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Abstract: The wideband electromagnetic imaging system using a parabolic reflector is a device
for detecting and locating electromagnetic interference sources (EMIS). When multiple coherent
interference sources are detected, the confusion will occur due to the coherent noise that is caused
by interference phenomenons. Previous works have removed the coherent noise by using iterative
techniques, but they face a limitation in removing noise in that the coherent noise pattern changes
with frequency in a wideband. In this paper, an adaptive homomorphic filtering is proposed to
overcome the limitations of conventional methods from 1 GHz–6 GHz. The coherent noise existing in
the several electromagnetic images is studied, and it is confirmed that the variation of the coherent
noise pattern is related to the position, the number, and the frequency of EMIS. Then, by analyzing
the probability density of coherent noise intensity, an adaptive Gaussian filter is carefully designed
to remove coherent noise. The filter parameters are selected by the minimum description length
criterion (MDL) to apply to compute directly the local amount of Gaussian smoothing at each pixel of
each image. The results of the experiments and simulations demonstrate that the proposed method
can significantly improve the quality of electromagnetic images in terms of maximum sidelobe level
(MSL) by 15 dB and dynamic range (DR) of the system over 20 dB, compared with conventional
narrowband denoising methods.

Keywords: coherent noise; adaptive homomorphic filtering; MDL; wideband electromagnetic
imaging system

1. Introduction

With the development of edge computing and interest of things technologies, electronic devices
are being widely used in various applications. Since some of these devices are operating at the same
frequency points and emitting wideband electromagnetic signals, these node devices may also become
same-frequency interference sources. A spectrum analyzer or other qualified measurement equipment
is used to detect electromagnetic interference sources (EMIS). However, it is very time-consuming to
use these methods, which require a series of complex and direct measurements on the device surface
at different times. A wide-range, wide-band, and far-field [1] electromagnetic imaging system is
proposed to measure field distribution to the plane of the device and locate EMIS in real-time. When
the multiple coherent interference sources are detected, the confusion could occur due to coherent
noise that is caused by interference phenomenons and the interference intensity of the diffraction wave
may be stronger than the intensity of the EMIS. Therefore, it leads to low spatial resolution and false
source identification in localization of the multiple sources. Moreover, the interference intensity of
the diffraction wave changes with the position, the number, and the frequency of EMIS, leading to
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variation in the coherent noise pattern. Therefore, the removal of coherent noise from electromagnetic
images is a very challenging task.

Coherent noise arises in many practical applications such as laser, microscope, ultrasound
images, and synthetic aperture radar (SAR) images, which use coherent demodulation of reflected
electromagnetic waves. The additive noise model is not suitable to express the coherent property of
these image acquisition processes. The multiplicative noise model is more appropriately applied to
these coherent imaging systems, compared with the additive noise. The popular multiplicative noise
removal methods include transforming domain-based, non-local filtering and variational methods. The
transform domain-based method has attracted much attention, since it can extend multiplicative noise
removal methods to the direct application of most state-of-the-art algorithms. José M. Bioucas-Dias [2]
used the logarithmic transformation to convert the multiplicative model into an additive one and
applied variable splitting to obtain an equivalent constrained problem. JianLu [3] proposed a variational
model formulated in the logarithm transforms domain of the desirable images for the restoration of
images corrupted by multiplicative noise. A new method was proposed by Jing Dong [4] using a sparse
analysis model that contains a data fidelity term and two regularizes to remove the multiplicative
noise. However, these methods are iterative and thus do not allow one to predict the convergence
process at all and are not applicable to real-time measurements. Norashikin [5] used a subspace-based
spatial domain constraint method (SDC), which applies a homomorphic framework in order to convert
multiplicative speckle noise into an additive, for speckle noise removal from SAR images. Devanand [6]
used the logarithmic transform and bivariate thresholding-based dual-tree complex wavelet transform
to remove additive and multiplicative noise. However, most of the wavelet thresholding methods
suffer from the drawback that the predefined thresholds may not match the specific distribution of
signal and noise components in different scales. Recently, some new approaches have been proposed.
Charles [7] proposed a general scheme to include the Gaussian denoisers within a multi-channel SAR
speckle reduction technique called MuLoG (MLG). Weiying Zhao [8] proposed a fast and efficient
multitemporal despeckling method by using the ratio image provided by the ratio between an image
and the temporal mean of the stack. The wide-band and space-variant property of the imaging system
ensures the variation of the coherent noise pattern. Existed methods cannot cope with the problem
stated above.

In this paper, we analyze that the coherent noise pattern changes with the position, the number,
and the frequency of EMIS, and find out the filter parameters that are valid for coherent noise removal.
To meet real-time, accurate, and adaptable requirements of the imaging system, an adaptive Gaussian
filter is designed to enable coherent noise to be eliminated after taking logarithms. The filter parameters
are selected by MDL to directly compute the local amount of Gaussian smoothing in each pixel of each
image. Our technique is not iterative, it is very stable and does not require any thresholds. Therefore,
it can realize real-time processing on terminal equipment.

2. Preliminary Foundations

To estimate the coherent noise accurately, the key issue is to find out the properties of the coherent
noise components and distinguish them from the signal using an appropriate method. The variation of
the coherent noise pattern regarding the position, the number, and the frequency of EMIS is discussed,
and then the filter parameters that are valid for coherent noise removal are discussed.

2.1. Feature Analysis of Coherent Noise

Following the Fraunhofer-diffraction theory, the expression for the composite image intensity
distributions from two-point sources formed by the circular pupil function in the image plane of the
coherent optical systems are given by [9], as follows:

Io(Z) =
∣∣∣P(Z−Q)

∣∣∣2 + α
∣∣∣P(Z + Q)

∣∣∣2 + 2
√
αµ(Z0)

∣∣∣P(Z−Q)
∣∣∣∣∣∣P(Z + Q)

∣∣∣ (1)
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The two-point sources are separated by the distance 2Q = Z0; α is the intensity difference between
the two coherent sources; µ(Z0) is the substantial part of the complex degree of the coherence of the
illumination; Z is the dimensionless diffraction variable; and P(Z + Q) and P(Z − Q) are the amplitude
impulse responses of the coherent optical imaging system corresponding to the two-points, positioned
at a distance of Z0/2 on either side of the optical axis. In the electromagnetic imaging system, Is is the
image intensity distribution of the two EMIS, a = 1 gives the case of equal intensities of the two sources,
and Is1 and Is2 are the intensity impulse responses of the imaging system corresponding to the two
sources, respectively. According to Equation (1), the coherent noise can be expressed as follows:

I(x, y) = Is(x, y) − Is1(x, y) − Is2(x, y) (2)

Some of the properties of coherent noise in the electromagnetic images have been studied. The
coherent noise is integrated with a finite aperture; the probability distribution of the noise intensity has
been given by Goodman [10], and is expressed as

pI(I) =
MM

Γ(M)I0
(

I
I0
)

M−1
exp(−

MI
I0

), (3)

where I0 is the mean intensity and M may be interpreted as the effective number of the noise in the
integrating aperture. The parameter M is closely related to the space-bandwidth product R of the
imaging system–detector combination. For example, in the case of a square pupil function of side Dp
and a square scanning aperture of side a,

R = (aDp/λd)2, (4)

where d is the distance between the exiting pupil and the image plane and λ denotes the wavelength of
the coherent source used. According to [11], it may be shown that the expression for M is then

M =
(
2

1∫
0

(1− τ) sin c2(
√

Rτ)dτ
)−2

, (5)

so that

M '
R f or R� 1,
1 f or R� 1.

(6)

Consider a noise image to which the transformation D = − ln(I) is applied. The probability
distribution (3) is then transformed into

fD(D) = [MM/Γ(M)] exp[−M(D−D0)] exp
{
−M exp[−(D−D0)]

}
(7)

where D0= −ln(I0). According to [12], if M�1, and the number M of noise in the aperture is large
enough, the log-transformed noise is approximately Gaussian additive noise with a variance equal to
1/M. For small values of M, this is not true. For values as small as M = 3, the Gaussian approximation
for D is seen to be relatively good.

In the electromagnetic imaging system, the interference source (1 GHz–6 GHz) imaging is 10 m
away from the reflective surface. An offset paraboloid with a diameter of 3 m can realize a wide range
of imaging, corresponding to 5.2 m × 2.6 m in rectangular area. The far-field maps are visualized from
the scan plane delimited by 1.2 m × 0.75 m. The distance d between the exit pupil and the image plane
is 2.05 m. In the imaging system, a = 1.2 m, Dp = 3 m, d = 2.05 m, the wavelength of the electromagnetic
wave is from 0.05m to 0.3m, then the values of R and M are from 34.265 to 1233.55. Therefore, the higher
the frequency of the electromagnetic interference source, the closer the distribution of the logarithm of
the coherent noise to the Gaussian distribution.
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The interference sources at 2 GHz, 4 GHz, and 6 GHz, and the distribution of coherent noise
intensity in the images, are shown in Figure 1. The probability density of the logarithm of the coherent
noise intensity gets closer to the Gaussian density as the frequency increases, and the dynamic range
of the system is from −40 dB to −18 dB. Moreover, the distribution of coherent noise is not only
related to frequency, but also it is affected by the number and position of the interference sources. The
electric field distributions of different numbers of EMIS at different positions are shown in Figure 2; the
probability density of the logarithm of the coherent noise intensity in the images has changed, and the
dynamic range of the system is from −15 dB to −13 dB. Owing to this large variation in electromagnetic
wave path lengths among many possible electromagnetic wave paths along which electromagnetic
waves travels, the frequency sensitivity of the coherent noise can be significantly enhanced.
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2.2. Selection of Parameters

The homomorphic filtering process is composed by a natural logarithmic transformation, and the
frequency filter has circularly symmetric curve shape, with its center having (u,v) = (0,0) coordinates.
The transfer function of the filter, which is modified by Gaussian high-pass filter, is expressed as follows:

H(u, v) = (rH − rL)

[
1− exp

{
−c

(
D(u,v)

D0

)2
}]

+ rL

= (rH − rL)[1− exp(−c D2(u,v)
D2

0
)] + rL

= rH[1− exp(−c D2(u,v)
D2

0
)] + [exp(−c D2(u,v)

D2
0

)]rL

(8)

where constant c is applied to control the steepness of the slope, D(u,v) is the distance between
coordinates (u,v) and the center of frequency at (0,0), and D0 is the cut-off frequency. The high frequency
gain rH and the low frequency gain rL are two adjustable parameters, expressed as follows:

rH > rL ≥ 0 (9)

where rL is the low frequency gain which has a small variable range was from 0 to 1. Based on (8), a
smaller rH will realize more severe inhibition of the low frequencies, and a larger rH will lead to greater
enhancement of the high frequencies. The D0 is the cut-off frequency in the Gaussian filter that controls
the amount of information in the scale-space. These make rH and D0 the most important parameters
of the system. EMIS are detected and located from 1 GHz to 6 GHz by the electromagnetic imaging
system, and the image of two interference sources at 3 GHz is selected to explore the filter parameters
to influence on coherent noise. Figure 3 shows the image representation of the homomorphic filter
for different rH, D0, rL, and c values. It clearly shows that coherent noise reduces gradually with
changing values of rH and D0, and that the spatial resolution improves. However, the coherent noise
removal does not change much with changing values of rL and c. This indicates that rH and D0 are the
important parameters in our system. On the other hand, the position, the number, and the frequency of
the EMIS are unknown and require a different filter to reduce coherent noise in the image. Therefore,
we produce the adaptive homomorphic filter based on each input image by adjusting the parameters
rH and D0. In our experiment, to avoid the intensity information of electric field being damaged, the
filter parameters are empirically set to be c = 1 and rL = 0.5.
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3. Proposed Method

The structure of the proposed adaptive homomorphic system to reduce coherent noise is shown
in Figure 4. First, the natural logarithmic function is used to transform the input coherent noisy image
to an additive one, and then FFT is applied. In the frequency domain, consider a stack of smoothed
images; the appropriate filter parameters are chosen by a set of Gaussian kernels. The optimal coding
is the selection criterion, and it can be estimated with tools using the MDL. After that, an image is
made the inverse Fourier transform (IFT). Exponential function is then applied to the output to get
an estimate of the denoised image. The adaptive Gaussian filter parts of the proposed system are
explained by the next few sections.
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3.1. Adaptive Gaussian Filter

In frequency domain, a stack of smoothed images can be expressed as Ip1, Ip2, . . . Ip3 which are
obtained by multiplying the initial image I0 with a set of Gaussian kernels Gp, p = p1,...,pn, where
Ip = I0 ×Gp. Thus, it is important to choose the appropriate rH and D0; the optimal coding is the
selection criterion that is effective for describing the parameter. In practice, tools like MDL [13] are
used to estimate the optimal code. An image after applying a Gaussian filtering is

I0(u, v) = Ip(u, v)︸  ︷︷  ︸
High−Pass

+ ε(u, v)︸ ︷︷ ︸
Residual

(10)

where the original image minus the smoothed image is the residual ε. In machine vision for
balancing simplicity and accuracy, the idea of selecting the MDL has been successfully applied. In an
electromagnetic imaging system, the coherent noise is eliminated by adjusting the filter parameters.
Optimal coding can obtain the minimum number of bits and the maximum information of the filter
parameters, that is, the maximum smoothness with the minimal residual. Equation (10) is rewritten as
description length (dl), as follows:

dlI0(u,v) = dlIp(u,v) + dlε(u,v) (11)

3.2. Description Length of Ip and ε

The rH and D0 are used to compute a fast approximation of the amount of information in Ip. The
cut-off frequency D0 is the half power point where the filter response is reduced to 0.5 (−3 dB) in the
power spectrum or 1/

√
2 ≈ 0.707 in the amplitude spectrum and rH is used to control the amplitude

spectrum of the filter.
Furthermore, rH ∝ D0, when a constant (β) is given, rH can be expressed as rH = βD0. The

sampling theorem states that for any signal of frequency f, the number of samples s (Nyquist rate)
needed for reconstructing accurately the original signal is 2f at least. As we know, f ∝ D0

2; the
frequency f is proportional to the Gaussian filter band-width, which is controlled by rH

2. Given a
constant (α), the sampling rate could be expressed as s = n(αβ2rH

2), n ≥ 2.
Although the bits representing each s are unknown, they are proportional (s ∝ bits) to the amount

of information, given a constant µ. We can express IrH as follows:

dlIrH (u,v) = n(µαβ2rH
2); n ≥ 2 (12)
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According to [14], the D0 in the Gaussian filter controls the amount of information in the scale-space;
the description length of the parameter D0 of the Gaussian filter is estimated in bits as follows:

dlID0 (u,v) = n(µαD0
2); n ≥ 2 (13)

The DML in bits of a smoothed image given the rH and D0 of the Gaussian filter are estimated by
Equations (12) and (13). In addition, Equations (12) and (13) demonstrate that a correct description
length of IrH and D0 should be computed in a range that is set as 0.5 to 6 and 10 to 25 by many experiments.

According to Section 2.1, the probability distribution of FFT of logarithm of coherent noise before
inputting the adaptive Gaussian filter is approximately a Gaussian density. Thus, it can be written as

P(x) = e
−

x2

2σ2
ε (14)

where σ2
ε is the variance of the noise and ε2 means the local quadratic residual between the original

image I0 and the smoothed image IrH in space.
The measure of information in bits can computed according to [14]. Thus, the description length

of the residual is obtained as

dlεσ = λ(
ε2σ2

ε

2
) (15)

where λ = 1/ ln 2, dlIrH (u,v), and dlεσ(u,v) have been defined, we use the sum of terms (12)–(15) to write
the local description length as

dlI0(u,v) = dlIrH (u,v) + dlID0 (u,v) + dlεσ(u,v)

= nµα(β2rH
2 + D0) + λ(

ε2σ2
ε

2 )

= η(β2rH2 + D2
0) + ε2

(16)

where η = 2µαβ2/λσ2
ε. In Equation (16), it is very easy to distinguish that η can be expressed the noise

variance σ2
ε, and it has effects on precision used to represent Ip.

Equation (16) is neither an edge stopping function or gradient threshold, and by controlling the
rHmin, rHmax, D0min, and D0max the minimal and maximal amount of smoothness are obtained in the
scale frequency. The filter shape with rH and D0 change as a function of MDL.

3.3. Optimal Parameter Selection

As Equation (16) is defined, the local amount of smoothing can be computed directly using the rH

and D0, and Gaussian filtering can be performed. The local description length at each (u,v) is computed
through I0, Ip1, Ip2, . . . Ipn. Then, we choose the minimal value of dlIp(u,v) using the MDL principle at
each location (u,v). The minimal value returns the optimal smoothness rH

∗ and D0
∗ in (u,v). The dlIp(u,v)

is minimum, and returns the maximum smoothing and the minimum residual with rH and D0. Finally,
the output smoothed image in (u,v) is the intensity Ip(u,v) at the selected rH

∗(u, v) and D0
∗(u, v). The

parameters rH and D0 of the Gaussian filter at (u,v) allow us the possibility of making an adaptive filter.
Each point (u,v) is blurred, as rH

∗(u, v) and D0
∗(u, v) can be expressed as

Ip(u,v) = I0(u, v) ∗ (rH(u, v)∗ − rL)

1− exp

−c
(

D(u, v)
D0∗(u, v)

)2

+ rL (17)
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4. Results and Discussion

We conducted an experiment and simulation to verify the noise reduction performance. The sparse
analysis model (SAM), the subspace-based spatial domain constraint method (SDC) and multi-channel
logarithm with Gaussian denoising (MLG) were the results of some the latest studies on multiplicative
noise filtering. Therefore, these three methods were compared with the proposed method.

The intensity of the sidelobe is almost equal to the intensity of the main lobe in the source
localization system. This beam pattern can lead to the “confusion” phenomenon, which will cause
large localization errors. The maximum sidelobe level (MSL) index has been widely used in source
positioning systems [15] and antenna arrays to evaluate system performance and noise [16–18], such
as sound localization systems. In electromagnetic imaging system, the presence of maximum sidelobes
was the peak intensity value of coherent noise m2, and the main lobe intensity was the peak intensity
value of the radiation source w2. It was defined as

MSL = 10 log10(
w2

m2 ) (18)

The sidelobe intensity was suppressed significantly, and the noise gain was simultaneously
improved. A higher MSL value indicated a better noise suppression performance.

The dynamic range of the system describes the measurement between maximum and minimum
values. To the electromagnetic imaging system, we can interpret dynamic range as the measurement
between the lowest Imin and highest intensity Imax values of the electric field as follows:

DR = 10 log10(
Imax

Imin
) (19)

4.1. Parameter Selection of the Adaptive Filter

To verify the adaptive performance of the filter, the simulation was carried on several images at
2 GHz, 4 GHz, 3 GHz and 5 GHz, respectively. The MSL, DR, and maximum sidelobe before and
after denoising were summarized in Table 1, in which the best results for denoising were expressed.
Coherent noise was improved by 13 dB for a maximum value of MSL, and the dynamic range of the
system increased by 76 dB after the proposed method was applied; this proved that a higher MSL
value indicated a better noise suppression performance. The reason for this was that the MDL criterion
was used to automatically adjust the value of rH and D0 to achieve the optimal filter according to the
logarithm spectral behavior of the coherent noise of interference sources for different frequencies in
Figure 5. The minimal and maximal amount of smoothness were controlled by the rHmin and rHmax

from 0.5 to 6. The D0min and D0max were from 10 to 25. Notice that the Gaussian filter shape changed
as a function of MDL by rH and D0. As a result, the local scale permitted effective noise elimination
and accurate information preservation at the same time.

Table 1. Maximum Sidelobe Level (MSL) and dynamic range (DR) results for electromagnetic
interference sources (EMIS) at 2 GHz, 4 GHz, and 6 GHz before and after denoising.

Frequency (GHZ) 2 4 6

Original (dBv2) −8 −8 −7
Denoised (dBv2) −19 −21 −20

MSL (dB) 8/19 8/21 7/20
DR (dB) 48/105 51/120 64/140
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4.2. Test on Simulated Images

Figure 6 illustrated the effects of different denoising methods for the two dipole sources at 2 GHz(a)
at different positions. The SDC (c), MLG (d), and SAM methods (e) smooth the image, which is almost
the same as (b). These methods did not work for coherent noise. In contrast, the proposed method (f)
not only reduced the coherent noise from −10 dBv2 to −22 dBv2 but also increased the dynamic range
of the system by 50 dB. To further test the coherent noise removal ability of the proposed method, two
dipole sources at 2 GHz are shown in Figure 7a. In contrast, the coherent noise was reduced from
−15 dBv2 to −30 dBv2 but also increased the dynamic range of the system by 65 dB. The results further
proved the powerful denoising ability to coherent noise using the proposed method.

Sensors 2019, 19, x FOR PEER REVIEW 10 of 14 

 

 
Figure 6. The filtered results for two dipole sources at 2 GHz. (a) The original image, (b) the lateral 
view of (a), (c) SDC, (d) MLG, (e) sparse analysis model (SAM), and (f) proposed. 

 
Figure 7. The filtered results for two dipole sources at 2 GHz. (a) The original image, (b) the lateral 
view of (a), (c) SDC, (d) MLG, (e) SAM, and (f) proposed. 

The two dipole sources at different positions for 1 GHz to 6 GHz were adopted to evaluate the 
wideband performance of different denoising methods. The MSL and DR results of various methods 
are shown in Figures 8 and 9. The SDC, SAM, and MLG methods almost have no promotion, because 
these methods had constraints to interference sources at different frequencies and positions. 
Significantly, the proposed method yielded more remarkable improvement on MSL by 12 dB and DR 
by 50 dB in Figure 6, and the MSL and DR improved by 15 dB and by 70 dB in Figure 7 compared 
with the others. 

Figure 6. The filtered results for two dipole sources at 2 GHz. (a) The original image, (b) the lateral
view of (a), (c) SDC, (d) MLG, (e) sparse analysis model (SAM), and (f) proposed.



Sensors 2019, 19, 4469 10 of 14

The two dipole sources at different positions for 1 GHz to 6 GHz were adopted to evaluate the
wideband performance of different denoising methods. The MSL and DR results of various methods are
shown in Figures 8 and 9. The SDC, SAM, and MLG methods almost have no promotion, because these
methods had constraints to interference sources at different frequencies and positions. Significantly,
the proposed method yielded more remarkable improvement on MSL by 12 dB and DR by 50 dB in
Figure 6, and the MSL and DR improved by 15 dB and by 70 dB in Figure 7 compared with the others.
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4.3. Test on Experimental Images

To validate the effectiveness of the proposed method in practical measurement, the experiment
in an anechoic chamber was built as shown in Figure 10a, using the two and three double-ridged
horn antennas at 3 GHz (1 GHz–18 GHz) in a 5.2 m × 2.6 m rectangular area (b). The experiments
were applied to a power divider to get a coherent signal. SDC (c) and SAM (e) methods could not
achieve satisfying results in denoising task, and the value of DR was reduced. It can be seen that
the peak intensity of coherent noise was removed in Figure 11d and in Figure 12d using the MLG
method. However, the value of DR was reduced. In contrast, the proposed method fully considered
the frequency domain property of coherent noise, which improved MSL and DR.
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Figure 12. The filtered results for three horn antennas at 3 GHz. (a) The original image, (b) the lateral
view of (a), (c) SDC, (d) MLG, (e) SAM, and (f) proposed.

To completely illustrate time cost of the proposed method, two electromagnetic interference
sources at 1 GHz, 3 GHz, and 6 GHz were tested and the bilinear interpolation was used to make
the images different sizes. The average runtime of various denoising methods on different images is
shown in Table 2. The proposed method had more promising time efficiency and higher performance
than SAM, SDC, and MLG methods, which made it closer to the realization of real-time processing on
terminal equipment.
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Table 2. Average runtime (s) of various methods on different images at 1 GHz, 3 GHz, and 6 GHz.

Image Size SAM SDC MLG Proposed

90 × 90 9.164 3.5 5.218 2.197
150 × 150 25.231 7.834 6.243 3.721
180 × 180 37.412 10.93 7.265 5.292
220 × 220 54.042 15.46 7.846 7.244

5. Conclusions

In this work, an adaptive homomorphic filter is presented so that the natural logarithmic function
is applied to add the multiplicative noise to the additive noise and directly compute the local Gaussian
smoothing in terms of rH and D0. Our technique is not iterative, it is very stable and does not
require any thresholds. The result of the experiments shows that the output of the adaptive filter
can reduce the intensity of the coherent noise by 15 dB and could improve the dynamic range of the
wideband electromagnetic imaging system by over 20 dB compared with the conventional narrowband
denoising methods.

This paper presents coherent noise suppression in a low-frequency wideband imaging system.
It discusses the increase in the number of interference sources in electromagnetic images, as well as
the fact that the numbers of interference sources in electromagnetic images are reduced due to the
interference phenomenon. The electromagnetic imaging system can only measure the intensity of the
electric field; it is very difficult to recover the phase of the interference source. In future work, we will
optimize our method to solve the problem in which the numbers of interference sources are reduced
without phase information.
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