Supplementary Materials:
 Towards A Portable Model to Discriminate Activity Clusters from Accelerometer Data

Petra Jones ${ }^{1,2, *}$, Evgeny M. Mirkes ${ }^{3}$, Tom Yates ${ }^{2,4}$, Charlotte L. Edwardson ${ }^{2,4}$, Mike Catt ${ }^{5}$, Melanie J. Davies ${ }^{1,2,4}$, Kamlesh Khunti ${ }^{1,4}$ and Alex V. Rowlands ${ }^{2,4,6}$
1 Leicester Diabetes Centre, University Hospitals of Leicester, Leicester, LE5 4PW, UK; melanie.davies@uhltr.nhs.uk (M.J.D.); kk22@leicester.ac.uk (K.K.)
2 Diabetes Research Centre, University of Leicester, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK; ty20@leicester.ac.uk (T.Y.); ce95@leicester.ac.uk (C.L.E.); alex.rowlands@leicester.ac.uk (A.V.R.)
3 Department of Mathematics, ATT 912, Attenborough Building, University of Leicester, University Road, Leicester, LE5 4PW, UK; em322@leicester.ac.uk
4 NIHR Leicester Biomedical Research Centre, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4PW, UK
5 Institute of Neuroscience, Henry Wellcome Building, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; michael.catt@newcastle.ac.uk
6 Alliance for research in Exercise, Nutrition and Activity (ARENA), Sansom Institute for Health Research, Division of Health Sciences, University of South Australia, Adelaide SA 5001, Australia
* Correspondence: pj100@leicester.ac.uk; Tel.: +44-116-258-4974 (UK)

Received: 4 September 2019; Accepted: 15 October 2019; Published: 17 October 2019

Table S1. of Time Domain Features Utilised in Previous Studies.

Time Domain Features	LDC	Kerr	Kuppervelt	Montoye	Nguyen	Ray	Zhang
X, Y and Z Angles Mean							
X, Y and Z Angle Max							
X, Y and Z Angle Min							
X, Y and Z Angle Median							
X, Y and Z Axis Correlation							
X, Y and Z Axis Mean							
X, Y and Z Axis Minimum							
X, Y and Z Axis Maximum							
X, Y and Z Axis Std. Deviation							
X, Y and Z Axis $10^{\text {th }}$ Percentile							
X, Y and Z Axis $25{ }^{\text {th }}$ Percentile							
X, Y and Z Axis $50{ }^{\text {th }}$ Percentile							
X, Y and Z Axis $75{ }^{\text {th }}$ Percentile							
X, Y and Z Axis $90{ }^{\text {th }}$ Percentile							
X, Y and Z Axis Variance							
DWT SMV							
DWT SMV1							
ENMO Raw Data							
ENMO Mean							
ENMO Minimum							
ENMO Maximum							
ENMO Median							
ENMO 25 ${ }^{\text {th }}$ Percentile							
ENMO 75 ${ }^{\text {th }}$ Percentile							
ENMO Std Deviation							
ENMO/VM							
ENMO/VM Std Deviation							

Table S2. of Frequency Domain Features Utilised in Previous Studies.

LDC Kerr Kuppervelt Montoye Nguyen Ray Zhang

Frequency Domain Features

Dominant Frequency	\checkmark	\checkmark	x	\checkmark	\checkmark	x	\checkmark
Power	\checkmark	\checkmark	x	\checkmark	x	x	\checkmark
Power / Total Power	x	x	x	x	x	x	\checkmark
Power Dom Freq / Total power (0.3-15 Hz)	x	x	x	x	x	\checkmark	x
Ratio Dom Freq (0.3-15 Hz) curr/prev windows	x	x	x	x	x	\checkmark	x
Total Power (0.3-15 Hz)	x	x	x	\times	x	\checkmark	x
Secondary Dom. Freq	x	x	x	\times	x	x	\checkmark
Secondary Power (Dom. Freq.)	x	x	x	x	x	x	\checkmark
Secondary Dom. Freq (0.3-15 Hz)	x	x	x	\times	x	\checkmark	x
Secondary Power (Dom. Freq) (0.3- $15 \mathrm{~Hz})$	x	x	x	x	x	\checkmark	x
Dom Freq (0.3-3 Hz)	x	\checkmark	x	x	x	x	x
Dom Freq ($0.3-15 \mathrm{~Hz}$)	x	x	x	x	x	\checkmark	x
Dom Freq (0.6-2.5 Hz)	x	x	x	x	x	x	\checkmark
Dom Freq Ratio (current/prev segment)	x	x	x	x	x	x	\checkmark
Power Dom. Freq (0.3-3 Hz)	x	\checkmark	x	x	x	x	x
Power Dom. Freq (0.3-15 Hz)	x	x	x	x	x	\checkmark	x
Power Dom. Freq (0.6-2.5 Hz)	x	x	x	x	x	x	\checkmark
Power Dom. Freq (1-15 Hz)	x	\checkmark	x	x	x	x	x
Entropy (freq dom)	x	\checkmark	x	x	x	x	x
Integral (0.6-2.5 Hz)	x	x	x	\checkmark	x	x	x
Integral \% / Total Integral	x	x	x	\checkmark	x	x	x
Coefficient Variation	x	\checkmark	x	x	x	x	x
1-s lag Autocorrelation	x	\checkmark	x	x	x	\checkmark	x
Theta energy (tilt, angle, time)	x	x	x	x	\checkmark	x	x
Entropy	x	x	x	x	x	\checkmark	x

Table S3. Average cluster purity and event purity.

Cluster Purity Across Four Datasets (2 development and 2 lab independent)					
	Sedentary	Vigorous	Ambulatory Clusters A- (Brisk)	Ambulatory Cluster (Slow) Cluster I	Clusters G-H
ACP (Average Cluster Purity)	0.66	0.78	0.52	0.34	
AEP (Average Event Purity) Based on Lying+Seated Average ACEP (Average Cluster \& Event Purity)	0.67	0.83	0.51	0.74	

