must be minimized. The data
reported by these types of sensors is usually a location and a timestamp. Nevertheless, this raw data
cannot be used to estimate the traffic data without pre-processing.

The location data must first be associated to a specific road or street. This process is known as
map-matching and has a high computational cost. Numerous map-matching methods have been
published [13], although not many [14] have proven able to run in real time. Those that do work in real
time [15–17] are often used extensively in commercial turn-by-turn navigation devices (both dedicated
and smart phone based). Some methods are not even disclosed (or only partly disclosed) as they have
been patented (e.g., References [9,18]) or become proprietary in nature. The second measurement
that is sent with each reading are timestamps. This is used to calculate (among others) the number of
users passing through a road per time interval. Again, this information requires some pre-processing
and increases the computational cost per measurement. Several publications have proposed data
fusion as a way of improving the accuracy of the traffic estimation [19–21]. In this paper, the proposed
magnitude to easily aggregate data from many sources is the traffic occupancy on a Virtual Inductive
Loop (VILD). It is important to point out that traffic occupancy, which measures the time that a specific
road segment is occupied by vehicles, should not be confused with vehicle occupancy, which measures
the number of passengers per vehicle and is out of the scope of this paper. The main advantage is
that this magnitude can be computed in the individual mobile measuring devices and then used in
a centralized location to estimate the overall traffic and to fuse it with other data sources [22] with a
minimal pre-processing cost.

The main contribution of this paper is the proposal of a practical platform for measuring traffic
using mobile devices. The methods that have been proposed in the literature often overlook the
computational cost of each location report in the centralized collection point. This drives high server
requirements that increase the economic cost of the deployment and reduce its scalability. A reduction
of the cost per sample will allow either the use of commoditized equipment (allowing smaller public
organizations to use the system) or the scalability of the system into Big Data territory (allowing
large geographical areas to be monitored at once). In this paper, the cost per sample is reduced by
relying on the mobile devices for most of the computations instead of on the centralized collection
point, releasing resources for additional measurements. Specifically, the map-matching and traffic
occupancy calculations are executed in the mobile terminals. This, in turn, adds the requirement of
light computations that minimize the energy consumption. In this paper, the proposed map-matching
algorithm is able to run in real time and at the same time is very light, so it can be run in a mobile
device without consuming many resources. For the traffic estimation, the VILD [23] algorithm is used.
This algorithm imitates traditional measuring devices, providing the time each measuring device
spends at a certain point, that is, the traffic occupancy.

Tests of the platform show the validity of the method and its ability to operate with low sampling
rates, which reduces the energy consumption in mobile devices. These tests have been carried out in a
real setup, hence validating the algorithm for its practical use in a production environment.

The remainder of this work is structured as follows. Firstly, in Section 2.1, the problems of
monitoring device location are presented. In Section 2.2, the proposed solution is described. In
Section 2.3, the process of retrieving traffic data from a single vehicle is presented. In Section 2.4,
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the traffic data combination algorithm is presented. Once the challenges and proposed solutions
are shown, these solutions will be tested and the result will be shown in Section 3. Finally, some
conclusions about the present work are summarized in Section 4.

2. Materials and Methods

2.1. Device Monitoring Challenges

In this subsection, two typical challenges in traffic monitoring systems via location devices are
described: inaccurate location and path estimation.

2.1.1. Inaccurate Location

In this paper, the location needed in traffic monitoring is provided by two sources—GPS and the
network provider. Both elements involve error in the estimated location.

On the one hand, in GPS systems, the main error source is due to inaccurate time-keeping by the
clock of the receiver device. Microwave radio signals traveling at the speed of light from at least three
satellites are used to calculate the device position, altitude and velocity. The receiver and satellite clock
error components are multiplied by the speed of light c. Hence, because of the factor c, a small clock
error can cause a very large code and phase error. For example, a clock error of 1 ns translates into
0.3 m in range error, whereas 1 µs implies an error of 300 m. Increasing the receiver clock precision by
atomic clocks is expensive so it is not a feasible option for commercial devices like smart phones.

On the other hand, the network location provider uses WiFi hotspots and cell towers known to
the Android device to approximate the location of a user. When the location provider is polled, the
IDs of the WiFi hotspots and cell towers in the area are sent via Internet to the Google Location Server,
a database with location information on WiFi hotspots and cell towers. The Google Location Server
returns the approximate location of the user. WiFi hotspots allow an accuracy of 100 m–500 m, whereas
cellular networks only allow an accuracy greater than 500 m. This means the network provider will be
very inaccurate in areas without WiFi hotspots.

So, whatever the location provider is, the error must be taken into account in order to estimate the
real location of the user.

2.1.2. Path Estimation

The mobile phone can be programmed to periodically send location reports. However, a minimum
or constant frequency for the location report is not guaranteed, due to different problems like coverage
holes (on network or on location provider), network congestion or user data tariff. Specifically, the
challenge at this point is achieving an acceptable accuracy in map-matching with a low frequency
sampling. The lower the location sampling data the higher the difficulty of the map-matching problem.
On the other hand, a low frequency sampling minimizes battery consumption and network usage.

The map-matching problem (described in more detail in Section 2.2) can be defined as finding
the path that links a sorted list of locations on a road network and that is the most probable
followed trajectory.

With large distances between consecutive locations the difficulty for map-matching is higher
because there are more possible trajectories that connect these consecutive locations, therefore there
are more possible trajectories between the first and the last location.

2.2. Proposed Solution

In this paper, a centralized system to collect traffic status data from several sources is proposed.
Figure 1 shows the architecture of the system. The main module that aggregates data from several data
sources is the Monitoring Traffic System. Table 1 shows the data sources that report measurements
directly to this module. In Section 2.4 a common format for the data sent to the Monitoring Traffic
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System is defined. This common format will greatly reduce the processing required per sample, thus
increasing the capacity of the main module. The requirements and implementation details to adapt
the data sources described in Table 1 to the proposed format, as well as the internal structure of the
Monitoring Traffic System are out of the scope of this paper. An additional module, the Mobile Traffic
Data Collector, collects all the measurements from individual mobile sensors and aggregates them
obtaining a measurement that is equivalent to the traffic sensors in Table 1. The Mobile Traffic Data
Collector is connected to each mobile sensor in a typical client-server architecture:

Figure 1. Architecture of traffic monitoring via mobile devices.

Table 1. Most commonly used traffic vehicle detectors.

Device Advantages Disadvantages

Inductive Loop Supports all weather and Intrusive installation
lighting conditions and high maintenance

Pneumatic counter Portable and non-complex Damaged by vehicles
installation

Cameras Non-intrusive installation Inclement weather,
and flexible set-up shadows, poor-lighting

• Client: Contains the functionalities of map-matching and traffic data collection, relieving the
server of these tasks. The mobile application is responsible for tracking the device on a journey.
The application receives the device location from the selected location provider (i.e., GPS, mobile
network, etc.) and keeps the two latest locations. With these latest locations the application applies
map-matching in order to minimize the location error and associate it with a road (explained in
detail in Section 2.3.1). These corrected locations are used to estimate the followed route with
the algorithm described in Section 2.3.2. Then, in each VILD belonging to the estimated route,
the time when the mobile device crossed it (time-stamp) and the time spent are computed. The
computed timestamps are joined to the time needed to cross each VILD. Finally, these traffic data
are reported to the server.

• Server: The server side software aggregates the data from all the mobile devices. This task is
described in detail in Section 2.4 following the execution flow shown in Figure 7. Traffic data
packets sent by the client application are received through a web Application Programming
Interface (API). The data is added to the traffic data window in the collector module where it
waits to be computed in its corresponding time-slot. Finally, the result of the combination of data
in each time-slot is sent to the Monitoring Traffic System where it can be fused with data from
other sources.
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2.3. Single Car Location

Reported location and VILDs will rarely be at the same point, due to different factors such as the
location error or the frequency of location measurements. Thus, the route followed by a passenger in
the car will be calculated with map-matching. Once the route is known, it is possible to derive when
the user went through a measurement point (VILD). In the event that more than one device in the
vehicle reports its location, duplicated VILD crossing reports may occur. Since the devices have no
way of knowing about each other, the detection of such duplicities is up to the server.

2.3.1. Map-Matching

Map-matching is the process of associating a sorted list of locations to the road network on a
digital map. A digital map is represented by a mathematical graph G as shown in Equation (1). A
graph is a representation of a set of objects or vertices where some pairs of these objects are connected
by links. These objects are typically called vertices or nodes and the links that connect them are called
edges or arcs. Figure 2 shows a map area on graph representation.

G = (V, E)

V = {v1, v2, ...}, V is the set of vertices

E = {(vi, vj)|vi, vj ∈ V}, E is the set of edges

(1)

The aim of a map-matching algorithm is to reconstruct from a location sequence the path driven
by a vehicle on the road network. The main difficulties in this task derive from the errors of location
providers positioning measurements and from the uncertainty introduced by the sampling of the data.

Figure 2. Digital map with graph representation.

Most recent works related to map-matching are focused on solving, with ever more accuracy and
reliability, the same problem of keeping track in real-time of the correct position of the user on a map.
Thus, the positioning data used for this kind of task usually has a high sampling frequency (∼1 sample
per second, 1 Hz). Many different techniques have been developed to solve this kind of map-matching
problem, ranging from simple geometrical considerations to more advanced inference methods but
they are commonly categorized for simplicity into four groups—geometric, topological, probabilistic
and advanced [24]. In this paper, a geometric based approach is followed.

The lower complexity of this kind of map-matching algorithm allows it to run smoothly on a
smartphone. When the user is traveling by car, the tracked phone is located in the car too, so location
provider coverage is often low and, therefore, the location error is normally high. In addition, it must
be taken into account that the sampling frequency may not be high. High sampling frequency drains
the battery of the smartphone and might be costly depending on the data tariff. Thus, it is necessary to
find a compromise between accuracy, computational cost and battery consumption.

Figure 3 illustrates the map-matching problem. Figure 3a represents the user’s route and his
actual location on the street. Figure 3b shows the location estimated by location provider and the
map-matching location result. As illustrated in Figures 2 and 3b, a network representation consists
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of a set of straight lines in R2, called arcs. An arc is an edge in graph definition (1), and each arc
endpoint corresponds with a vertex. In map-matching theory these vertices are called nodes. Nodes
also represent the junctions between two or more arcs (street intersections).

(a) (b)

Figure 3. The map-matching problem. (a) Map of actual streets; (b) Digital Map and
map-matching result.

The proposed algorithm works with the last two locations and the digital map as inputs. The
first task is to find the nearest arcs in the map for each location. The algorithm computes the distance
between the locations and each arc. Figure 4 and Equation (2) describe the process of this task where L
is the current location and AB represents the arc. The arcs with distance below a threshold (in our case
5 m) are added to the list of possible traveled arcs. This list is sorted by distance in ascending mode.
The outputs of this algorithm are two sorted lists in ascending order, one list with the possible arcs for
the last location, and another one with the possible arcs for the previous location. These lists are the
inputs to the algorithm described in Section 2.3.2:

Figure 4. Distance between Location and AB arc.

~dir = B− A

~di f f = L− A

proj =
~dir · ~di f f
|dir|2

p =


A i f proj ≤ 0
B i f proj ≥ 1
A + proj · ( ~dirx, ~diry) otherwise

d(L, AB) = d(L, p)

(2)

where:
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A: one endpoint of arc
B: another endpoint of arc
L: location from location provider
d(): distance between two points

2.3.2. Estimated Route

In order to decrease battery consumption the localization frequency must be low. However, a low
frequency in the localization process entails three types of situations which are shown in Figure 5. The
inputs to this algorithm are two arcs and their respective locations. The three possible situations are
as follows:

(a) (b) (c)

Figure 5. Different situations depending on locations. (a) Two locations in the same arcs; (b) Two
locations in neighboring arcs; (c) Two locations in non-neighboring arcs.

• Two locations in the same arc: this trivial case occurs when the two estimated locations are in the
same arc as shown in Figure 5a.

• Two locations in neighboring arcs: this case involves a transition between two linked arcs as
illustrated in Figure 5b.

• Two locations in non-neighboring arcs: this is the most complex case and it adds uncertainty to
the process of estimating the route followed by user. In Figure 5c we can see that there are several
arcs between the two selected arcs.

Figure 6 describes the proposed algorithm. The three branches work as follows:

1. Trivial case: the algorithm returns any of the two input arcs, since they are the same.
2. Two arcs: the algorithm returns a list with the first and second input arcs. The first arc is directly

linked with the second because the user has just visited these arcs in the last time slot.
3. Multiple path options: when there is one or more arcs between the input arcs, the algorithm

executes an implementation of the A* path-finding algorithm [25]. The execution returns the
shortest path between the input arcs or false if there is not a solution.

Finally, the algorithm returns the estimated route or false if there is no path between the two input
arcs. This algorithm is executed each time a new location measurement is obtained.
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Figure 6. Flow diagram of the route estimating algorithm.

2.3.3. Virtual Inductive Loop Detector

In order to measure the traffic status, once the route traveled by the user and the spent time
(difference time between the last location and the previous location) are known, a Virtual Inductive
Loop detector (VILD) technique is proposed. The VILD is a segment of an arc of a digital map,
which simulates the operation or a real Inductive Loop Detector. When a VILD is crossed by the user
device, the application in the device composes a traffic data packet to send to the Mobile Traffic Data
Collector, as explained in Section 2.4. This avoids sending superfluous data to the server, optimizing
the processing capacity of the system. The traffic data packet includes the measurement time stamp,
occupancy, list of traveled arcs, time spent and traveled distance, although only the occupancy is
used to estimate traffic in the Monitoring Traffic System. The rest of the data is saved for possible
future uses.
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During the implementation, it has been observed that the location provider error implies bad
locations causing inaccurate measurements in the following cases:

• Vehicle is stopped and location is shown unstable. This problem is solved requiring a minimum
distance between the new and the old location.

• When the time interval between the two locations is very high (e.g., due to lost signal), the
estimated route in Section 2.3.2 is probably unacceptable. So, when there is a large time interval
between the new and old location, the old location is discarded.

• Anomalous speed Equation (3) estimation may occur when the estimated route between the
two last locations is too large or when the time interval between these locations is too long. To
preserve the system from these anomalous data, speeds above a certain threshold are discarded.
If true high speed cases were discarded, it will not have a big impact on traffic monitoring
because high speeds are not related to traffic congestion.

speed =
distance traveled

time spent
(3)

2.4. Traffic Data Collector

Reported data by a single user are not robust enough to estimate city traffic. A single driver could
stop for different reasons (e.g., pedestrian at zebra-crossing, parking his car, etc.). However, if the
reported data from all users in each arc at a given time interval are combined, a better approach to the
traffic conditions can be obtained. The proposed system for traffic data combination, included in Traffic
Data Collector is shown in Figure 7. Firstly, the client application sends the traffic data calculated
according to Section 2.3.3 to the system through a web API in Figure 7. Secondly, these data are pushed
in the Traffic Data Window where they are combined with data from other users in the same arc and
time-slot, as explained in Section 2.4.1. The required current arc information (e.g., number of lanes) for
this process is requested from Open Street Map (OSM [26]). OSM is an open read and write access
platform about street maps data. Concurrently, there is a trigger module responsible for transmitting
the result of the combination data to an external traffic monitoring system (system that works with
heterogeneous traffic sensors network).

It is also in this point where the duplicate entries (i.e., those where different devices report the
same VILD with very similar timestamps) should be filtered. This can be done with two filtering rules
depending on the number of lanes in the VILD:

• The duplicated reports are done on a single-lane VILD: both will have the same or very similar
timestamp; hence, only the first report to reach the traffic data collector will be considered.

• The duplicated reports are done on a multiple-lane VILD: this situation is more complex, so once
two reports have the same timestamp, a verification process must be launched to check if they
are located in different vehicles. This verification process will check if the last NR reports (where
NR ≥ 2 is a configurable value) of the devices are also duplicates. If this is the case, only the first
report is considered.

Figure 7. Traffic data collector system.
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2.4.1. Traffic Data Window

Tracking a single device (smartphone) is unreliable because it is affected by single user decisions.
However, if most drivers stop at a given street, the most probable cause is a traffic jam. Therefore, it is
essential to have a large number of drivers in each street. The combination process aggregates data in
two ways:

• Spatial: this combination is relatively simple, grouping the traffic measurements by arc. However,
users can be in the same arc but at different points. Therefore, the same measurement point
should be defined for each user. Usually, real inductive loop detectors have a length between 1
and 2 m, in this work, the length of the VILDs are set to 1 m, and they are located at the end of the
arc. The VILD location in the arc is not important because there are not intersections inside the
arcs. Figure 8 illustrates a 1 m VILD located at the end of arc AB.

• Temporal: the flow of data reception is not continuous so it is important to use a window that
groups the data in time slots. This combination contributes to the measurement robustness by
avoiding abrupt variations caused by exceptional situations such as a driver parking the car or
waiting at a zebra crossing.

Figure 9 shows the state of the window collector data in a 3 lanes road along 180 s. In this snapshot
the window has 7 traffic data packets from anonymous drivers. The time-slot size is set to 1 minute
which is enough to minimize abrupt variations while providing fresh measurements. In Table 2, the
traffic intensity and occupancy for each time-slot the output of the collector are computed with the
measurements that have finished before the time slot ends.

Table 2. Traffic measures from window collector.

Time (s) Intensity (veh/h) Occupancy (%)

60 2·60
3 = 40 15+20

3·60 = 25%

120 3·60
3 = 60 10+10+45

3·60 = 36.1%

180 2·60
3 = 40 10+30

3·60 = 22.2%

Figure 8. Virtual Inductive Loop Detector (VILD) on AB arc.
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Figure 9. Window collector.

2.4.2. Traffic Data Estimation

There is no standardized definition for traffic congestion [27]. Therefore, there are different
equally valid measurements in order to study the traffic congestion [28]. In this paper, the following
normalized traffic indicators are chosen:

I(veh/hour) = vehiclesij (4)

O(%) =
∑ Tvehij

time-slot_length
100 (5)

In Equation (4) I is the intensity of the traffic in a specific segment of the road at one time-slot,
vehiclesij are the number of vehicles inside VILD i and time-slot j. In Equation (5) O is the traffic
occupancy in a specific segment of road (VILD), where Tvehij is the time that the vehicle is inside the
VILD (i) at time-slot j and time-slot_length is the length of the time-slot used (60 s in this work).

A VILD measures the traffic over all lanes of a road (except lanes for special use, e.g., a bus lane).
The number of lanes in each road is different so it is important to normalise these measurements to the
number of lanes. Table 2 shows the value of these indicators at different time-slots taking into account
the number of lanes in the example in Figure 9.

Finally, intensity and traffic occupancy are reported by the Processed measurements trigger
module to the external traffic monitoring server. These indicators in particular are very useful
because they allow to compare, even complete the traffic estimation reported by different measuring
devices (e.g., vision-based systems [22]). Nevertheless, it is important to consider that the intensity
is just a partial measurement, since it only reflects the intensity of vehicles that have a measurement
device, which is just a sample of the total. This implies that the absolute value of the intensity
will not necessarily be useful, but its general behavior (growth or reduction) may be of interest for
some applications. In addition, it is possible to get these indicators from other sources with simple
transformations.

3. Results and Discussion

To test the entire solution shown in this work, a set of tests has been defined, covering different
modules of the proposed system. The data used during the experiments was collected from Málaga
city with a Samsung Galaxy Note 8.

In this section, first the performance of the map-matching method presented in Section 2.3.1
is evaluated with different location sampling frequencies. Then, the traffic estimation accuracy is
analyzed by comparing the returned data with the data reported by the pneumatic road counter
MetroCount R© Roadside Unit MC5600.
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3.1. Map-Matching Location Frequency

The aim of the following experiment is to demonstrate the performance of map-matching using
the route estimator algorithm. The experiment relates the accuracy in the estimation and the frequency
used in location requests. Map-matching is focused on the correction of the intrinsic location error and
fitting the location to the route. The route estimation is focused on minimizing the error provided by
the lack of data location. Although it seems evident that high location sampling frequencies can achieve
more accuracy in the route estimation, this improvement may be less meaningful in the map-matching
performance due to the intrinsic error by location providers.

For the execution of this experiment, the location provider was GPS and the range of location
frequency updates was established between 1 Hz and 0.016 Hz (a period between 1 s and 60 s). During
the tests, the device went over 100 Km in different types of regions and with variable speed—near
high buildings, areas without buildings, streets, highways and traffic jams.

The results of this experiment show that the average accuracy Equation (6) is in the range of 60%
to 85% as shown in Figure 10. The accuracy of estimated route tends to a lineal equation proportional
to the location sampling frequency.

Figure 10. Map-matching accuracy over frequency.

Accuracy(%) =
number o f correct arcs

total arcs in route
· 100 (6)

As it can be seen from the results, the accuracy is worse with the high than with the low period
between samples. This is primarily due to the increase of the possible routes when the first and last
point are far from each other. When the period between samples is low, the distance between the
measurements is also low, and the number of possible alternative routes among them is usually just
one. On the other hand, when the period is high, the distances between the measurements may be
longer (depending on the speed) and hence the number of possible routes may be more than one, thus
increasing the number of errors.

The results show an upper limit of 85% in accuracy when the samples are taken every second.
This limit is due to the intrinsic error provided by the GPS location system; as described in Section 2.1.1,
although the location is provided every second this location may be wrong due to the GPS error and so
the estimated route will be wrong too. This matching rate range is similar to the result of the algorithm
proposed in [14] which needs samples every second.

Overall, the correct sampling frequency must be chosen considering a trade off between accuracy
and energy saving. A higher sampling frequency will provide a higher accuracy (limited only by the
accuracy of the location provider), at the cost of a larger number of executions of the map-matching
algorithm. A lower frequency will decrease the total processing time, therefore reducing the energy
consumption of the device. Given the results shown in Figure 10, it can be concluded that the sampling
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frequency can be reduced several times without much loss of accuracy; for instance, a reduction from
1 Hz to 0.1 Hz will reduce the battery consumption by 10, while the loss of accuracy is only by 5%. It is
important to notice that in this trade off, the processing capacity of the server (that is, the Mobile Traffic
Data Collector and the Monitoring Traffic System) is not affected, since it only receives information
when a VILD is crossed.

3.2. VILD Versus Validated Device

In order to verify the accuracy of the solution, in this experiment it is compared with a validated
traffic monitoring device. The reference device is a pneumatic road counter model MetroCount R©

Roadside Unit MC5600. This device is able to register the traffic in both ways. MC5600 reports multiple
traffic data statistics but in this test only the traffic occupancy and the intensity have been selected.
These will be the indicators to determine the system accuracy.

The device was installed in Jiménez Fraud street at location = (36.715151,−4.474060). Figure 11
shows the MC5600 location and the route followed during the test. This street is the main traffic
connection between a highway and the University of Málaga campus. It also serves a hospital and a
residential area. The monitored part covers a section between two roundabouts. The northern end
connects with the hospital and the residential area, and the southern edge with a major industrial
complex. The street is also crossed by a tram line that cuts the traffic every 10 mins, and by two minor
streets that add a negligible amount of traffic. This street has a traffic pattern that repeats daily: at
office hours, the intensity and traffic occupancy are very high, with traffic jams at the peak hours
(beginning and end of the office hours) where cars stop for several minutes; outside of office hours, the
intensity is very low, with cars stopping for some seconds occasionally for pedestrians or to yield on
the roundabouts or at the tram crossing. MC5600 was reporting traffic data every hour during 17 days
in both ways. Mobile devices with the implemented software were reporting at the same time but with
blank time periods due to the schedule of testing users; no testing was done at night, although in this
location the traffic is less significant at night. Besides, the number of VILD reports each hour is not
constant because the traffic intensity changes along the day. So, in order to test the solution with a
constant number of reports, the data set in each hour is filled to 60 (one sample per minute) samples
per hour using stochastic regression with a uniform noise of ±10%.

Figure 11. Measurement scenario.
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In this test, the estimated traffic occupancy provided by the VILD method is studied. However,
the study of the absolute value of the intensity is useless because it is estimated by counting the devices
connected to the system in each arc, not the total number of vehicles. For example, if 60 vehicles travel
along some road in one hour but only 30 of them are connected to the system, then the VILD reports
an intensity of 30 vehicles per hour instead of 60 vehicles per hour. However, the trend of this partial
intensity may reflect the general behavior of the real intensity, especially if the rate of the vehicles that
have a measuring device is known.

Figures 12 and 13 represent the occupancy every hour in the monitored road in both directions.
This representation is produced with 5 days of samples. The traffic occupancy provided by VILD is
estimated with 60 measures per hour in each way of the road. In both figures, we can see that the
estimated occupancy is near to the occupancy provided by MC5600. This trend continues for the rest
of samples collected during the experiment.

Figure 12. Traffic occupancy with 60 samples per hour.

Figure 13. Traffic occupancy with 60 samples per hour (opposite direction).

Figures 14 and 15 show the error in estimated traffic occupancy with different numbers of devices.
As shown in both figures the mean square error is inversely proportional to the number of devices
reporting. With 10 samples per hour the algorithm reduces the occupancy error to 0.007. The error
with less samples is not acceptable because it has the same magnitude of the measurement itself.
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Figure 14. MSE of the traffic occupancy per samples per hour.

Figure 15. MSE of the traffic occupancy per samples per hour (opposite direction).

4. Conclusions

In this paper, a complete system for monitoring traffic status using smartphones has been
presented. The performed tests show the accuracy and effectiveness of the proposed approach
in estimating routes and traffic occupancy. In these tests, the reported estimated route is compared
with the true followed route and the occupancy in a road with the measurements of the validated
traffic monitoring device MC5600.

In the performed tests, the map-matching algorithm has proven a high accuracy with different
sampling frequencies, taking into account the error provided by the GPS location. The results of
map-matching show correct matching rate between 66% and 86% with samples every minute and
every second respectively.

The traffic monitoring system has shown a high accuracy of the occupancy time estimation. The
intensity of the traffic has not been tested because the estimation is proportional to the number of
devices reporting in each road as mentioned above. This aspect is hard to improve if only the proposed
method is used and there are many devices not transmitting any information. A solution, proposed
for future work, is to combine the information from the mobile devices with data from other traffic
measurement sources. The traffic occupancy estimation in the experiments has demonstrated that at
least 10 vehicles reporting in one hour are required to maintain confidence in the results.

Future lines of research will involve improving the map-matching results and proposing
algorithms to estimate via mobile devices the number of vehicles traveling.
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