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Abstract: Nitrogen (N) content is an important basis for the precise management of wheat fields.
The application of unmanned aerial vehicles (UAVs) in agriculture provides an easier and faster way
to monitor nitrogen content. Previous studies have shown that the features acquired from UAVs
yield favorable results in monitoring wheat growth. However, since most of them are based on
different vegetation indices, it is difficult to meet the requirements of accurate image interpretation.
Moreover, resampling also easily ignores the structural features of the image information itself.
Therefore, a spectral-spatial feature is proposed combining vegetation indices (VIs) and wavelet
features (WFs), especially the acquisition of wavelet features from the UAV image, which was
transformed from the spatial domain to the frequency domain with a wavelet transformation. In this
way, the complete spatial information of different scales can be obtained to realize good frequency
localization, scale transformation, and directional change. The different models based on different
features were compared, including partial least squares regression (PLSR), support vector regression
(SVR), and particle swarm optimization-SVR (PSO-SVR). The results showed that the accuracy of
the model based on the spectral-spatial feature by combining VIs and WFs was higher than that of
VIs or WF indices alone. The performance of PSO-SVR was the best (R2 = 0.9025, root mean square
error (RMSE) = 0.3287) among the three regression algorithms regardless of the use of all the original
features or the combination features. Our results implied that our proposed method could improve
the estimation accuracy of aboveground nitrogen content of winter wheat from UAVs with consumer
digital cameras, which have greater application potential in predicting other growth parameters.

Keywords: unmanned aerial vehicles; wheat; nitrogen concentration; camera; wavelet feature

1. Introduction

Nitrogen (N) is one of the essential nutrients for wheat growth. Accurate access to nitrogen
information is a prerequisite for precise crop management and quality assurance [1,2]. Rapid and
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accurate access to nitrogen information in a non-destructive manner has become the primary means of
wheat nutrition monitoring and management [3].

At present, nitrogen monitoring based on the remote sensing principle is receiving extensive
attention [4,5]. Most of the data obtained are from remote sensing platforms, such as satellite
remote sensing, airborne remote sensing, and spectrometers [6–9]. However, due to spatial resolution,
spectral resolution, and temporal resolution, the remote data limit the value of agricultural applications
and cannot meet the real-time requirements for crop growth monitoring [10–12]. In particular,
light detection and ranging (LIDAR), hyperspectral, and multispectral sensors on unmanned aerial
vehicles (UAVs) are not easily applied in practice due to their high price and complicated data
processing requirements [13–17]. It could be seen that the fast, non-destructive, and high spatial
resolution characteristics of UAVs have led agriculture to move toward quantitative refinement [18–21].
However, it remains unclear whether the estimation model for the N content of wheat can be improved
based on the spatial-spectral relationship obtained from the same sensor without any additional cost
for adding other hardware devices.

With the popularity of digital cameras and the development of digital image information acquisition
and processing, crop monitoring estimates based on digital image technology have also been extensively
studied. Such studies have shown that there are significant or extremely significant correlations between
crop canopy parameters’ digital image from UAVs and biophysical parameters of crops, such as leaf
area index (LAI) [22–25], biomass [26–30], nitrogen nutrition index [31], grain yield [32], and nitrogen
content [33–37]. Although these studies have achieved good results, most of them are based on different
spectral vegetation indices. However, the pure spectral features of pixels are insufficient to meet the
requirements of accurate image interpretation [38]. In particular, spatial features are more important
for digital image analysis from UAVs. How to quantitatively evaluate image spatial resolution from
the image itself has always been a problem in the field of image processing. Studies have shown that
ground-resolution images of 1, 2, 5, 10, 15, 20, 25, and 30 cm are recommended to estimate wheat
biological parameters [39], whereas Lu et al. recommended 13.28 cm from comparisons using a series
of pixel-sized images from UAVs, including 1.66, 3.32, 6.64, 9.96, 13.28, 26.56, 53.12, and 106.24 cm,
for estimating wheat biological parameters [40]. It can be seen that the resolution of the image can only
be quantitatively reduced (raised) by resampling, which can easily lead to the structural features of the
image information being ignored. How to describe the spatial distribution feature at multiple scales is
a very important task in remote sensing research. A wavelet transform can change the resolution of the
image while maintaining the complete structural information of the image due to its good frequency
localization feature, its scale transformation feature, and its direction-change feature [41].

The acquisition of digital images is essentially a process of signal scanning and digitization [42].
Therefore, it is crucial to extract the features of the image signal. At present, Fourier transform is used
to decompose the image signal into sine waves of various frequencies [43]. However, the Fourier
transform does not provide the characteristics of the signal in the time domain. Gabor transform is the
process of convolving an image [44], even though this process cannot obtain satisfactory results for
non-stationary signals. However, as a multi-scale analysis tool, wavelet transform provides a new idea
for the extraction and analysis of spatial information due to its effective time–frequency positioning,
which can decompose an image signal into a set of wavelets [45] and overcome the drawback of Fourier
analysis. This can only describe information in a single band [46–49]. The wheat canopy images
of different growth stages acquired by UAVs have different spatial structures. Therefore, to obtain
the complete spatial information of different scales, it is necessary to use the wavelet transform to
decompose the original signal of an unmanned aerial vehicle (UAV) image from the spatial domain to
the frequency domain. To the best of our knowledge, there are few reports estimating nitrogen content
in winter wheat using multi-scale spatial information.

Therefore, the study focuses on the feasibility of using a consumer-grade UAV to estimate the
aboveground nitrogen content of wheat with a digital camera. For the use of the spatial-spectral
features, the regression methods of partial least squares regression (PLSR) [50], support vector regression
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(SVR) [51], and particle swarm optimization-SVR (PSO-SVR) [52] were used to construct a model to
meet the needs of precision agriculture. Therefore, the purpose of this study is to: (1) study the model
performance of wavelet transform to estimate the aboveground nitrogen content of wheat, (2) combine
the vegetation indices (VIs) and wavelet features (WFs) based on red, green and blue bands in order
to improve the estimation model for aboveground nitrogen content of wheat, and (3) evaluate the
performance of three regression techniques in the aboveground nitrogen content estimation model.

2. Data and Methods

2.1. Experimental Design

The experiments were carried out in 2019 at the National Agricultural Science and Technology
Innovation and Integration Demonstration Base in Guohe Town, Lujiang County, Anhui Province.
The area is located in the eastern part of Lujiang County (31.25◦ north latitude and 117.28◦ east
longitude). Lujiang County is a subtropical monsoon climate zone with a humid climate, abundant
rainfall, enough sunshine, and superior soil fertility. The average annual precipitation in this area is
995.3 mm. The average temperature is 16.8 ◦C. The annual maximum temperature is 36.4 ◦C and the
lowest temperature is −4.0 ◦C. These factors are suitable for winter wheat growth. The experiments
were carried out in 10 plots, with each plot being 168 square meters (42 × 4 m2). Four nitrogen levels
were set including 0 (N0), 104 (N1), 150 (N2), and 220 (N3) kg/ha, of which 50% were used as a base
fertilizer and 50% were added at the jointing stage. There were two planting densities (425 plants·m−2

and 515 plants·m−2) that were applied with three replications, as shown in Figure 1. The varieties were
‘Wanmai 55’ and ‘Ningmai 15’. The UAV remote sensing data acquisition experiment was carried out
simultaneously with the field data acquisition and sampling. The growth period was obtained in three
typical growth periods, which are flowering, filling, and maturity.
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Figure 1. Location of the study area and the layout of field plots with wheat varieties, nitrogen
levels, and sowing densities. Note: SP sampling region. D1 = 425 plants·m−2, D2 = 515 plants·m−2,
N0 = 0 kg·N ·ha−1, N1 = 104 kg·N·ha−1, N2 = 150 kg·N·ha−1, N3 = 220 kg·N·ha−1, V1 = ‘Wanmai 55’,
and V2 = ‘Ningmai 15’.
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2.2. Data Collection

The UAV high definition (HD) digital images of the wheat breeding field were obtained in three
key growth stages: flowering (9 May 2019), filling (14 May 2019), and maturity (24 May 2019) stages.
The four-axis aerial vehicle UAV 3P (SZ DJI Technology Co., Shenzhen, China) was used to acquire
images with a mass of 1280 g and unloaded flight lasted for about 23 min. The HD camera was
installed on the drone remote sensing platform (Sony EXMOR 1/2.3 inches). The sensor (CMOS) pixel
number was 12 million, the field of view was 94◦, the focal length was 20 mm, and the aperture was
f/2.8. Aerial photographs of the study site were taken from the UAV at a height of 40 meters above
the ground. Every flight was carried out in a clear, cloudless, and windless weather and acquired
about 43 images with a ground sample distance of 1.77 cm. The UAV was set to automatic flying
mode. The side overlap and forward overlap of the image were set from 60% to 80%. The speed
of UAV was 0.5 m/s. The international standards organization (ISO) of the digital camera was 100
and the best exposure was set depending on the weather conditions. The images were automatically
captured, with one frame every 2 s, in a JPEG and DNG format. The same flight path and camera
settings (excluding exposure) were used throughout the critical period of wheat growth.

The orthophoto maps were generated using Agisoft Photoscan 1.2.4 (Agisoft LLC, St. Petersburg,
Russia) for the acquired images. This mainly included importing UAV images, aligning images,
building a dense point cloud, building mesh, and generating orthophotos. The specific steps were
as follows: first, the aerial image in the navigation band was selected, the feature point matching
algorithm was used to automatically align the overlapping image, and then the “mild” depth was
selected to construct the dense point cloud. Lastly, the image in the tagged image file format (TIFF)
format was generated and further analyzed after the mesh with default parameters.

On the day after the UAV flight, 60 wheat plants were randomly cut as close to the soil surface
as possible from each sample area in Figure 1. The wheat samples were taken back to the laboratory.
All samples were placed in an oven at 105 ◦C for 30 minutes, and then dried at 80 ◦C for more than
20 h. They were then reweighed to obtain the dry mass of the winter wheat samples. The samples
were pulverized. A Micro-Kjeldahl apparatus was used to measure the sample plant nitrogen
concentration (SPNC, g·100g−1), and the aboveground nitrogen content (ANC, kg·ha−1) of winter
wheat was determined by Equation (1) as follows.

AGN =
SPNC×m× n

k
(1)

where m is the dry mass of the winter wheat samples (kg·ha−1), k is the number of samples, and n is
the number of winter wheat ears per unit area.

2.3. Feature Extraction

2.3.1. Vegetation Indices

The VIs were the reflection and absorption characteristics of green vegetation in different
bands. Vegetation information could be enhanced by combining different bands of sensors. The true
color image acquired by the UAV included three bands of red, green, and blue, which include
700.0, 546.1, and 435.8 nm. In this study, based on the digital orthophoto map (DOM) of wheat,
the average DN (digital number) values of the canopy red, green, and blue channels in each
measured field were extracted, and the DN values of the three bands were defined as R, G, and B,
respectively. Normalization was performed according to Equations (2)–(4) in order to reduce the effects
of different illumination levels [53–57].

r =
R

R + G + B
(2)
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g =
G

R + G + B
(3)

b =
B

R + G + B
(4)

In this case, G is the digital number of the green band of the feature, B is the digital number of
the blue band of the feature, and R is the digital number of the red band of the feature. r, g, and b
represent the digital numbers of the normalized red, green, and blue bands, respectively. A variety of
color parameters could be derived from the combination of r, g, and b.

In this study, based on the DOM of three critical periods of wheat, the average DN values of the
red, green, and blue channels of each measured area could be extracted. According to Table 1, 15 kinds
of vegetation indices based on visible light bands were calculated. The vegetation indices and the
corresponding aboveground nitrogen content of wheat formed a sample dataset. Additionally, 70% of
the sample data was randomly selected as the calibration dataset, and correlation analysis was
performed with the aboveground nitrogen content of wheat indicators of the simultaneously measured
wheat to determine the sensitive vegetation indices.

Table 1. Digital image variables related to the aboveground nitrogen content.

Indices. Name Formula Reference

MGRVI Modified Green Red
Vegetation Index

MGRVI =(
g2
− r2

)
/
(
g2 + r2

) [58]

RGBVI Red Green Blue
Vegetation Index

RGBVI =(
g2
− br2

)
/
(
g2 + br2

) [58]

GRVI Green Red Vegetation
Index GRVI = (g− r)/(g + r) [59]

GLA Green leaf algorithm GLA =
(2g− r− b)/(2g + r + b) [60]

ExR Excess Red Vegetation
Index ExR = 1.4r− g [61]

ExG Excess Green Index ExG = 2g− r− b [62]

ExB Excess Blue Vegetation
Index ExR = 1.4b− g [63]

ExGR Excess Green minus
Excess Red ExGR = ExG− ExR [64]

CIVE Color index of vegetation CIVE = 0.441r− 0.881g +
0.3856b + 18.78745 [65]

VARI Visible Atmospherically
Resistant Index

VARI =
(g− r)/(g + r− b) [66]

GLI Green Leaf Index GLI = ExG/(−r− b) [60]

2.3.2. Wavelet Features

In order to extract multi-scale spatial information, wavelet features were obtained by a discrete
wavelet transform [67]. The discrete transformation effect of the image was equivalent to the image
undergoing a series of filtering transformations, including low-pass filtering (L) and high-pass filtering
(H) [68]. In this study, two-dimensional discrete wavelet transform was used to decompose the
image to form a pyramid structure. After decomposition, each layer produced one low-frequency
subgraph and three high-frequency subgraphs in the horizontal, vertical, and diagonal directions,
and the low-frequency subgraph was decomposed to obtain four wavelet subgraphs dissolved by
the second layer. Thus, the low-frequency subgraphs generated by each layer could continue to be
decomposed to generate the low-frequency subgraph and the high-frequency subgraph of the next
layer. Therefore, the spatial information on different scales could be obtained, and the feature vectors
were formed according to the scale order to realize the feature extraction of the region of interest (ROI).
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The size of image I was M ×N, the pixel of the image was (x, y), the wavelet coefficient of the
image decomposition was IΓ

i j, and the image was filtered by Equations (5)–(7).

ILH
xy =

1
Nh

Nh−1∑
j=0

h( j)IL
(x/2−1)[(y+i−1)mod N]

(5)

IHL
xy =

1
Nl

Nl−1∑
i=0

l(i)IH
(x/2−1)[(y+i−1)mod N]

(6)

IHH
xy =

1
Nh

Nh−1∑
j=0

h( j)IH
(x/2−1)[(y+i−1)mod N]

(7)

where l(i) (i = 0, 1, 2, . . . , Nl − 1), h( j) ( j = 0, 1, 2, . . . , Nh − 1) are the impulse responses of the low-pass
and high-pass filters and x = 0, 2, 4 . . . , M, y = 0, 1, 2, . . . , N. Nl and Nh are the lengths of the low-pass
and high-pass filters. LH, HL, and HH indicate the details of the horizontal, vertical, and diagonal
directions, respectively [69].

The obtained high-frequency sub-images contained feature information in different directions.
Therefore, the statistical values of wavelet transform coefficients were used to describe the image
spatial features. In this paper, wavelet features were described according to Equations (8)–(11) with
wavelet coefficients, including the mean, standard deviation, energy, and entropy [70].

M =
1

MN

M∑
i=1

N∑
j=1

∣∣∣∣IΓ
i j

∣∣∣∣ (8)

S =
1

MN

M∑
i=1

N∑
j=1

(
IΓ
i j −CΓ

)2

(9)

E =
1

MN

M∑
i=1

N∑
j=1

∣∣∣∣IΓ
i j

∣∣∣∣2 (10)

EN = −
1

MN

M∑
i=1

N∑
j−1

IΓ
i j(log 2( IΓ

i j)) (11)

where Γ = |LH, HL, HH|.

2.4. Methods

2.4.1. Related Technologies

It is important for multi-class remote sensing data to establish a relationship between remote
sensing variables and crop parameters using regression techniques [71]. In this study, three regression
techniques, which include PLSR, SVR, and PSO-SVR, were used to evaluate the performance of the
aboveground nitrogen content model for winter wheat based on VIs, WFs, and spatial-spectral features
from UAV images. PLSR is a common method of multiple regression analysis [72]. SVR can improve
the generalization of learning, according to the principle of structural risk minimization, and reduce the
empirical risk and confidence range [73]. Some parameters (penalty parameters, kernel parameters, and
insensitive loss parameters) are more important for the SVR evaluation performance. Therefore, in this
study, the particle swarm optimization (PSO) algorithm was used to optimize the selection of SVR
parameters, so that the model based on PSO-SVR could obtain appropriate parameters to improve
the accuracy of the model [74]. To improve the training efficiency of the model, principal component
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analysis (PCA) [75] and correlation coefficient analysis [76] were used to reduce the dimension of the
variables, which were widely used in previous research.

2.4.2. Model Validation

Correlation analysis is a statistical analysis method that studies the correlation between two
or more variables [77]. The correlation coefficient (r) is often used to measure the closeness of the
relationship between two data sets. In general, |r| is a number less than 1, and the larger |r|, the closer
the relationship between the two sets of data. In this study, correlation analysis techniques were used
to screen for characteristic variables that were closely related to the aboveground nitrogen content of
wheat. In addition, to make the established model universal, the data were divided into a calibration
set and a validation set according to the ratio of 7:3 in the experiment. The coefficient of determination
(R2) and the root mean square error (RMSE) were used as the evaluation indicators of the model.
All models constructed using regression techniques were validated and evaluated using Windows
10-based MATLAB R2017b (The MathWorks Inc., Natick, MA, USA).

The RMSE was used to evaluate the performance of the prediction. The correlation coefficient
was used in all the processes. The RMSE was defined as follows.

RMSE2 =
n∑

i=1

(ŷi − y)
2

/n (12)

The correlation coefficient (R) was defined as follows.

R2 = 1−
n∑

i=1

(yi − ŷ)2/
n∑

i=1

(yi − y)
2

(13)

where n is the number of observations in the dataset, ŷ and yi are the predicted and measured value of
the ith observation, and y is the mean value of the calibration or validation set.

3. Results and Analysis

3.1. Correlation Analysis between Vegetation Indices and Aboveground Nitrogen Content of Wheat

To explore the correlation between VIs and the aboveground N content of wheat, we combined
the data of three periods, from which 70% of the data were randomly selected for correlation analysis.
The results are shown in Figure 2. Most of the vegetation indices were strongly correlated with the
aboveground nitrogen content of wheat. The absolute values of the correlation coefficients of VARI,
MGRVI, GRVI, ExR, CIVE, GLI, GLA, ExGR, and the aboveground nitrogen content of wheat were
between 0.6237 and 0.7278. These results are due to the top 50% of the strong correlation ranking.
As a result, VARI, MGRVI, GRVI, ExR, and CIVE were selected as the optimal vegetation indices to
build a subsequent model.
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Figure 2. Matrix of the correlation coefficient between the N content and individual vegetation
indices (VIs).

Figure 3 shows the spatial distribution of VARI, GRVI, ExR, CIVE, and MGRVI for winter wheat
in the study area at flowering, filling, and maturity stages. The different VIs in the same period
were very different, and the same VIs varied with the growth period. ExR was relatively low in all
three periods. During the filling period, VARI, GRVI, and MGRVI were relatively high. CIVE and
MGRVI changed significantly in the three periods, and the other VIs were different in each period.
Therefore, these five VIs could reflect the change of the aboveground nitrogen content of wheat,
which has a certain representativeness.
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3.2. Extraction and Analysis of Wavelet Features

Daubechies was chosen as the wavelet basis function, and the horizontal and vertical filtering was
used to realize the wavelet decomposition of the UAV image. Figure 4 shows the multi-resolution
wavelet decomposition of the three critical periods of the wheat crop. Figure 4a shows the canopy image,
and Figure 4b shows the original image and the second layer low-frequency wavelet decomposition
subgraph. Figure 4c shows a high-frequency decomposition diagram of the tower, including two
scales of high-frequency decomposition and low-frequency subgraph, wherein the first layer
decomposition LL1 includes the main low-frequency information in the original image. LH1 represents
the high-frequency information in the horizontal direction and HL1 represents the high-frequency
information in the vertical direction. HH1 represents the high-frequency information in the 45◦

direction. When the low-frequency component LL1 is further decomposed by wavelet transformation,
four bands of LL2, LH2, HL2, and HH2 as the second layer were obtained. It is clear that the greater
the number of layers of wavelet decomposition, the lower the resolution of the decomposed wavelet
subgraph. Therefore, only two wavelet decompositions were performed in this study.
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structure diagram of wavelet decomposition.

For the wheat images of the three period samples, WFs were extracted from four subgraphs
(LH1, HH1, HL1, LH2, HH2, HL2) of the high-frequency part of each layer, including the energy
(E), entropy (En), mean (M), and standard deviation (S). As shown in Figure 4, a total of 24 WFs
were obtained. First, statistical linear regression analysis was performed with the extracted WFs.
Index values of most of the WFs were greater than 10, which showed that there was a severe collinearity
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between the independent variables. Moreover, the kaiser-meyer-olkin (KMO) statistic was 0.62 when
the correlation between WFs was examined by the KMO test, which indicated that the correlation
between the variables was strong and the partial correlation was weak. Furthermore, the result of
the Bartlett test was less than 0.05, which demonstrated that the data were spherically distributed.
From the above analysis, PCA was determined to be a suitable method for the further extraction of
features. The results are shown in Figure 5. The contribution rate of the first eight principal components
(PCs) reached 81.016%, which means only eight principal components could cover the information of
24 WFs. Among them, the contribution rate of PC1 (HL1E, LH1E, HL2E, LH2E, HH1E) was 23.693%,
which mainly included the energy of the first layer and the second layer. The main contribution rate of
PC2 was 12.460%, while the contribution rate of PC3 was 10.09% and the contribution rate of PC4 was
9.295%. The first four principal components occupied more than 50% of the total WFs.Sensors 2019, 19, x FOR PEER REVIEW 10 of 17 
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3.3. Performance of Models Based on Different Methods

Three different variables, including VIs, WFs, and spatial-spectral features by combining VIs and
WFs, were used as input variables for the estimation model, and aboveground nitrogen content was
used as the dependent variable of the model. The PLSR, SVR, and PSO-SVR models were constructed
to predict the aboveground nitrogen content of winter wheat. The results are shown in Table 2. The R2

of the calibration set and the validation set of the PLSR model range from 0.5618 to 0.7716, and the
RMSE was below 0.8. The R2 of the SVR model ranged from 0.6483 to 0.8545. According to the
parameters optimized by PSO, the PSO-SVR model was established, and the R2 of the calibration
set and the validation set were both greater than 0.71. This showed that the regression techniques
including PLSR, SVR, and PSO-SVR had strong predictive capabilities.
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Table 2. Estimation model for the aboveground nitrogen content of wheat based on different variables
with three techniques.

Input
Variables

Technique
Calibration Validation

R2 RMSE
(kg·ha−1)

R2 RMSE
(kg·ha−1)

VIs PLSR 0.5653 0.6832 0.5618 0.7917
SVR 0.6818 0.604 0.6483 0.7176

PSO-SVR 0.7813 0.6542 0.7132 0.7468
WFs PLSR 0.6393 0.6319 0.6168 0.6596

SVR 0.674 0.6226 0.6577 0.6009
PSO-SVR 0.7311 0.5438 0.6962 0.6363

VIs and WFs PLSR 0.7716 0.5068 0.7171 0.5883
SVR 0.8545 0.4114 0.7487 0.4841

PSO-SVR 0.9025 0.3287 0.797 0.4415

PLSR: partial least squares regression, SVR: support vector regression, PSO- SVR: particle swarm optimization-
support vector regression, R2: coefficient of determination, RMSE: root mean square error, VIs: vegetation indices,
WFs: wavelet features.

3.4. Performance Based on Different Feature Variables

It was also found in Figure 6 that the models established based on different variables had
significantly different effects. For instance, R2 ranged from 0.5653 to 0.7813 for VIs and 0.6393 to 0.7311
for WFs. The average RMSE of the calibration set is 0.64 and 0.59 kg·ha−1, respectively.
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Figure 6. Estimated and measured winter wheat aboveground nitrogen content (kg·ha−1). Left: partial
least squares regression (PLSR), Middle: support vector regression (SVR), right: particle swarm
optimization-SVR (PSO-SVR) with vegetation indices (VIs) alone (a1,b1,c1), wavelet features (a2,b2,c2),
and the combined data (a3,b3,c3). The data points displayed make up the validation set. The solid line
indicates the fitting function of the scatter plot.
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The results of the estimated models using the three models of VIs and WFs were similar.
The accuracy of the PLSR model using the integrated VIs and WFs was 26% higher than that of the VIs
and 17% higher than that of the WFs, individually. The accuracy of the SVR model increased by 20%
and 21%, and the accuracy of the PSO-SVR model increased by 13% and 19%, respectively. As shown
in Figure 6, there was still a small amount of data in the model of WFs alone, which appeared under
the fitted line. However, the data points in the model constructed by the integrated VIs and WFs
were closer to the 1:1 line, which indicates that the model established using comprehensive indicators
was better.

For VIs, the accuracy of the three models was not clear, which indicates that the model using only
VIs was prone to saturation. However, the combination of VIs and WFs brought further improvements
to all regression techniques, which are significantly more accurate than using VIs alone.

4. Discussion

4.1. Vegetation Indices and Wavelet Features

Crop-growth monitoring based on the spectral information of crop canopies is significant [78].
Most traditional analysis methods are based on a single VI, which is used to construct a wheat N
content prediction model, and good predictive models have been obtained. However, there is a certain
spectral information saturation phenomenon that prevents the accuracy of the model from being
improved [79]. In particular, the nitrogen of the vegetative organs of wheat shifts to the grain, which is
accompanied by the decline of leaf photosynthetic performance and leaf senescence from the filling to
the maturity stage. This causes the N content to decrease [80]. In addition, soil as a background causes
changes in canopy spectral reflectance [81], which means that estimating the N-content based solely on
VIs remains a challenge. Therefore, a spatial-spectral feature was proposed to improve the accuracy of
the estimation model in this study. Compared with the Vis alone, the R2 value of the VIs and WFs as
a spatial-spectral feature model increased by more than 17%, which indicates that the wavelet feature
could weaken the saturation caused by spectral information. Therefore, the model constructed using
the multi-feature parameters acquired by a UAV was more accurate, with the additional advantages
being low-cost, having fast access to data, and requiring less computation.

4.2. Spatial Resolution and Wavelet Transform

The scale and resolution of the image acquired by the UAV were intrinsically linked, and the
spatial resolution reflected the spatial detail level and the separation ability from the background
environment. When the resolution of the wheat canopy image is too high, the internal spectral
variability might increase, and the difference between crop characteristics might decline. When the
resolution was too low, the mixed pixel phenomenon was serious, and the generated noise might
affect the extraction of canopy features. The spatial resolutions were not uniform and were susceptible
to light, canopy, and other factors. Moreover, estimating the resolution of the N content depended
on the crop canopy size and line spacing [39]. Therefore, it is difficult to compensate for the lack of
detailed multi-scale wavelet information, especially by only increasing the flying height of the drone
or improving the resolution of the sensor.

In fact, the wavelet decomposition process is a filtering process with a characteristic energy
concentration. The low-frequency part of the wavelet component is the approximation of the original
image at different resolutions, and the high-frequency component includes details such as edges and
contours. In this study, the wavelet decomposition of different layers indicates canopy images with
different resolutions. Therefore, the image after a wavelet transform is equivalent to the process of
resampling, which acquires not only the macroscopic structure but also the microstructure of the
image. Thus, it could reduce or eliminate the influence of the soil background due to its anti-saturation
property. In this study, only two layers of wavelet decomposition were performed. In future research,
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multi-layer wavelet decomposition based on other wavelet functions should be carried out to verify
the feasibility of representing more than one spatial resolution.

4.3. Comparison of Feature Selection Methods

In the modeling process, most of the factors used for crop parameter inversion were directly input,
which would affect the calculation speed and accuracy of the model. Good feature selection methods
could improve the performance of the model, reduce the number of features, reduce dimensionality,
and decrease over-fitting. Therefore, feature selection is very important, and it is necessary to use
appropriate feature selection methods based on the relationship between different variables.

The Pearson correlation coefficient measures the linear correlation between variables, which can
help us understand the relationship between features and variables. In this study, it was effective
to use the correlation coefficient to analyze the importance of vegetation indices for N content.
However, there were multiple correlations between some features, which worsened the generalization
and stability of the model. Therefore, the principal component features extracted using PCA are more
representative. In this study, eight principal components were extracted from 24 highly related wavelet
features with PCA, and the results showed that the method was effective. Therefore, the feature
selection method was not unique, but it was the most appropriate.

4.4. Comparison of PLS, SVR, and PSO-SVR for Estimating Aboveground Nitrogen Content

Table 2 shows that the model accuracy of PLSR in the three models was the lowest, and there was
also a nonlinear relationship between the feature parameters and the N content of wheat. The accuracy
of the estimated model established by the machine learning method in this paper was always higher
than that of the PLSR model. Moreover, the accuracy of the three models using only the WFs was
generally not high. The accuracy of the PLSR model using the spatial-spectral feature was 15.8% higher
than that using the WFs alone. The accuracy of the SVR model increased by 7.3% and 6%, and the
accuracy of the PSO-SVR model increased by 12.6% and 17.2%, respectively. Whether a single feature
or the spatial-spectral feature was used as an input variable to the model, PSO-SVR achieved the best
calibration and validation precision in all three regression techniques.

Image feature extraction based on wavelet transform (Daubechies10 was employed as the wavelet
basis in this study) can provide different technical approaches for using consumer-grade UAVs to
predict the aboveground nitrogen content in different periods of winter wheat growth. A different
wavelet basis function has its own features and scopes of application. Therefore, the determination of
how to select the wavelet basis and decomposition scale still requires further study [82]. In addition,
the model established in this study has the capability to resist interference. On the one hand, a wavelet
transform can enhance the image. On the other hand, the wavelet can denoise the image due to
its sparsity and multi-resolution characteristics [83]. Moreover, the construction and testing of the
nitrogen-content monitoring model of winter wheat in this study is based on the field test data of
an ecological area. Although the design of this experiment included different varieties, different planting
densities, and different nitrogen fertilizer management strategies, the proposed method still achieved
good prediction results. In the future, it is necessary to carry out extensive testing for improving
different ecological points to further enhance the accuracy of model estimation, in order to promote the
non-destructive diagnosis of crop nitrogen nutrition and precise fertilizer regulation.

5. Conclusions

In this study, the VIs, wavelet features, and spatial-spectral features of images obtained from
a UAV were used as input indicators, and models based on PLS, SVR, and PSO-SVR were constructed
to estimate the aboveground N content of wheat. This provided a new method for the quantitative
estimation of N content and realized the low-cost, rapid, and high-throughput monitoring of the
wheat growth status and nutrition information for farmland irrigation. At the same time, it provided
a guarantee for the fine management of factors such as farmland irrigation and fertilization.



Sensors 2019, 19, 4416 14 of 18

The multi-scale canopy details were extracted by a wavelet transform to form spatial features of
different scales. We proposed a wheat N-content estimation model based on spatial-spectral indicators,
which was superior to the model estimation model based on VIs or WFs alone. This was mainly due to the
combination of spectral-spatial features, including spectral information and image spatial information.
Not only the spatial analysis of the features of different scales but also the decomposition of the signal
from the image itself enabled us to overcome the influences of various factors during aerial photography.
Therefore, the accuracy of the model significantly improved. Good results were obtained for estimating
aboveground N with combined features with VIs and WFs using the PLSR model (R2 = 0.7171–0.7716,
RMSE = 0.5068–0.5883), the SVR model (R2 = 0.7487–0.8545, RMSE = 0.4114–0.4841), and the PSO-SVR
model (R2 = 0.797–0.9025, RMSE = 0.3287–0.4415). The results show that a drone equipped with
a digital camera can improve the estimation of aboveground nitrogen content in winter wheat based
on the obtained spatial spectral features. Moreover, various growth parameters of other crops, such as
the leaf area index and chlorophyll content, could be effectively monitored in future studies.
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