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Abstract: Simultaneous localization and mapping (SLAM) are fundamental elements for many
emerging technologies, such as autonomous driving and augmented reality. For this paper, to get more
information, we developed an improved monocular visual SLAM system by using omnidirectional
cameras. Our method extends the ORB-SLAM framework with the enhanced unified camera model
as a projection function, which can be applied to catadioptric systems and wide-angle fisheye
cameras with 195 degrees field-of-view. The proposed system can use the full area of the images
even with strong distortion. For omnidirectional cameras, a map initialization method is proposed.
We analytically derive the Jacobian matrices of the reprojection errors with respect to the camera pose
and 3D position of points. The proposed SLAM has been extensively tested in real-world datasets.
The results show positioning error is less than 0.1% in a small indoor environment and is less than
1.5% in a large environment. The results demonstrate that our method is real-time, and increases its
accuracy and robustness over the normal systems based on the pinhole model.

Keywords: simultaneous localization and mapping; visual SLAM; map initialization; fisheye cameras;
omnidirectional cameras

1. Introduction

In order to complete various tasks, the robot needs to know the location of its environment.
The most common method to localize a robot is to process the sensor information to calculate incremental
motion. To achieve drift-free localization, the robot needs a map where the localization is known.
To solve these problems, visual simultaneous localization and mapping (SLAM), where the main sensor
is a camera, has been actively researched in recent years [1–5]. Among different sensor modalities,
a monocular camera is low-cost and easy to maintain. The feature distribution of the environments
observed by the camera is a key factor in the performance of Visual SLAM. A major limiting factor
for the feature distribution is the field-of-view (FoV) of the camera. Especially in sparse-feature or
partially non-feature environments, wide FoV cameras can get higher accuracy and better robustness
than normal cameras.

However, traditional Visual SLAM can only use the part area of the wide FoV images, because
these approaches are designed for the pinhole camera model which projects measurements of 3D
points onto a 2D image plane. In practice, even when distortion model is added, the pinhole camera
model demonstrates suboptimal performance for a FoV greater than 120◦. To reduce the FoV of largely
distorted image, the input images are usually cropped in traditional Visual SLAM.

To utilize the full area of the wide FoV images, it is necessary to use a new camera model
that is well applied to catadioptric systems and wide-angle fisheye cameras. There are several
instances of research [6–10] on camera models for large FoV cameras. Considering the accuracy and
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computation cost of camera models, we chose the enhanced unified camera model (EUCM) [7] as
a projection function.

Since the projection function is changed, a new map initialization method should be proposed.
Monocular SLAM needs a process to create an initial map because depth cannot be recovered from
a single image. For planar scenes, by using the method of Faugeras et al. [11], the relative camera
pose is recovered from a homography matrix. On the other hand, for non-planar scenes, the relative
camera pose is recovered from a fundamental matrix which can be computed with the eight-point
algorithm [12]. Because these methods are only suitable for the pinhole camera model, we propose
a new initialization method based on them for the EUCM.

We improve ORB-SLAM [1,2] to make full use of the fisheye images (see Figure 1), so our method
can directly use all the information of the input images.

Figure 1. The selected points in a same scene: (a) The improved ORB-simultaneous localization and
mapping (SLAM) with omnidirectional camera; (b) the normal ORB-SLAM; (c) Direct Sparse Odometry.

In the experiments, we evaluated the accuracy and run-time of our approach on a benchmark [13]
whose image sequences are captured with a wide FoV fisheye lens. We compared our approach to
the normal systems based on the pinhole model and demonstrated that our method outperforms the
normal methods on benchmark datasets.

The rest of this paper is structured as follows: In Section 2, we first review the related systems for
the normal and omnidirectional cameras. In Sections 3 and 4, we introduce notation and the enhanced
unified camera model. In Section 5, we provide an overview of our system, and we analytically derive
the Jacobian matrices. In Section 6, we propose a map initialization method and modify a normal
relocalization algorithm for fisheye cameras. In Section 7, we quantitatively evaluate the results of our
system on public datasets and compare it with the normal systems based on the pinhole model; then
we discuss and interpret the results. We open source in https://github.com/lsyads/fisheye-ORB-SLAM.

2. Related Works

Over the last decades, many visual SLAM and visual odometry systems have been proposed,
such as ORB-SLAM [1,2], LSD-SLAM [4], and direct sparse odometry (DSO) [3]. The three recent
examples are the state-of-the-art systems for the normal cameras and points features. ORB-SLAM is
an indirect and keyframe-based visual SLAM algorithm based on graph optimization. LSD-SLAM
is the first direct visual SLAM method with monocular cameras, which tracks the camera motion,
produces a semi-dense map and performs pose graph optimization. DSO is a direct sparse visual
odometry algorithm, which combines a fully direct probabilistic model with joint optimization of all
model parameters. In addition to points features, Visual SLAM for point-line [14] or point-plane [15]
features has been studied for many years. Next, we will discuss the related work on omnidirectional
odometry and SLAM.

https://github.com/lsyads/fisheye-ORB-SLAM
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By using scale-invariant feature transform (SIFT) features and the extended Kalman filter (EKF),
several works [16,17] have been proposed to estimate camera localizations for omnidirectional cameras.
However, these approaches lack efficient loop closing and relocalization technique, and they are only
capable of mapping small work-spaces due to computational limitations.

By using a direct method, D. Caruso et al. [18] proposed a real-time, direct monocular SLAM method
based on LSD-SLAM by incorporating the unified camera model [6]. Similarly, H. Matsuki et al. [19]
extended DSO for omnidirectional cameras by using the unified camera model as a projection function.
This system was the first fisheye-based direct visual odometry which runs in real time. L. Heng et al. [20]
presented a semi-direct visual odometry for a fisheye-stereo camera. A direct visual odometry for
a fisheye-stereo camera was proposed by P. Liu et al. [21].

Indirect methods are the most popular techniques for SLAM. They proceed in two steps. First,
the feature points in the images are extracted and matched. Second, the geometry and camera motion
are estimated through the coordinates of corresponding points. J. Li et al. [22] presented a SLAM
system based on spherical model for full-view images in indoor environments, but the system was not
real-time. S. Wang et al. [23] proposed to extend ORB-SLAM framework by the unified camera model
and the semi-dense depth map, whose map initialization method follows the idea from [18], but there
was no evaluation on localization accuracy and robustness of the system.

In this paper, we propose an omnidirectional camera extension of ORB-SLAM by using the
EUCM as a projection function. This is a real-time robust monocular visual SLAM. Since the
projection function is changed, we propose a new map initialization method and modify the normal
relocalization algorithm.

3. Notation

Throughout the paper, bold lower-case letters (x) represent vectors, and light lower-case letters (t)
represent scalars. Matrices will be represented by bold upper-case letters (H), and functions (including
images) will be represented by light upper-case letters (I). Pixel coordinates generally are denoted as
u = [u, v]T ∈ R2. Point coordinates in 3D are denoted as x = [x, y, z]T ∈ R3. [x]

×
stands for:

[x]
×
=


0 −z y
z 0 −x
−y x 0

. (1)

The camera orientation and position are represented by R ∈ SO(3) and t ∈ R3, respectively.
They transform a 3D point from the camera coordinate system to the world coordinate system.
Traditionally, π stands for a camera projection function and π−1 is the camera unprojection function.

4. Camera Models

4.1. Pinhole Model

The pinhole model is the most common camera model. Image points u are computed by projecting
measurements of 3D points x onto a 2D image plane. The projection function of the pinhole model is
given as

u =

[
u
v

]
=

[
fx 0
0 fy

] [
x/z
y/z

]
+

[
cx

cy

]
, (2)

where fx, fy are the focal lengths, and cx, cy are the principal points. The projection function is linear in
homogeneous coordinates, so it is the simplest model.

4.2. Extended Unified Camera Model

We use the enhanced unified camera model (EUCM) based on the so-called unified camera
model [6] for a wide FoV fisheye camera. The projection model does not require additional mapping
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to model distortions, and it takes just two projection parameters more than a simple pinhole model
to represent radial distortions (only one parameter more than the unified model). The unprojection
function can be expressed in explicit closed-form.

As shown in Figure 2, a 3D point x in camera coordinates is first mapped to xp by projecting it
onto a second-order projection surface P, then the point xp is mapped to q by projecting it onto the
plane M of z = 1. The coordinates of the point q are computed as follows:

q =


x/[αρ+(1− α)z]
y/[αρ+(1− α)z]

1

,
ρ =

√
β(x2 + y2) + z2,

(3)

where α ∈ [0, 1] and β > 0. The two parameters allow us to better approximate the properties of
lenses despite strong distortions. For the fisheye cameras, the EUCM projects on the ellipsoid, where
α ∈ (0.5, 1].

Figure 2. The enhanced unified camera model. z is the optical axis.

Finally, the image point u is computed by projecting the point q onto an image plane using the
pinhole camera model (see Figure 3). The projection function of a 3D point is given by

π(x) = u =

[
u
v

]
=

[
fx 0
0 fy

] [
x/[αρ+(1− α)z]
y/[αρ+(1− α)z]

]
+

[
cx

cy

]
. (4)

Figure 3. The pinhole camera model.
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The unprojection function is defined as follows:

π−1(u) =
[

mx my mz
]T

,

mx =
u− cx

fx
,

my =
u− cy

fy
,

mz =
1− βα2r2

α
√

1− (2α− 1)βr2 + (1− α)
,

(5)

where r2 = m2
x +m2

y, and ifα > 0.5, r2
≤ 1/β(2α− 1). mz depends on mx and my. Actually, max(mz) = 1.

Actually, the unprojection function (5), a ray function, is decided by the coordinates of point xp,
because points xp and x are on the same line (see Figure 2). Plane P where point xp is located is called
the projection surface. The function, which solves the coordinates of point xp from u, is the same as (5):

xp =
[

mx my mz
]T

. (6)

5. System Overview

By using the EUCM as a projection function, we develop a real-time robust monocular visual
SLAM system for omnidirectional cameras based on ORB-SLAM. The system makes use of ORB
features [24], which are based on the FAST keypoint detector and BRIEF descriptor. Not only are they
extremely fast in computation and matching, but they also have good invariance in regards of the
viewpoint. In order to increase efficiency and accuracy, there are three threads in parallel: tracking,
local mapping and loop closing.

5.1. Bundle Adjustment

Because Bundle Adjustment (BA) provides a powerful network of matches and good initial
guesses, our system uses it to optimize the estimations of camera poses and 3D world points.

There are three kinds of BA in the system: motion-only BA, local BA, and full BA. By minimizing
the reprojection error between matched 3D points x in world coordinates and keypoints u, BA optimizes
the camera position t, orientation R, and points x. In motion-only BA, it only optimizes camera poses:

{R, t} = min
R,t

∑
i∈χ
ρ(eT

i
∑
−1
i ei),

ei = ui −π(Rxi + t),
(7)

where χ means the set of all matches, ρ is the robust Huber cost function, and Σi = σ2
i I2×2 is the

covariance matrix associated to the scale where the keypoint was detected.
In addition to optimizing camera poses, local BA also optimizes points and minimizes the

reprojection error in a collection of nearby keyframes. In full BA, all keyframes are optimized to get
camera poses and points.

The Levenberg–Marquardt algorithm implementation in g2o [25] is used to solve this minimization
problem. In BA, we modified the projection function to EUCM and Jacobian matrices.

5.2. Jacobian Matrices

Jacobian matrices are used in the Levenberg–Marquardt algorithm to speed up a bundle adjustment
process in the SLAM system, because they are more efficient than numeric or automatic differentiation.
A 3D point in world and camera coordinates are represented by x = [x, y, z]T and x′ = [x′, y′, z′]T,
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respectively. The reprojection error (7) is written as e. The small changes of camera rotation and
position are represented by δR and δt, respectively.

The projection relation is u = π(x′) from (4), and (3) is reduced to m =

[x′/(αρ+ (1− α)z′), y′/(αρ+ (1− α)z′)]T.
By using the chain rule, the Jacobian matrices of the reprojection errors with respect to the camera

rotation, camera position, and 3D points is computed, respectively:

JR =
∂e
∂δR

=
∂e
∂x′

∂x′

∂δR
=

∂e
∂x′

(−[x′]
×
), (8)

Jt =
∂e
∂δt

=
∂e
∂x′

∂x′

∂δt
=

∂e
∂x′

I =
∂e
∂x′

, (9)

Jx =
∂e
∂x

=
∂e
∂x′

∂x′

∂x
=

∂e
∂x′

R, (10)

where
∂e
∂x′ = −

∂u
∂x′ = −

[
fx 0
0 fy

]
∂q
∂x′ ,

∂q
∂x′ =


1
η −

αβx′2

η2ρ

−
αβx′y′

η2ρ

−
αβx′y′

η2ρ

1
η −

αβy′2

η2ρ

−
x′(1− α+ (αz′)/ρ)

η2

−
y′(1− α+ (αz′)/ρ)

η2

,
η = αρ+ (1− α)z′.

(11)

The Jacobian matrixes for the EUCM are different from the Jacobian matrixes for the pinhole
model, so it is necessary to analytically derive the Jacobian matrices.

5.3. Tracking, Local Mapping, and Loop Closing

The tracking is responsible for positioning the camera per frame and deciding when to insert a new
keyframe. To get the initial camera pose and initial map points, we first perform a map initialization for
omnidirectional cameras, which is explained in detail in Section 6.1. If the initialization is successful,
we optimize the pose using motion-only BA. Then a local map is acquired. It contains the map points of
nearby keyframes. Matches with the local map points are searched by reprojection, then the camera
pose and the map points are optimized with all matches. Finally, the tracking thread decides if a new
keyframe is inserted. When the tracking is lost, the relocalization module for omnidirectional cameras
starts working, which is explained in Section 6.2.

The local mapping processes the new keyframes and executes the local BA to optimize camera
poses and correct map point positions. New points are created by using a triangulation method which
is the same as the triangulation of initialization for omnidirectional cameras.

The loop closing is in charge of searching for loops with every new keyframe. For omnidirectional
cameras, this thread is almost the same as the original thread except the full BA and projection function,
which should be the EUCM instead of the pinhole model.

6. Map Initialization and Relocalization Algorithm

6.1. Map Initialization Algorithm

The goal of the map initialization is to get the relative pose and triangulate a set of initial map
points from matching feature points of two frame. Two geometrical models, the homography matrix
assuming a planar scene and the essential matrix assuming a non-planar scene, are computed in
parallel. Then a suitable model is automatically selected, and the relative pose is recovered with the
selected model.
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The method first extracts ORB features in the current frame Fc and reference frame Fr. It then
searches for matches uc ↔ ur . By (6), the coordinates of points xpc =

[
mxc, myc, mzc

]T
and xpr =[

mxr, myr, mzr
]T

(see Figure 4) are solved from ur and uc, respectively, so there are new matches xpc ↔ xpr .
A point position in world, a current frame and the reference frame homogeneous coordinates are
represented by x = [x, y, z, 1]T, xc = [xc, yc, zc, 1]T and xr = [xr, yr, zr, 1]T, respectively.

Figure 4. The points xpc and xpr back project to rays, and the intersection of the two rays is the object
point x. From the new matches xpc ↔ xpr , we can recover the relative pose [Rcr|tcr] between two frames
and triangulate the point x.

As shown in Figure 4, reference frame center or, points xpr and xr are on the same line, and current
frame center oc, points xpc and xc are on the same line. There are two non-zero scale factors λr and λc:

λrxpr = xr = [Rr|tr]x,

λcxpc = xc = [Rc|tc]x,
(12)

where [Rr|tr] and [Rc|tc] are 3× 4 matrices which represent camera poses.

6.1.1. The Homography Matrix

The homography matrix is suitable for a planar scene where points x are located. The plane can
be set to z = 0, so x = [x, y, 0, 1]T. By using (12), we get

λrxpr = [Rr|tr][x, y, 0, 1]T = Hr[x, y, 1]T,

λcxpc = [Rc|tc][x, y, 0, 1]T = Hc[x, y, 1]T,
(13)

where Hr and Hc are 3× 3 matrices.
From (13), we get

λcxpc = λrHcH−1
r xpr = λrHcrxpr, (14)

where Hcr is the homography matrix that can recover the relative pose between two frames.
The scale factors in (14) is eliminated by the cross product:

xpc × (Hcrxpr) = 0. (15)

There is no scale factors λr and λc in (15), so all the new matches points xpc ↔ xpr of the two frames
satisfy this equation for the same Hcr. This form (15) will derive a simple linear solution to Hcr, and it
is solved by the normalized direct linear transformation (DLT) as explained in [12] inside a random
sample consensus (RANSAC) scheme.
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6.1.2. The Essential Matrix

The essential matrix is suitable for a non-planar scene where points x are located. As shown in
Figure 4, point xr can be transformed into xc by:

xc = [Rcr|tcr]xr, (16)

where [Rcr|tcr] stands for the relative pose between current frame and reference frame.
From (16), we get the definition equation for the essential matrix Ecr in [12]:

xT
c Ecrxr = 0, (17)

where Ecr = [tcr]×Rcr.
By substituting (12) into (17): (

λcxpc
)T

Ecr
(
λrxpr

)
= 0. (18)

Because λr , 0 and λc , 0, we get

xT
pcEcrxpr = 0. (19)

There are no scale factors λr and λc in (19), so all new matches points xpc ↔ xpr of the two frames
satisfy this equation for the same Ecr. The essential matrix Ecr can be solved from (19) by 8-point
algorithms [12] inside a RANSAC scheme.

6.1.3. Matrix Selection

The homography matrix Hcr and the essential matrix Ecr are computed in parallel threads. Then
a suitable matrix is automatically selected by a robust heuristic method [2], which chooses a matrix in
Hcr and Ecr with smaller symmetric transfer errors [12].

6.1.4. Motion Recovery and Triangulation Method

We make the motion recovery from the selected matrix, then get the relative pose [Rcr|tcr] between
two frames. In the case of the homography matrix, we retrieve 8 motion hypotheses using the method
of Faugeras et al. [11]. In the case of the essential matrix, we retrieve 4 motion hypotheses using the
singular value decomposition method explained in [12].

We triangulate these hypotheses and select a solution with lower reprojection error.
The triangulation method, which is based on the linear triangulation method [12], will be
introduced below.

From (12), we can get on new matches points xpc ↔ xpr

xpr × ([Rr|tr]x)= 0,

xpc × ([Rc|tc]x)= 0.
(20)

A cross product of (20) gives three equations for each image point, of which two are linearly
independent. Equation (20) can be written as four independent equations:

mxr(P3
r )

T
−mzr(P1

r )
T

myr(P3
r )

T
−mzr(P2

r )
T

mxc(P3
c )

T
−mzc(P1

c )
T

myc(P3
c )

T
−mzc(P2

c )
T

x = 0, (21)
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where P = [R|t] and Pi are the rows of P. Equation (21) is solved by using the singular value
decomposition, then the world coordinates of x are obtained.

6.2. Relocalization Algorithm

The relocalization model starts working when the tracking is lost. For omnidirectional cameras,
the normal relocalization model based on ORB-SLAM is modified. The relocalization algorithm
performs first an ORB matching with each candidate keyframes. The method then performs RANSAC
iterations of the EPnP algorithm [26] to find a camera pose supported by enough inliers.

Because the EPnP algorithm is only suitable for the pinhole model, and the image surface must be
plane, we modified the relocalization model for the EUCM. In order to meet the conditions of the EPnP
algorithm, we map first an image point u to a point xp, then we map the point xp to a point xm which is
the intersection of the ray oxp and the z = 1 plane (see Figure 2). The coordinates of xm are computed
by using (5):

xm = [ mx/mz my/mz 1 ]
T
(mz , 0). (22)

The point xm meets the conditions of the EPnP algorithm. The value of mz is not allowed to be too
small to improve the accuracy of the EPnP algorithm. In our system, we let min(mz) = 0.1, and there
are very few points of mz < 0.1. Basically, we use the coordinates of xm instead of image points u in the
EPnP algorithm.

7. Results and Discussion

We performed an experimental evaluation of our omnidirectional ORB-SLAM in terms of accuracy
and robustness on the TUM VI benchmark [13]. The datasets provide camera images at 20Hz with
a 195 degrees FoV fisheye lens. The image resolution is 512×512. We obtained the camera intrinsic
parameters by using the Kalibr calibration toolbox [27] with the original checkerboard sequence.
We used 3 types of the datasets: room, corridor, and magistrale. Figure 5 shows the images from
the datasets. The room datasets are the sequences in the room with Motion Capture system, where
ground-truth poses are available for the entire trajectory. The corridor datasets are sequences in the
corridor and several offices. The magistrale datasets are sequences in the large hall. The ground-truth
poses of the above two datasets are available for the start and end segments in the same room with
Motion Capture system.

Figure 5. Sample images in the datasets: (a) room; (b) corridor; (c) magistrale.

We provided a quantitative comparison between our system and other systems, including the
normal ORB-SLAM and DSO. Since the normal ORB-SLAM and DSO use the pinhole model as the
projection function, we used the Kannala-Brandt model [8] with 8 parameters to rectify the key points
in ORB-SLAM and rectify and crop the image in DSO. We evaluated both algorithms in an Intel Core
i5-8300H notebook computer with 16GB RAM.
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7.1. Accuracy and Robustness Comparison

We measured the absolute translational root mean square error (RMSE) between the estimated
and the ground-truth position. The estimated position is computed on all keyframes and is aligned
with the ground-truth trajectory data. We get the scale factor by least square method where we
minimize the difference between the vector length of the estimated position and the truth position.
To facilitate a fair comparison: In the room datasets, the alignment is performed for all keyframes;
in the corridor and magistrale datasets, the alignment is only performed on the start segments; and
we disable loop detection in the corridor and magistrale datasets except the room datasets which
are used to demonstrate the loop detection for fisheye cameras. We have run each sequence 5 times
in these three systems and listed median results of each time, to account for the randomness of the
multithreading system. The results shown in Table 1 demonstrate our system outperforms the other
systems in accuracy and robustness. The accuracy of our system is typically below 5 cm in small
indoor rooms, below 15 cm in corridors and of a few meters in the large hall, because the length is
longer and longer, and the image overlap between frames is smaller and smaller. The drift computed
by percentage is below 0.1% in indoor rooms and corridors, and it is also below 1.5% in the large hall.
In Table 1, there are many “LOST” in the normal systems, when the camera rotates and moves too fast,
and the illumination variation is big.

Some representative visual results and estimated trajectories are shown in Figures 6 and 7.
Figure 6a shows a room map whose points are almost active due to wide FoV of fisheye camera;
Figure 6b is a map of the same room and a corridor, where datasets start and end in the same room.
As shown in Figure 7, the error of all systems is very small in the start segment, but our system suffers
less drift than other systems in the end segment because constraints between keyframes are stronger in
our system. Due to the wider FOV and the well-maintained scale, our system performs better than the
normal ORB-SLAM and DSO.

A major advantage of fisheye cameras is that more features can be observed in an input image.
Figure 1 shows our system can observe more points in a frame than the normal ORB-SLAM. The image
overlap between frames is also bigger, so the constraints between keyframes is stronger in our system,
as shown in the red circle of Figure 8.

Table 1. Comparison of translation root mean square error (RMSE). DSO = direct sparse odometry.

Sequences
Keyframe Trajectory RMSE (m)

(“X” means LOST) Length (m)

DSO Normal ORB-SLAM Omnidirectional ORB-SLAM

corridor1 X X 0.1252 305
corridor2 X X 0.1349 322
corridor3 X X 0.1360 300
corridor4 17.6904 11.2678 0.1196 114
corridor5 X X 0.1159 270

magistrale1 X 20.3902 11.5939 918
magistrale2 13.4714 10.0507 4.7239 561
magistrale3 X X 7.4427 566
magistrale4 X X 9.9546 688
magistrale5 X X 5.2586 458

room2 0.2868 0.0623 0.0466 142
room3 0.1806 0.0497 0.0446 135
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Figure 6. Examples of reconstructed map of the omnidirectional ORB-SLAM. Red points are active
points, black points are old points, and blue rectangles are keyframes. Dataset: (a) room2; (b) corridor4.

Figure 7. Estimated trajectories. The ground truth is available for the start and end segments in the
same room. Dataset: (a) corridor4; (b) magistrale2.

Figure 8. In the red circle, the green lines represent the constraints between keyframes (blue). Our system
has more lines than the normal ORB-SLAM. (a) The omnidirectional ORB-SLAM; (b) The normal
ORB-SLAM. (Dataset: room2).

7.2. Timing Measurement

Table 2 shows the measured average time over the datasets for the tracking thread. These results
demonstrate our system is real-time and each frame can be tracked at least 30Hz. The time cost of our
system is slightly larger than the normal ORB-SLAM, because the normal ORB-SLAM needs time to
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rectify and crop the key points, and our system needs not rectifying and cropping the input key points
but needs more time to compute on the projection function. Obviously, DSO needs more time to rectify
and crop the input images and more time to compute the map points because the direct method.

Table 2. Mean Timing Results (ms).

Sequences DSO Normal ORB-SLAM Omnidirectional ORB-SLAM

corridor4 137.96 24.6 30.3
magistrale2 125.17 29.1 30.8

room2 267.56 28.6 29.3

7.3. Relocalization Experiments

We performed two relocalization experiments on the datasets. In the experiments, we built a map
with the first 40 s of the two sequences room2 and room3, and performed global relocalization with every
successive frame. We performed the same experiment with the normal ORB-SLAM for comparison.
Table 3 shows the number of the initial map keyframes and the recall. Our system recalls better and
needs less keyframes to create the initial map than the normal ORB-SLAM because more features can
be observed in an input image by using fisheye cameras.

Table 3. Results for the Relocalization Experiments. KF = Kalman filter.

System KFs of Initial Map Recall of Relocalization (%)

room2, 2081 frames to relocalize

Normal ORB-SLAM 75 84.1
Omni ORB-SLAM 52 88.8

room3, 2020 frames to relocalize

Normal ORB-SLAM 93 61.6
Omni ORB-SLAM 61 76.1

8. Conclusions

We proposed a real-time monocular SLAM system for fisheye cameras. We first incorporated
the enhanced unified camera model within the ORB-SLAM. Our system can use the full area of the
images, even with strong distortion, except relocalization algorithm, which can also use more points
than the normal algorithms because the points on the projection surface of EUCM are directly used.
We analytically derived the Jacobian matrices to speed up the bundle adjustment process. A map
initialization method was proposed for fisheye cameras. We proved the new matches points satisfy
the homography matrix assuming a planar scene and the essential matrix assuming a non-planar
scene to motion recovery and triangulation method. And we modified the relocalization algorithm for
omnidirectional cameras. Then, we compared the performance of our omnidirectional ORB-SLAM and
the normal systems on the public datasets, and demonstrated our method yields better performance in
accuracy and robustness than the normal methods. In future work, we will extend our method with
point features specially for fisheye cameras, inverse depth, and IMU.
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