
sensors

Article

A Localization and Tracking Approach in NLOS
Environment Based on Distance and Angle
Probability Model

Xin Tian 1, Guoliang Wei 2,* , Jianhua Wang 1 and Dianchen Zhang 1

1 Department of Control Science and Engineering, University of Shanghai for Science and Technology,
Shanghai 200093, China; 171560040@st.usst.edu.cn (X.T.); 171560042@st.usst.edu.cn (J.W.);
172560460@st.usst.edu.cn (D.Z.)

2 College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
* Correspondence: guoliang.wei@usst.edu.cn

Received: 11 September 2019; Accepted: 9 October 2019; Published: 14 October 2019
����������
�������

Abstract: In this paper, an optimization algorithm is presented based on a distance and angle
probability model for indoor non-line-of-sight (NLOS) environments. By utilizing the sampling
information, a distance and angle probability model is proposed so as to identify the NLOS
propagation. Based on the established model, the maximum likelihood estimation (MLE) method
is employed to reduce the error of distance in the NLOS propagation. In order to reduce the
computational complexity, a modified Monte Carlo method is applied to search the optimal position
of the target. Moreover, the extended Kalman filtering (EKF) algorithm is introduced to achieve
localization. The simulation and experimental results show the effectiveness of the proposed
algorithm in the improvement of localization accuracy.
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1. Introduction

With the rapid development of wireless communication technology in recent years, wireless
localization systems have received considerable research interest due to the increasing demand of
location-based services (e.g., [1–5]). At present, many localization technologies have been widely used,
such as GPS [6], CPS [7], and WLAN [8,9]. It is acknowledged that these localization systems perform
well under ideal conditions [10–13]. However, in real-world situations, due to the complexity of the
environment such as the non-line-of-sight (NLOS) condition, the obstruction of the line of sight of the
wireless communication between the anchor and the target may decrease the accuracy of the distance
measurement, which accordingly leads to a poor localization accuracy [14].

So far, there are various methods to deal with ranging bias in the NLOS propagation. Based on the
range measurements, the target localization issue in harsh indoor environments was investigated in [15].
By using the semi-definite programming relaxation technique, a robust estimator was introduced
in [16] for the purpose of coping with the NLOS bias. The localization accuracy of range-only
sensors with both additive and multiplicative noises was investigated in [17,18]. After that, in [19],
the Manhattan distance was introduced to the WKNN algorithm to distinguish the influence of different
reference nodes. In [20], the scene analysis approach was employed including two stages, namely,
the offline stage and the online stage. In the offline stage, the wireless signals from all the anchors
are recorded at each specific location in order to build a fingerprint database. In the online stage,
according to the built fingerprint database, the K-nearest neighbor and weighted K-nearest neighbor
algorithms were adopted to classify the data obtained from the environment into specific classifications.
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On the other hand, most of the existing results with respect to various NLOS identification methods
(i.e., distinguish that the environment is in LOS (line-of-sight) or NLOS propagation) are based on range
estimates [21–27]. Note that all these methods require a sufficient number of measurements to reduce
the impact of NLOS range estimates, which imposes a great burden on the computational complexity.

Generally, LOS propagation is more likely to occur when the distance between a target and an
anchor is short enough. However, in real environments, with the increasing distance between the
target and the anchor, the probability of NLOS propagation increases accordingly. In [28], LOS/NLOS
probability was assumed to be fixed and known a priori, which ignores the fact that the occurrence
probability of LOS and NLOS propagations is dependent on the distance between the target and
the anchor. In [14], the distance-related LOS/NLOS probability model was proposed. However,
in addition to the distance, the NLOS propagation probability is also affected by the angle between the
target and the anchor, which has not been taken into consideration in most of the reported results.

In this paper, the localization problem is considered in a real environment. The main contributions
of this paper are summarized as follows:

(1) An optimization algorithm based on a distance and angle probability model for an indoor
NLOS environment is proposed. Based on the NLOS propagation occurrence probability model,
the maximum likelihood estimation (MLE) method is used to estimate the target position in order to
suppress the NLOS error. In order to increase the speed of the operation, a simplified Monte Carlo
algorithm is used to estimate the state. In addition, the extended Kalman filtering (EKF) algorithm is
applied to the localization system to reduce measurement errors.

(2) The parameter acquisition method of the NLOS propagation occurrence probability model is
given, which is obtained by sampling in the environment to acquire the probability of occurrence of
NLOS status at different distances and angles.

(3) According to the characteristics of the signal, a simulation environment is established, which
is similar to the real environment. A practical measurement scheme is used to verify the effectiveness
of the proposed algorithm and compared with the existing algorithms.

The remainder of this paper is organized as follows. In Section 2, the system model is introduced.
A probability model of the occurrence of NLOS propagation is formulated in Section 3. Based on the
established model in Section 3, an MLE method is presented in Section 4. In Section 5, a localization
method based on the extended Kalman filter algorithm is put forward. Simulation and experimental
results are given in Section 6. Conclusions are drawn in Section 7.

2. System Model

In this paper, the system model under consideration is in a two-dimensional environment. It is
assumed that there are N anchors in the environment, and the position of the i-th anchor is denoted as
(xi, yi), where xi is the value of the anchor on the x-axis and yi is the value on the y-axis. Similarly,
the location of the target is represented as (x, y). The measurement distance between the i-th anchor
and the target is expressed as:

zi(t) = dri(t) + Gau(t) + βi · NLOS(t), (1)

where zi(t) is the measured distance and dri(t) is the real distance between the i-th anchor and the
target at time t. Gau(t) is the Gaussian white noise with zero-mean and variance σ2

los in the LOS
propagation. NLOS(t) stands for the error in NLOS propagation, which can also be described by the
Gaussian white noise with mean µnlos and variance σ2

nlos. Here, the Gau(t) and NLOS(t) are assumed
to be mutually independent in the propagation environment.

Remark 1. Because of the complicated propagation environment, not all the propagations are LOS propagations.
In (1), βi is a random variable taking values with 0 and 1. If the distance is measured in the NLOS propagation,
the noise includes Gau(t) and NLOS(t) (i.e., βi = 1). Otherwise, if the distance is measured in the LOS
propagation, the noise only includes Gau(t) (i.e., βi = 0).
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It should be pointed out that in practical engineering, the distributions of Gau(t) and NLOS(t)
can be determined a priori via the measurements and pre-calibration. Consequently, the probability
density function of the di(t) in the LOS and NLOS propagation are, respectively, expressed as

plos(zi) =
1√

2πσ2
los

· e
− (zi−dri)

2

2σ2
los (2)

pnlos(zi) =
1√

2π(σ2
los + σ2

nlos)
· e
− (zi−dri−µnlos)

2

2(σ2
los+σ2

nlos) . (3)

Moreover, it is assumed that NLOS propagation occurs with probability pi,nlos. As such,
the probability density function of zi(t) can be expressed as:

p(zi; x) = pnlos(zi; x) · pi,nlos(zi, θi; x)

+ plos(zi; x) · pi,los(zi, θi; x), (4)

where θi ∈ (−180, 180] represents the angle between the positive direction of the x-axis and the vector
constituted by the i-th anchor and point x, and pi,los(zi, θi; x) = 1− pi,nlos(zi, θi; x).

3. NLOS Propagation Occurrence Probability Model

Due to the complexity and uncertainty of the propagation, it is improper to describe the probability
of the NLOS propagation as a constant. In order to better reflect reality, it is necessary to extract samples
to get the characteristics of the environment. The distance-based probability model was proposed
in [14], which described that the probability of the NLOS propagation increased with the distance.
However, in the actual environment, the probability of NLOS propagation is related to not only the
distance but also the angle. In addition, the probability of NLOS propagation is diverse in different
environments. Therefore, a probability model of NLOS propagation needs to be established which
gives the probability of NLOS propagation based on the distance and angle information between the
measured target and the anchor node. For convenience, it is assumed that the distance and the angle
are mutually independent in the NLOS propagation.

Denote by N the number of sampling points. In order to reduce the influence of the noise of
the LOS propagation in the measurement, multiple distances are measured and the average value is
calculated at each sampling point. The actual distance and the measured distance between the i-th
anchor and the j-th sampling point are expressed as dr,i,j and zi,j, respectively. θr,i,j ∈ (−180, 180] is the
angle between the positive direction of the x-axis and the vector which is the anchor to the sampling
point. By calculating the difference between the actual distance and the measured distance, we can
determine whether NLOS propagation exists or not. As such, an indicative variable is introduced
as follows:

gi,j =

{
1, zi,j − dr,i,j > dthreshold

0, else
, (5)

where gi,j = 1 means that the measured distance is in the NLOS propagation between the i-th anchor
and the j-th sampling point, and dthreshold is a given constant, which can be set slightly larger than
measurement error. The bound of the measurement error η can be given, and we have

−η ≤ Gau(t) ≤ η. (6)
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The probability satisfying (6) can be expressed as

ζ =
∫ η

−η

1√
2πσlos

exp(− z2

2σ2
los

)dz. (7)

In order to reduce the possibility that the measurement noise is determined as the NLOS error,
the parameter ζ can be set to 0.99, that is, the probability that the measurement error is determined
as the NLOS error is 1%. According to (7) and the properties of the Gaussian noise, we can obtain
η ≈ 2.58σlos. Therefore, dthreshold can be set to 2.58σlos.

The maximum of the actual distance between the i-th anchor and each sampling point is expressed
as dr max,i. Divide the interval (0, dr max,i] into ndi equal subintervals and the ids-th subinterval

is
(
(ids − 1) · dr max,i

ndi
, ids ·

dr max,i
ndi

]
, where ids = 1, 2, · · · , ndi. The central point of the ids-th distance

subinterval can be expressed as

dc,ids =
(2ids − 1) · dr max,i

2ndi
. (8)

Subsequently, assign N sampling points to ndi distance subintervals and the number of the
sampling points in the ids-th subintervals is ndi,ids ,total . For the ids-th subinterval, it is assumed that
there are ndi,ids ,nlos sampling points in the NLOS propagation. As such, the probability of NLOS
propagation in the ids-th interval can be expressed as

pdi,ids ,nlos =
ndi,ids ,nlos

ndi,ids ,total
. (9)

The probability acquisition method related to distance is summarized in Algorithm 1.

Algorithm 1 The probability acquisition method related to distance.

for i← 1 to N do
for ids ← 1 to ndi do

ndi,ids ,total ← 0;
ndi,ids ,nlos ← 0;
for j← 1 to N do

if (ids − 1) · dr max,i
ndi

< dr,i,j ≤ ids ·
dr max,i

ndi
then

ndi,ids ,total ← ndi,ids ,total + 1;
if gi,j = 1 then

ndi,ids ,nlos ← ndi,ids ,nlos + 1;
end if

end if
end for
Calculate (9);

end for
end for

Similarly, the iθs-th subinterval is
(
−π + (iθs − 1) · 2π

nθi
,−π + iθs · 2π

nθi

]
and the central point of the

iθs-th angle subinterval is described as

θc,iθs = −π +
π · (2iθs − 1)

nθi
. (10)
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Then, assign N sampling points to nθi angle subintervals and the number of the sampling points in
the iθs-th subinterval is nθi,iθs ,total . Also, for the iθs-th subinterval, it is assumed that there are nθi,iθs ,nlos
sampling points in the NLOS propagation. Consequently, the probability of NLOS propagation in the
iθs-th interval is calculated as

pθi,iθs ,nlos =
nθi,iθs ,nlos

nθi,iθs ,total
. (11)

The probability acquisition method related to angle is summarized in Algorithm 2.

Algorithm 2 The probability acquisition method related to angle.

for i← 1 to N do
for iθs ← 1 to nθi do

nθi,iθs ,total ← 0;
nθi,iθs ,nlos ← 0;
for j← 1 to N do

if −π + (iθs − 1) · 2π
nθi

< dr,i,j ≤ −π + iθs · 2π
nθi

then
ndi,iθs ,total ← nθi,iθs ,total + 1;
if gi,j = 1 then

nθi,iθs ,nlos ← nθi,iθs ,nlos + 1;
end if

end if
end for
Calculate (11);

end for
end for

Based on the center points dc,ids , θc,iθs and the probabilities pdi,is ,nlos, pθi,is ,nlos in the NLOS
propagation in each distance interval and angle interval, the polynomial curve fitting technique is used.
Distance-NLOS probability polynomials and angle-NLOS probability polynomials are calculated as

pdi,nlos =

Nm̄i

∑
m̄i=0

am̄i · d
m̄i
ai , (12)

pθi,nlos =

Nn̄i

∑
n̄i=0

ān̄i · θ
n̄i
bi , (13)

where pdi,nlos and pθi,nlos are the probabilities of the NLOS propagation at the distance dai and the
angle θbi, respectively. am̄i and ān̄i are the fitted coefficients, which can be achieved by least square
polynomial fitting method. It can be expressed as

min
ndi

∑
ids=1

[
pdi,nlos(dc,ids)− pdi,ids ,nlos

]2, (14)

where pdi,nlos(dc,ids) =
Nm̄i
∑

m̄i=0
am̄i · d

m̄i
c,ids

. By taking partial derivatives of (14) with respect to am̄i and

setting them equal to 0, we have
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2
ndi

∑
ids=1

[
pdi,nlos(dc,ids)− pdi,ids ,nlos

]
= 0

2
ndi

∑
ids=1

[
pdi,nlos(dc,ids)− pdi,ids ,nlos

]
dc,ids = 0

...

2
ndi

∑
ids=1

[
pdi,nlos(dc,ids)− pdi,ids ,nlos

]
d

Nm̄i
c,ids

= 0

. (15)

Equation (15) can be organized into a matrix form as follows:
ndi ∑ndi

ids=1 dc,ids · · · ∑ndi
ids=1 d

Nm̄i
c,ids

∑ndi
ids=1 dc,ids ∑ndi

ids=1 d2
c,ids

· · · ∑ndi
ids=1 d

Nm̄i+1
c,ids

...
...

. . .
...

∑ndi
ids=1 d

Nm̄i
c,ids

∑ndi
ids=1 d

Nm̄i+1
c,ids

· · · ∑ndi
ids=1 d

2Nm̄i
c,ids




a0

a1
...

aNm̄i

 =


∑ndi

ids=1 pdi,ids ,nlos

∑ndi
ids=1 dc,ids pdi,ids ,nlos

...

∑ndi
ids=1 d

Nm̄i
c,ids

pdi,ids ,nlos

 . (16)

It can be expressed as

FT Fa = FTy, (17)

where F =


1 dc,1 · · · d

Nm̄i
c,1

1 dc,2 · · · d
Nm̄i
c,2

...
... · · ·

...

1 dc,ndi · · · d
Nm̄i
c,ndi

, y =


pdi,1,nlos
pdi,2,nlos

...
pdi,ndi ,nlos

 and a =


a0

a1
...

aNm̄i

.

Therefore, Equation (17) can be solved as

a = (FT F)−1FTy. (18)

Similarly, the coefficients ān̄i can be achieved as

ā = (GTG)−1GT ȳ, (19)

where G =


1 θc,1 · · · θ

Nn̄i
c,1

1 θc,2 · · · θ
Nn̄i
c,2

...
... · · ·

...

1 θc,nθi · · · θ
Nn̄i
c,nθi

, ȳ =


pθi,1,nlos
pθi,2,nlos

...
pθi,nθi ,nlos

, and ā =


ā0

ā1
...

āNn̄i

.

The probability of the NLOS propagation between the point (x, y) and the i-th anchor is
proposed as:

pi,nlos = αi · pdi,nlos + (1− αi) · pθi,nlos, (20)

where

αi =
1
2

(
e−k0·di + 1

)
, (21)

di =

√
(xi − x)2 + (yi − y)2, (22)

θi = a tan 2(yi − y, xi − x) (23)
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and k0 is a positive constant.

Remark 2. In this paper, a new probability model (21) is put forward which is more reasonable to reflect the
practical engineering. It is not difficult to see that when the difference of the distance between the estimated
position and the real position is fixed, angle error increases as the distance between the real position and the
position of the anchor decreases. Therefore, the smaller the distance is, the smaller the confidence level of the
angle-based estimation is. In addition, the exponential form of parameter αi is selected by experiments.

4. Simplified Calculation of Maximum Likelihood Estimation

According to (4), the probability density function of the distance between each anchor and the
target can be obtained. Assuming that the probability density function of the distance between each
anchor and the target is independent, one has the following joint likelihood function:

p(z; x) =
n

∏
i=1

p(zi; x). (24)

The estimate of x by MLE can be obtained as:

X̂MLE = arg max
x

ln p(z; x)

= arg max
x

n

∑
i=1

ln p(zi; x), (25)

where X̂MLE = [x̂MLE, ŷMLE]
T .

Normally, finding the analytical solution of (25) is quite time-consuming, which deteriorates the
real-time performance of the system to a great extent. For the purpose of overcoming such a difficulty,
an improved Monte Carlo method is proposed to solve (25), which could reduce the computational
complexity and accordingly improve the real-time performance of the system.

Assume that at the time k − 1, the position and velocity of the target are (xk−1, yk−1) and
(vx,k−1, vy,k−1), respectively. The angle between the velocity direction and the positive direction
of the x-axis is calculated as

θv,k−1 = a tan 2(vy,k−1, vx,k−1), (26)

where a tan 2(vy,k−1, vx,k−1) is the angle between the vector from origin to (vx,k−1, vy,k−1) and x-axis
positive direction vector. For the convenience of discussion, the position of the point is expressed in
polar coordinates, and (xk−1, yk−1) is used as the coordinate origin of polar coordinates. Therefore,
the points can be obtained from the parameters of dm,i and θm,i in terms of the following two
methods, respectively.

(a) The distance satisfies dm,i ∼ N(0, σ2
ma) and the angle satisfies θm,i ∼ U(−π, π);

(b) The angle satisfies θm,i ∼ N(θv,k−1, σ2
mb
) and the distance satisfies dm,i ∼ U(0, dm,max), where

σ2
ma and σ2

mb
are the variance of distance and angle, respectively, dm,max represents the upper bound

of distance.
The point of maximum value solved in (24) is taken as the optimal estimation point.

5. Localization Based on Extended Kalman Filter Algorithm

The motion model is represented as a discrete-time system and decomposed into state vectors in
both directions x and y, which can be expressed as

x(k)
y(k)
vx(k)
vy(k)

 =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1




x(k− 1)
y(k− 1)
vx(k− 1)
vy(k− 1)

 , (27)
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where x(k), vx(k) are the position and velocity of target in the x-axis and y(k), vy(k) are the position
and velocity of target in the y-axis of the system at time k.

Therefore, the prediction phase of the Kalman filter can be expressed as

Xk|k−1 = AXk−1|k−1, (28)

Pk|k−1 = APk−1|k−1 AT + Q, (29)

where A =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

.

Xk−1|k−1 = [x(k− 1), y(k− 1), vx(k− 1), vy(k− 1)]T , Xk−1|k−1 is optimal estimate of state vector
X at time k− 1, Pk−1|k−1 is the posteriori error covariance matrix at time k− 1. Q is the covariance
matrix of the process noise which is set to a diagonal matrix.

The prediction distance vector between anchors and the target is derived as

h(Xk|k−1) =



√
(xk|k−1 − x1)

2 + (yk|k−1 − y1)
2

...√
(xk|k−1 − xi)

2 + (yk|k−1 − yi)
2

...√
(xk|k−1 − xn)

2 + (yk|k−1 − yn)
2


, (30)

where (xk|k−1, yk|k−1) is the position estimation of the target in the prediction phase. Moreover, the
Jacobian matrix of (30) is obtained as

Hk =



xk|k−1−x1
h1(X)

yk|k−1−y1
h1(X)

0 0
...

...
...

...
xk|k−1−xi

hi(X)

yk|k−1−yi
hi(X)

0 0
...

...
...

...
xk|k−1−xn

hn(X)

xk|k−1−xn

hn(X)
0 0


. (31)

The filter gain matrix Kk is determined by

Kk = Pk|k−1Hk
T(HkPk|k−1Hk

T + R), (32)

where R represents the covariance matrix of the observation noise which is set to a diagonal matrix.
The update phase of the Kalman filter is given as follows:

Xk|k = Xk|k−1 + Kk(dk
′ − hk), (33)

Pk|k = Pk|k−1 − Kk HkPk|k−1, (34)

where Pk|k is the posteriori error covariance matrix at time k, Xk|k represents the posteriori state estimate
at time k, and dk

′ represents corrected measuring distance vector from the MLE method at time k with
the following form:
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dk
′ =



√
(x̂MLE − x1)

2 + (ŷMLE − y1)
2

...√
(x̂MLE − xi)

2 + (ŷMLE − yi)
2

...√
(x̂MLE − xn)

2 + (ŷMLE − yn)
2


. (35)

6. Simulation and Experimental Results

6.1. Simulation Results

UWB technology is widely used in indoor localization because it is insensitive to channel fading
and has high positioning accuracy. Therefore, we simulated UWB communication to verify the
effectiveness of the algorithm. In this section, an indoor environment with obstacles is considered,
where the test area was a rectangular space of 14 m × 5 m. There were eight anchors assigned around
the space, whose locations were respectively known as [0 cm, 0 cm], [500 cm, −100 cm], [1000 cm,
0 cm], [1100 cm, 150 cm], [1000 cm, 300 cm], [500 cm, 400 cm], [0 cm, 300 cm], [−100 cm, 150 cm].
The obstacle was considered in the space and the location of the obstacle was unknown and fixed.
It was assumed that NLOS error occurred when the connecting line of the target to the anchor traverses
the obstacle, otherwise there was no NLOS error. The LOS error obeyed εL ∼ N(0 cm, 2.6 cm) and
NLOS error obeyed εNL ∼ N(22 cm, 3.6 cm). In the simulation, the proposed algorithm was compared
with the existing ones; see Table 1.

Table 1. The list of the considered algorithms and descriptions.

Algorithm Description

LS Least square method
EKF Extended kalman filtering algorithm [29]

RWLS Residual based weighted least square algorithm [30]
SDP Semidefinite programming method [16]

DP-MLE Distance-related LOS/NLOS probabilities maximum likelihood estimation [14]
DAP-MLE The proposed method

Figure 1 shows the simulation environment setting and real trajectory. The obstacle was placed in
the middle of the environment and anchors were placed around. In the test, the target moved along a
black dotted line, which was S-shaped. The velocity of the target was set to 0.3 m/s ∼ 0.5 m/s. In order
to test the performance of algorithms in Table 1, the root mean square error (RMSE) was used as the

main performance metric. It was defined as RMSE =
√
(∑Tn

i=1 ||xr,i − x̂i||2)/Tn, where xr,i denotes the
true position of the target at time i, x̂i indicates the estimated position.

Before using the proposed algorithm, it was necessary to estimate the probability of occurrence of
the NLOS status at different distances and angles by sampling. Figures 2 and 3 show the relationship
between the probability of NLOS status and distance or angle in eight anchors. As can be seen from
Figure 2, in general, the larger the distance, the higher the probability of NLOS status. From Figure 3,
the relationship between the angle and the probability of NLOS status could be obtained. It was
obviously different in different environments. According to Figures 2 and 3, polynomial fitting could
be used to obtain the relationship between NLOS status occurrence probability and distance or angle.
Alternatively, the relationship could be obtained by constructing a piecewise function.
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Figure 2. The relationship between the probability of non-line-of-sight (NLOS) status and distance in
eight anchors.
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Figure 3. The relationship between the probability of NLOS status and angle in eight anchors.
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In order to reduce the operation time, 500 points were randomly selected according
to the introduced Monte Carlo method and one point was selected which could maximize
Formula (24). Figure 4 illustrates the RMSE of different algorithms with different numbers of anchors.
The distribution of noise was the same in each algorithm experiment. As can be seen from Figure 4,
as the number of anchors increased, the RMSE of algorithms gradually decreased, except for the LS
algorithm. When the number of anchors was 6 or 8, the RMSE of the LS algorithm was increased.
The reason may be that NLOS measurement error of the added anchor was large, which led to a large
error. Since the weights of LS algorithm were equal, the algorithm could not allocate less weight to
the measurement with larger NLOS error. On the contrary, the RWLS algorithm compensated for
this deficiency. The algorithm assigned weights to the measurements of each anchor by analyzing
the positioning residuals of each anchor. However, the algorithm could not exert its advantages
when the number of anchors was small. Therefore, when the number of anchors was four or five,
the RMSE was higher than that of the LS method. The RMSE of the EKF algorithm was the highest
when the number of anchors was four. As this number increased, the RMSE gradually stabilized,
but the value was always higher than some other methods, because it does not suppress NLOS error
very well. The SDP method worked well when the number of NLOS status was large or small in all
measurements. From the figure, it worked better than the EKF method. The DP-MLE method uses
statistical methods to estimate the relationship between the probability of NLOS propagation and
the measured distance. However, the proposed method not only considers the relationship between
its probability of occurrence and the measured distance, but also considers the relationship with
measurement angle. Therefore, the RMSE of the proposed algorithm was smaller than that of the
DP-MLE method.
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RWLS (Residual based weighted least square)
SDP (Semidefinite programming)
DP-MLE (Distance-related LOS/NLOS probabilities MLE)
The proposed method

Figure 4. Root mean square error (RMSE) of different algorithms using different numbers of anchors.

Figure 5 shows the RMSEs of different algorithms using different standard deviations of
measurement noise. It can be seen from the figure that the RMSE of the proposed method was
the lowest and that of the LS method was the highest in different standard deviations. Since the RWLS
algorithm assigns less weight to anchors with large residuals, the RMSE of the method was lower
than that of the LS method. The advantage of the EKF method is mainly its ability to suppress the
measurement noise; consequently, the RMSE of the method was lower than that of RWLS. The SDP
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algorithm estimates the average value of NLOS error and constructs the model based on statistical
features. As a result, the method was superior to the EKF method. The RMSE of the proposed method
and DP-MLE method both increased with increasing standard deviation. This is why the constructed
models are probability models based on NLOS status. When the standard deviation of measurement
noise increased, the accuracy of NLOS status judgment will be reduced. For example, when the
measurement noise is larger than NLOS error, it may be considered as NLOS noise. However, the RMSE
of the proposed algorithm was still lower than those of DP-MLE and SDP methods, based on Figure 5.
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Figure 5. RMSE of different algorithms using different standard deviations of measurement noise.

Figure 6 shows the RMSEs of different algorithms using different means of NLOS error. With the
increase of the mean of NLOS error, the RMSEs of LS, EKF, and RWLS algorithms increased obviously
and gradually. The main reason is that these methods could not effectively suppress the NLOS error.
The SDP method can suppress the NLOS error without identifying NLOS status. Both DP-MLE and
the proposed method could estimate the probability of NLOS status. However, the accuracy of the
proposed method was higher than that of DP-MLE method. Therefore, the RMSE of this method was
lower than that of DP-MLE method.

6.2. Experimental Results

In order to better verify the effectiveness of the algorithm, we used the measurement database
in [31]. The experimental equipment consisted of 20 anchor nodes and one mobile node, which were
UWB devices. Some anchor nodes were placed in the corridor and the other parts were placed in the
room. The two-way arrival time estimation method was used in ranging. The mobile node was placed
on the mobile robot, which was placed on the orbit. Due to the influence of energy attenuation in
propagation, the mobile node could not accept all signals of anchor nodes. Therefore, we selected
nine anchor nodes that could successfully communicate with the mobile node for the experiment;
see Table 2.
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Figure 6. RMSEs of different algorithms using different means of NLOS error.

Table 2. The list of the locations of anchor nodes.

Anchor ID Coordinate X (m) Coordinate Y (m) Coordinate Z (m)

8 13.80 7.20 1.13
9 15.00 9.91 1.13

11 17.40 18.31 1.13
12 19.21 23.11 1.13
13 15.00 20.56 1.13
14 12.60 18.31 1.13
15 10.80 16.65 1.13
16 8.61 20.08 1.13
17 3.24 19.78 1.13

In the experiment, the height of the target was fixed and known, and the height of the mobile
node was set to 0.162 m. Since the algorithm was calculated in a two-dimensional environment,
the measured data needed to be converted. According to (36), the measured distance was converted
into the horizontal distance between the target and the anchor.

d =
√

d2
m − ∆h2, (36)

where dm is the measured distance and ∆h is the height difference between the mobile node and the
anchor node.

The parameters of NLOS propagation occurrence probability model need to be obtained by
sampling before testing; that is, plos(zi) and pnlos(zi). In the data set, about 90% of the data was used for
training and about 10% for testing. The distances between each anchor and the remaining 19 anchors
were measured. However, the communication between some anchors could not be established.
Therefore, the measurements of two anchors that could not establish communication were set as NLOS
propagation. Since the positions of all anchors were known, the distance between any two anchors
could be calculated. In order to reduce the measurement errors caused by faults or other factors,
multiple measurements were used and the average value was calculated as the final measurement
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value. If the difference between the measured value and the true distance exceeded the threshold, the
measurement was considered as the NLOS propagation. The relationship between distance, the angle
of each sampling point, and the NLOS status probability is given in Figures 7 and 8.

In the test, we used the data of 20 s of target movement to complete the experiment. The robot
trajectory and the position of anchors is given in Figure 9. The mobile robot moved at a constant speed
and turned left at about time 8 s. The RMSEs of different numbers of anchors are given in Figure 10.

0 3 6 9 12 15 18 21 24 27 30

Distance of anchor 1 (m)

0

0.5

1

T
he

 p
ro

ba
bi

lit
y 

of
 N

LO
S

 s
ta

tu
s

0 3 6 9 12 15 18 21 24 27 30

Distance of anchor 2 (m)

0

0.5

1

T
he

 p
ro

ba
bi

lit
y 

of
 N

LO
S

 s
ta

tu
s

0 3 6 9 12 15 18 21 24 27 30

Distance of anchor 3 (m)

0

0.5

1

T
he

 p
ro

ba
bi

lit
y 

of
 N

LO
S

 s
ta

tu
s

0 3 6 9 12 15 18 21 24 27 30

Distance of anchor 4 (m)

0

0.5

1

T
he

 p
ro

ba
bi

lit
y 

of
 N

LO
S

 s
ta

tu
s

0 3 6 9 12 15 18 21 24 27 30

Distance of anchor 5 (m)

0

0.5

1

T
he

 p
ro

ba
bi

lit
y 

of
 N

LO
S

 s
ta

tu
s

0 3 6 9 12 15 18 21 24 27 30

Distance of anchor 6 (m)

0

0.5

1

T
he

 p
ro

ba
bi

lit
y 

of
 N

LO
S

 s
ta

tu
s

0 3 6 9 12 15 18 21 24 27 30

Distance of anchor 7 (m)

0

0.5

1

T
he

 p
ro

ba
bi

lit
y 

of
 N

LO
S

 s
ta

tu
s

0 3 6 9 12 15 18 21 24 27 30

Distance of anchor 8 (m)

0

0.5

1

T
he

 p
ro

ba
bi

lit
y 

of
 N

LO
S

 s
ta

tu
s

0 3 6 9 12 15 18 21 24 27 30

Distance of anchor 9 (m)

0

0.5

1
T

he
 p

ro
ba

bi
lit

y 
of

 N
LO

S
 s

ta
tu

s

Figure 7. The relationship between distance and NLOS status probability. The horizontal axis of each
graph represents distance (m) and the vertical axes represent NLOS status probability.
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Figure 8. The relationship between angle and NLOS status probability. The horizontal axis of each
graph represents angle (degree) and the vertical axes represent NLOS status probability.
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Figure 10. RMSEs of different algorithms using different numbers of anchors.

As can be seen from Figure 10, the RWLS method had the worst effect when the number of anchors
was five. Because the RWLS method could not accurately identify NLOS error when the number of
anchors was small, it led to the wrong weight. The performance of the proposed method and the
EKF method did not change much as the number of anchors increased, but the performance of the
proposed method was better than that of other methods. The reason is that the proposed method could
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effectively suppress the NLOS errors when the number of anchors was small. When the number of
anchors was 6 or 7, the weight of the RWLS method was accurate. Therefore, its effect was better than
that of the LS method. However, the performance of these two methods was inferior to the EKF method
and the proposed method because the two methods do not consider suppressing measurement errors.
When the number of anchors was nine, the DP-MLE, SDP, and proposed method could effectively
suppress NLOS error, but the DP-MLE and SDP methods found it difficult to identify NLOS errors
when the number of anchors was small. In addition, the SDP algorithm is solved by interior point
method, and its operation time was much longer than that of the proposed algorithm. As a result,
the real-time performance of the SDP algorithm Was far inferior to that of the proposed algorithm.

7. Conclusions

In the paper, an optimization algorithm is presented based on a distance and angle probability
model for indoor non-line-of-sight (NLOS) environments. According to the relationship between
distance, angle, and the occurrence probability of NLOS propagation, the joint likelihood function was
established. The simulation and experimental results showed that the NLOS error was compensated
effectively in NLOS propagation, and the proposed algorithm was superior to other algorithms when
the number of anchors was small. Furthermore, the real-time performance of the proposed algorithm
was much higher than that of SDP algorithm and the accuracy of the algorithm was ensured.
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