
sensors

Article

Ambulatory and Laboratory Stress Detection Based
on Raw Electrocardiogram Signals Using
a Convolutional Neural Network

Hyun-Myung Cho 1,2 , Heesu Park 1,3 , Suh-Yeon Dong 4,* and Inchan Youn 1,*
1 Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792,

Korea; wisjmeng@gmail.com (H.-M.C.); pheesoo417@gmail.com (H.P.)
2 Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology,

Daejeon 02792, Korea
3 Department of Biomedical Science, College of Medicine, Korea University, Seoul 02841, Korea
4 Department of Information Technology Engineering, Sookmyung Women’s University, Seoul 04310, Korea
* Correspondence: suhyeon.dong@gmail.com (S.-Y.D.); iyoun@kist.re.kr (I.Y.)

Received: 24 September 2019; Accepted: 10 October 2019; Published: 11 October 2019
����������
�������

Abstract: The goals of this study are the suggestion of a better classification method for detecting
stressed states based on raw electrocardiogram (ECG) data and a method for training a deep neural
network (DNN) with a smaller data set. We suggest an end-to-end architecture to detect stress using
raw ECGs. The architecture consists of successive stages that contain convolutional layers. In this
study, two kinds of data sets are used to train and validate the model: A driving data set and a mental
arithmetic data set, which smaller than the driving data set. We apply a transfer learning method
to train a model with a small data set. The proposed model shows better performance, based on
receiver operating curves, than conventional methods. Compared with other DNN methods using
raw ECGs, the proposed model improves the accuracy from 87.39% to 90.19%. The transfer learning
method improves accuracy by 12.01% and 10.06% when 10 s and 60 s of ECG signals, respectively,
are used in the model. In conclusion, our model outperforms previous models using raw ECGs from
a small data set and, so, we believe that our model can significantly contribute to mobile healthcare
for stress management in daily life.

Keywords: stress detection; electrocardiogram; deep neural network; convolutional neural network

1. Introduction

As interest in health care increases, the importance of stress management has grown. As many
people are exposed to the stressful environments, they are more likely to suffer from physical and
mental disorders. Indeed, stress has been shown to cause diseases such as depression, asthma,
and autoimmune diseases [1]. To observe the changes in our body caused by stress, many researchers
have focused on physiological signals, such as electrocardiography (ECG) signals and galvanic skin
response [2].

When a person receives stress stimulation, his/her autonomic nervous system reacts to the stress,
which results in physiological changes [3]. Among the physiological signals, the ECG enables us
to observe how our bodies react to stress. An ECG is an electrical signal which is generated by
heart activity. An ECG signal has three main components: The P-wave, QRS-complex, and T-wave.
Among them, the time-series intervals between successive R peaks are used to calculate the heart rate
variability (HRV) [4]. The HRV can be represented by various parameters that are calculated along
the time, frequency, and non-linear domains. These HRV parameters have often been used for stress
recognition [5–7].

Sensors 2019, 19, 4408; doi:10.3390/s19204408 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-3880-216X
https://orcid.org/0000-0001-6858-539X
https://orcid.org/0000-0002-2960-7303
https://orcid.org/0000-0002-0977-0808
http://dx.doi.org/10.3390/s19204408
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/20/4408?type=check_update&version=2

Sensors 2019, 19, 4408 2 of 18

With the recent development of mobile sensors for ECG recording, HRV analysis and stress
studies have been actively carried out. However, due to the inherent limitations of HRV analysis,
which requires sufficient data to observe the variability, the longer the time window of the ECG
record for an HRV analysis is, the more accurate the statistical characteristics can be. In other
words, it is difficult to perform an HRV analysis with short-term ECG measurements. Some previous
research has demonstrated the minimum time window required for an HRV analysis. Camm et al. [7]
recommended at least a 5 min ECG measurement to analyze the HRV. Moreover, the R peaks along the
ECG time-series must be detected. To do so, computational algorithms based on the Pan-Tompkins
algorithm [8] can be used. These algorithms contain preprocessing steps, such as filtering and
differential operations, to find the QRS-complex adequately. Namely, the classical HRV approach
requires additional preprocessing steps with a limited window length.

To recognize stress states, several previous studies [9–11] have reported classical HRV analysis
using machine learning algorithms, such as the support vector machine (SVM), k-nearest neighbors
(kNN), adaptive boosting (AB), and logistic regression (LR) methods, along with the ECG and
the other physiological signals. Other physiological signals include skin conductance (SC) [9,11],
respiration [9,11], and skin temperature (ST) [11].

Table 1 shows a comparative summary of previous studies which used conventional machine
learning algorithms, as well as DNN models. The column “Window length” refers to the duration
of the ECG measurement used to extract the HRV parameters. The column “Performance” indicates
the reported accuracy of the classifier mentioned in the column “Classifier”. Most studies used more
than one classifier, but only those that gave the best results are shown in Table 1. The study [11] used
different stressors to the other studies [9,10], including the stroop color word test (SCWT), mental
arithmetic (MA), and counting numbers. These stimuli are considered to be laboratory-environmental
stress stimulation. Castaldo et al. [10] designed an experiment where an ECG was acquired on
two different days. One was a day when the participants were undergoing a university verbal
examination, and the other day was after a vacation. Although these studies (which were performed
in a laboratory-controlled environment) showed an accuracy of about 85%, outside of the laboratory
the accuracy reached only 80% [10]. These results might indicate the limitations of the stressors used
in the laboratory environment and of the conventional machine learning methods. A conventional
machine learning method based on HRV features involves not only the preprocessing of the ECG
signals, but also feature selection among the HRV parameters.

Table 1. Previous studies on stress detection. ECG, Electrocardiogram; SC, Skin Conductance; ST, Skin
Temperature; HR, Heart Rate; BN, Bayesian Network; AB, Adaptive Boosting; CNN, Convolutional
Neural Network; RNN, Recurrent Neural Network; MT-CNN, Multitask CNN; AUC, Area Under the
Curve; SCWT, Stroop Color Word Test; MA, Mental Arithmetic.

Ref # of Subjects Signal Window
Length (s) Classifier Performance

(%) Stressor

[9] 13
ECG, SC,

Respiration 10 BN 84 Driving

[10] 42 ECG 180 AB 80 Verbal examination

[11] 20
ECG, SC,

Respiration, ST 30 BN 84.6
SCWT, math,

counting

[12] 20, 30 Raw ECG 10 CNN+RNN 87.39, 73.96
MA, interview,

SCWT, visual stimuli,
cold pressor

[13] 10 HR, SC - MT-CNN 0.918 (AUC) Driving [14]

As the deep neural network (DNN) approach has recently demonstrated outperforming pattern
recognition accuracy [15], some studies [12,13,16–21] have utilized DNNs for biomedical engineering

Sensors 2019, 19, 4408 3 of 18

applications, including heart arrhythmia classification, medical image classification and enhancement,
stress detection, and for other medical diagnoses. U-net [21], which consists of a convolutional neural
network (CNN), forms an autoencoder architecture using skip-connection between the encoder and
decoder. This architecture could be used in medical imaging applications, including augmentation,
classification, and detection. Hannun et al. [16] achieved a performance in arrhythmia detection using
a deep convolutional architecture that was similar to or exceeding that of cardiologists.

Hwang et al. [12] proposed the DeepECGNet method, which detects stress using an ultra-short-term
(10 s) ECG. They used raw ECG signals for the input of the DNN without extracting the HRV parameters.
A model was configured with one CNN and two long short-term memory (LSTM) [22] models.
They suggested an optimal convolution filter width and pooling window width, respectively, of 0.6 s
and 0.8 s. They recommended selecting the proper hyperparameter values for the convolution filter
width and pooling window width, both of which are capable of covering the QRS-complex of an ECG.
They designed an experiment for inducing mental and physical stress in participants through MA,
SCWT, visual stimuli, and cold pressor. There were 20 and 30 participants, separated into two cases.
In the two cases, the model [12] reached 87.39% and 73.96% accuracy. Saeed et al. [13] suggested using
a multitask convolutional neural network (MT-CNN). Raw physiological signals configured with the
heart rate (HR) derived from an ECG and SC are fed to the MT-CNN to detect stress. There was
no mention of how long the duration of the ECG measurement was, but only 300 samples of ECG
signals were reported. They achieved 0.918 for the area under the receiver operating characteristic
curve (AUROC).

Though these studies suggested models that detect stress automatically using conventional
machine learning algorithms, some issues remain unsolved. One of these is the complexity of the
classification steps. Four steps are involved in conventional methods: Preprocessing, feature selection,
classifier training, and classification. Preprocessing, including R-peak extraction, is required to extract
the proper R-peak and calculate the HRV. Most of these studies used other physiological signals
(i.e., respiration, SC, and ST) as well as an ECG, and needed to select proper features among the both
physiological signals and the HRV parameters. These processes make it difficult to apply these models
in a practical environment, from the perspective of real-time classification. Additionally, a person must
measure the ECG for at least 1 min to detect a stress state, even though it is a short-term HRV analysis.

In this paper, we suggest a DNN model to detect stress with a raw ECG signal, which possibly
overcomes the limitations mentioned above. An end-to-end method using a raw ECG signal does
not require preprocessing (i.e., filtering and R-peak extraction). Additionally, this method does not
require additional feature selection. The other contribution of our research is a method for training the
DNN with a pretrained model. The DNN requires a large amount of data to train the model, but it is
difficult to acquire a large data set of physiological signals. We trained the proposed model based on
a pretrained model, which learned a large amount of data [14]. We evaluated the performance of the
proposed model by calculating evaluation metrics (e.g., accuracy and area under the curve) which are
widely used in the evaluation of DNN models. We also assessed the proposed model by comparing it
with conventional machine learning methods [9–11] which used only the ECG to detect stress, and
with other DNN methods [12,13].

2. Material and Methods

2.1. Subjects and Data Acquisition

We used two kinds of data sets, which were obtained from two different experiments, to train
and evaluate the proposed model. The two different data sets can be considered as ambulatory
and laboratory stress, respectively. One of the data sets consisted of ECG measurements collected
from drivers who drove through a city and on a highway [14]. The other data set was recorded in
an experimental environment, where mental stress was induced by arithmetic tasks in the participants.
Figure 1 shows detailed information about both protocols, including duration and task.

Sensors 2019, 19, 4408 4 of 18

Rest

Driving

City Highway City Highway City Rest

15 m 15 m

Mental Arithmetic

Rest Math1 Math2*

5 m

Rest

5 m 5 m 5 m

Total Duration
20 minutes

20m ~ 1h

*Math2 refers more complicated mental arithmetic

Total Duration
50 ~ 90 minutes

Figure 1. The experimental procedures and their durations.

2.1.1. Driving Data Set

PhysioNet [23] offers free access to a large number of physiological signals recorded under
various conditions. We selected the driver stress data set [14] from among the free accessible databases.
It consists of various physiological signals, including ECG, electromyography (EMG), SC, and
respiration signals, which were recorded under the conditions of driving and resting. Healey et al. [14]
tried to monitor real-world stress during driving situations. Among the recorded physiological signals,
we chose the ECG, which was sampled at 496 Hz. Modified lead II configuration electrodes were
used to measure the ECG. Sixteen participant’s records were uploaded to PhysioNet. We excluded
2 subject’s data, as they did not contain a record of the marker for when the participants changed
the driving region to highway or city. Finally, we selected 14 subject’s records for use in our study.
All the selected records included approximately 50–85 min of ECG measurements during driving and
resting. Due to differences in traffic conditions, the total duration of experiments differed by subject.
The participants were made to take a rest for 15 min before and after driving.

2.1.2. Mental Arithmetic Data Set

Seventeen people (6 female and 11 male, 27.9± 3.3 years old) participated in our experiment.
We designed an experiment to induce mental fatigue in the participants using a mental arithmetic task.
The mathematical tests were developed based on the Montreal Imaging Stress Task (MIST) to elicit
two different levels of mental stress in participants. To do so, we simplified the MIST paradigm by two
levels of difficulty. The participants had to try to solve the arithmetic problems and push the keypad
to answer the questions. The problem consists of two levels: Moderate and high. The moderate level
included three integers with plus and minus operations. For the high level, four integers and all of
the arithmetic operations were used. All participants encountered the same level of complexity for
the arithmetic problems. The ECG data were sampled at 256 Hz and measured by a T-REX TR100A
sensor; the electrodes were placed in a modified lead II configuration, which was the same as for the
driving data set [14]. First, we measured the baseline ECG for 5 min while the participants took a rest.
After the baseline measurement, the participants took the mental arithmetic test two times (5 min each)
at a moderate and a high level. They encountered more complicated mathematical problems during
the high level test. We provided a 5 min rest between the mental arithmetic tests. To measure whether
the mental arithmetic induced mental stress in the participants, we used two questionnaires, including
self-assessment manikin (SAM) [24] and distress thermometer (DT) [25]. The self-reports were written
after the first rest period and after two repetitions of the tasks. The mental arithmetic experiments were
approved by the institutional review board at the Korea Institute of Science and Technology (2017-030).

Sensors 2019, 19, 4408 5 of 18

2.2. Data Preprocessing and Annotation Procedures

We performed some preprocessing procedures before using the data sets for training the neural
network. As the ECGs of the two data sets were recorded by different sensors, we scaled them to the
same range (0–1) using z-score normalization,

xs
i ←

xs
i − µs

σs , for 0 ≤ i < n

s ∈
{

Driving, MA
}

where n denotes the number of data sets for each stressor and window. We calculated the mean (µ)
and standard deviation (σ), along with all the data for each stressor (i.e., the driving and the mental
arithmetic). We normalized the ECG using both the mean and standard deviation. After normalization,
the driving data set was downsampled to match the sampling rate of the mental arithmetic data set,
which was sampled at 256 Hz. We needed a fixed input dimension, due to using the same neural
network for training the model and detecting the stress based on the two different data sets. The ECG
signals were sliced into 10 s, 30 s, and 60 s windows to detect stress in short-term windows. The reason
for setting a short-term window was to try to recognize stress in nearly real-time.

We needed to annotate the data with specific labels to train a neural network by a supervised
method. We segmented the driving data set, based on the boundaries between driving on the highway,
driving on the city, and resting. The ECG measurements recorded during driving on the highways and
in the cities were labeled as stress, and the other measurements were labeled as rest. In the case of the
mental arithmetic data set, we labeled the ECG measurements recorded during the mathematical task
as stress. The other ECG measurements, recorded during the rest period, were annotated as rest.

Table 2 shows the numbers of the data sets and their label distribution for each window.
The number of data labeled as stress in the driving data set was much larger than those labeled
as rest, while the mental arithmetic data set shows a balanced label distribution. The drivers took a rest
for approximately 30 min, including an initial and final rest, but they drove for over 45 min, resulting
in an imbalanced distribution. The participants who took the mental arithmetic test were exposed to
the same amount of time for the stress task and resting; 10 min each. The driving data set and the
mental arithmetic data set contained over 72,000 and 16,000 ECG cycles, respectively.

Table 2. Number of samples in the data sets.

Stressor Window
Length (s)

Number of Samples
Total

Rest Stress

Driving
10 2161 3731 5892
30 712 1227 1939
60 349 598 947

Mental arithmetic
10 1020 1020 2040
30 340 340 680
60 170 170 340

2.3. The Deep Neural Network

We propose a deep convolutional neural network to detect stress events. Figure 2 shows the
architecture of the proposed model. It obtains input of only raw ECG signals, not HRV parameters or
other physiological signals. The input dimension can be defined as x ∈ Rm×w×c, where m and c denote
the size of the mini-batch and the number of channels, respectively, and w refers to the width of the
ECG, which is defined as the multiplication of the sampling rate and window. Our model contains
successive stages (N = 8) to extract features from the ECG. Table 3 shows the list of the operations
and the detailed parameters used in the stages. The number of filters in the convolutional layer is
defined as 8× 2k, where k begins at 0 and is increased by one every second stage. Each stage consists

Sensors 2019, 19, 4408 6 of 18

of two convolutional layers and one pooling layer. A convolutional layer performs a convolution
operation with its filter and a specific stride. A stride is defined as how much the filter moves
within a layer (i.e., the convolutional and pooling layer). An output of the first convolutional layer
is fed to both a strided convolutional layer and a pooling layer. The stride values of the strided
convolutional layer and pooling layer are set to 2. The inputs of these two layers are subsampled by
a factor of 2. Max-pooling, which chooses the maximum value among the filter widths, is used in the
pooling layers. Both the strided convolutional layers and the pooling layers subsample their inputs,
followed by each input being concatenated along its channels. If the output of a previous stage has
a σ(N−1) ∈ Rm×w×c dimension, both the strided convolutional layer and pooling layer produce outputs
as
{

C(N), P(N)
}
∈ Rm×(w/2)×(c/2), where C(N) and P(N) denote the output of the strided convolutional

layer and pooling layer in the N stage. Concatenating along its channels gives it a dimension of
σ(N) ∈ Rm×(w/2)×c. When passing through the stages (N = 1, 2, . . . , 8), dimension reduction along its
width is performed. For example, if the input (raw ECG) has dimensions of x ∈ Rm×w×1,

σ(N) ∈ Rm×(w/2N)×c, N ∈
{

1, 2, . . . , 8
}

w = 256×window, window ∈
{

10, 30, 60
}

c = 8× 2k, k =

{
N
2 − 0.5, when N is odd
N
2 − 1, when N is even

The extracted features (σ(8)) generated by the last stage are fed to the softmax classifier, which
performs a binary classification between stress and rest:

hj =
exp (σ

(8)
j)

∑2
k=1 exp (σ

(8)
k)

, j = 1, 2 (1)

where j = 1, 2 for the binary classification. The output of the softmax classifier, hj, represents the
probabilistic distributions of each class—stress and rest—the sum of which is 1. Table A1 shows more
detailed information of the proposed network, including the shape of the output for each operation
with the input of 10 s of ECG.

We used a rectified linear unit (ReLU) as an activation function to generate a non-linear decision
boundary from the successive linear combinations of the weighted inputs. The activation function
produces a maximum value between zero and its input. We applied dropout [26] with a drop rate
of 0.3 and batch normalization [27] to prevent overfitting. A neural network can be easily overfitted
to the training data when a model learns within a small number of data sets. Many studies have
made use of dropout and batch normalization to overcome overfitting. Dropout requires a drop rate,
which represents how many neurons are dropped in each layer. Batch normalization makes the input
data follow a specific distribution, based on a normalized input distribution. The distribution can be
changed during training through the trainable variables [27] γ and β, where γ scales the normalized
input and β shifts it.

Sensors 2019, 19, 4408 7 of 18

ECG

INPUT
OUTPUT

Softmax

StressRest

Deep	Neural	Network,	8	STAGES

1 2 3 4 5 6 7 8

Conv	1-D Strided
Conv	1-D

Pooling

BN ReLU Dropout

N-STAGE B

A CA D E

LEGEND
A:	Convolution
B:	Max	Pooling
C:	Batch	Normalization

D:	Activation
E:	Dropout

Figure 2. Deep neural network architecture and the components of each stage. Raw ECG signals are
provided into the input layer. The successive stages extract features from an output of a previous stage.
After the last stage, a softmax classifier performs a binary classification between the rest and stress.

Table 3. List of operations and hyperparameters used in each stage.

Order Operation Filter Width Number of Filters Stride

1 Conv 1-D 16 8× 2k 1

2 Conv 1-D 16 8× 2k 2
Pooling 16 - 2

3 Concat Concatenating

4 BN Batch normalization

5 Activation ReLU

6 Dropout Drop rate: 0.3

2.4. Training the Neural Network

There are three types of training method for the proposed model: Type I generates a pretrained
model that trains using the driver data set; Type II trains a model with the mental arithmetic data set;
and Type III trains a pretrained model (i.e., Type I) with the mental arithmetic data set.

All three types of training use the same end-to-end architecture, using the raw ECG signals from
each data set. A loss function needs to be set to train the DNN model. We utilized the cross-entropy
loss function:

L = − 1
m

m

∑
i=1

(yi log (hi) + (1− yi) log (1− hi)), (2)

where hi and yi denote the prediction results from the proposed model and the true labels from
the data set, respectively, and m represents the size of the mini-batch, which is set to 64. When the
model predicts a state (i.e., stress or rest) properly, the loss function becomes nearly zero. However,
it diverges from zero in the opposite situation; that is, when the model produces an output different
from the data set label. A proper optimizer must be selected to train the DNN stably, because
the optimizer ensures that the loss function converges to zero. We used the Adam optimizer
(β1 = 0.9, β2 = 0.999, ε = 10−8) [28] to train the proposed model. This optimizer calculates
the gradients of the loss function by back-propagation, which adjusts the weights of the neurons in an
end-to-end model. All the weights of the neurons are initialized by the He initializer [29].

W ∼ N(0, Var(W)). (3)

Sensors 2019, 19, 4408 8 of 18

The weight distribution is initialized to the normal distribution, which has a mean of zero and
standard deviation of the weight variance. The weight variance is defined as follows:

Var(W) =

√
2

nin
, (4)

where nin denotes the number of input weights.
There are many hyperparameters (e.g., the number of layers, number of neurons, size of the

mini-batch, filter width, number of channels, among others) to be decided, in order to train a model
properly. We first considered how many stages are adequate for the proposed model. The number of
the stages began with 1, and the performance for accuracy showed improvement as the number of
stages increased by 1, up until 8. Within the proper number of stages, we tuned the filter width and
the number of filters to find the best fitting parameters. We searched the hyperparameters of the DNN
through a grid search method and a manual search. Finally, we chose the model that achieved the
highest accuracy for the test data set along all the maximum 10 epochs. Section 2.5.1 shows how we
split the data set into a training set and testing set, based on cross-validation.

2.4.1. Type I Training

We generated a pretrained model with the driving data set. As the DNN requires a large amount
of data for training, we used the driving data set, which was larger than the mental arithmetic data set.
The learning rate was set to 1× 10−3 and was reduced by a factor of 10 every 5 epochs.

2.4.2. Type II Training

Using the mental arithmetic data set, the same method of end-to-end training was applied as in
Type I training. Additionally, we used all the same hyperparameters to observe how the size of the
data set affected training the neural network.

2.4.3. Type III Training

We applied a transfer learning method, using the pretrained model generated by Type I training.
As mentioned above, it is difficult to train a neural network with a small data set. If a model is trained
based on a pre-trained model, the model can then easily be fine-tuned. We hypothesized that the
ECG measurements obtained from the participants who had taken the mental arithmetic task were
similar to those obtained from drivers. It is effective to apply transfer learning when the distribution
of data set to be learned is similar to that of the pretrained model. The softmax classifier required
a re-training process, because there is little difference between the data used in pretraining and the data
to be trained, although their distributions were similar. However, re-training only the softmax classifier
did not show an acceptable performance. The number of layers to retrain was, thus, considered as
a hyperparameter. We applied the grid search method to find the proper stages (Stage 1, Stage 2, . . . ,
Stage 8) to be retrained. The start stage to be retrained was changed until a satisfactory performance
was achieved. We kept the pretrained model, except for the last stage (N = 8) and the softmax layer
(N = 9). The trainable variables in the softmax classifier were initialized before training.

W(N) ∼ N(0, Var(W(N))). N = 9 (softmax) (5)

We utilized the Adam optimizer [28] to update the trainable variables of the last stages and
softmax classifier through backpropagation, but the variables in the other stages were kept constant:

W(N) ←W(N) − αt ·mt/(
√

vt + ε), N = 8, 9 (6)

where m and v denote the first moment and second moment of the Adam optimizer, respectively.
We used a different learning rate (α), which started at 1× 10−4 with the same decay rate (decreasing

Sensors 2019, 19, 4408 9 of 18

by a factor of 10 every 5 epochs), to train the model. As the pretrained model was already fine-tuned,
it was better to use a lower learning rate. The results of three training types and comparisons between
them are shown in Section 3.

2.5. Model Evaluation

In this section, we describe how to evaluate the proposed model. All three training types,
as mentioned above, performed training with a training set using cross-validation. We tested each type
of end-to-end model with its test set and calculated the evaluation metrics (i.e., the receiver operating
characteristic curves). Additionally, we observed the features not only at the end of the neural network,
but also in the middle stages. The T-distributed stochastic neighbor embedding (t-SNE) [30] makes
high-dimensional features visible in a two- or three-dimensional domain.

2.5.1. Cross-Validation

We used k-fold cross-validation (k = 10) to evaluate the proposed model. Both the driving and
the mental arithmetic data sets were split by subject by cross-validation. The DNN should not have
seen data in the test set presented during training. It is obvious that a neural network achieves a high
performance with the data used in training. In other words, we needed to divide the data set into
both a training set and a test set, and perform training and testing based on each set individually.
In the case of the physiological signals, it is difficult to acquire a satisfactory amount of data to train
a neural network. There are several limitations in a laboratory environment, such as the portability of
the sensors and the inconvenience of the person to be measured. However, cross-validation makes it
possible to generate both the training and testing sets with only a small amount of data. We randomly
split the data set into individual subjects that make k folds using cross-validation. Each fold consists
either of one subject or more than one subject. We trained the models with k− 1 folds and assessed
them with the one fold left. Thus, the training and test sets had a 9:1 ratio. All these processes were
iterated k times with the individual end-to-end models, which produced k models. Therefore, each
model was trained by an individual training set and also validated by a test set which had never
been seen during training. All of the three training types were evaluated with the data set which
was included in the same data set used during the training session, but the model never had seen it.
For example, the Type I model was trained and tested with the driving data set. In the case of Type
III, although the pretrained model was made based on the driving data set, it was retrained using
the mental arithmetic data set. Therefore, the mental arithmetic data set was used for the evaluation.
All the evaluation metrics were cross-validation results, which are the mean values of all the folds.

All training and validation was performed on a personal computer (CPU; AMD Ryzen 7 2700X,
GPU; NVIDIA GeForce GTX 1080 Ti 11 Gb, Memory; 32 Gb). With the use of GPU, it took less than
two and one seconds per epoch for training the model with the driving and mental arithmetic data
sets, respectively. However, without GPU, the driving data set required 22 s per epoch and the mental
arithmetic data set needed 5 s per epoch to train the model.

2.5.2. Statistical Analysis

A softmax classifier placed at the end of the DNN produces probabilistic outputs, which indicate
how likely it is that the inputs are related to the true labels. Among the outputs, a classifier selects the
highest probability for its predictions. It is an important way to compare these predictions with the
true labels to evaluate the model performance. Many metrics are used to assess such models, such
as receiver operating characteristic (ROC) [31] curves and precision–recall (PR) curves [32]. An ROC
curve plots sensitivity against 1-specificity with a changing threshold value. Similarly, the precision
against the sensitivity (recall) is plotted in the PR curves, which gives an additional analysis to the
ROC curves for an imbalanced data set [32]. We calculated the area under the curve (AUC) for the
ROC curves, which was nearly 1.0 when the model had successfully operated. We also computed
the F1 score, which represents the mean of sensitivity and precision. The sensitivity, also called recall,

Sensors 2019, 19, 4408 10 of 18

refers to how well a model detects stress among the true stress events. The specificity shows the correct
detection rate of the rest state. The precision represents the ratio of the number of true-positives to
the number of cases in which a model predicted stress. We compared the proposed model to other
models [9–13], and to itself, for each type of training (i.e., Types I, II, and III) using the evaluation
metrics. We utilized one-way analysis of variance (ANOVA) and Tukey’s test to assess the model itself
within each training type.

3. Results

We collected two self-reports (e.g., SAM and DT) from the participants after two levels of the
mental arithmetic task and after the initial rest. Lower SAM and higher DT scores refer to stronger
negative emotions and higher perceived stress, respectively. Table 4 shows the results of the self-reports.
We calculated the difference of score based on thebaseline measurement (i.e., after initial rest) after the
mental arithmetic task. SAM decreased after the tasks and the difference for the high level task was
larger than that for the moderate level. The DT score increased, compared to the baseline measurement.
Similar to the SAM score, a large difference in the DT score occurred after the high level arithmetic task.

Table 4. Difference in self-reported scores, compared to baseline measurement.

Task SAM DT

Math1 −0.37 0.37
Math2 −0.58 0.89

In this section, we show the results of the proposed model. It consists of the extracted feature
maps and evaluation metrics, including a comparison with the other models and within the proposed
model itself. As mentioned in Section 2.4, Type I training indicates the pretrained model using the
driving data set. For Type II, the model was trained using the mental arithmetic data set without the
pretrained model. In the case of Type III training, we used the same data set as in Type II to train the
model, but based it on the pretrained model.

Firstly, we tested the conventional machine learning methods before evaluating the proposed
model. We used conventional algorithms, including decision tree (DT), k-nearest neighbors (kNN),
logistic regression (LR), random forest (RF), and support vector machine (SVM). All the algorithms
were trained and validated with the same data set as the proposed model. Table 5 shows the accuracy
of the conventional methods. All the machine learning algorithms could not reach a satisfying
performance, in terms of accuracy, which means that trainable algorithms cannot learn the proper
features using a raw ECG input.

Table 5. Accuracy of the conventional methods. (DT; Decision Tree, kNN; k-Nearest Neighbors, LF;
Logistic Regression, RF; Random Forest, SVM; Support Vector Machine)

Stressor Classifier
Window Length (s)

10 30 60

MA

DT 0.539 (0.050) 0.517 (0.062) 0.490 (0.066)
kNN 0.497 (0.030) 0.511 (0.040) 0.535 (0.058)
LR 0.493 (0.029) 0.537 (0.076) 0.508 (0.055)
RF 0.512 (0.075) 0.505 (0.062) 0.515 (0.041)

SVM 0.483 (0.025) 0.516 (0.071) 0.520 (0.082)

Driving

DT 0.487 (0.210) 0.457 (0.234) 0.512 (0.208)
kNN 0.361 (0.051) 0.423 (0.150) 0.451 (0.208)
LR 0.447 (0.188) 0.443 (0.235) 0.434 (0.225)
RF 0.528 (0.187) 0.486 (0.215) 0.523 (0.193)

SVM 0.514 (0.155) 0.533 (0.177) 0.498 (0.205)

Sensors 2019, 19, 4408 11 of 18

3.1. Feature Representation

We observed all the extracted features from each stage using the t-SNE method, which converts
high-dimensional features (the number of components, width, and channel) to 2-dimensional features,
which we can analyze using a scatter plot. Figure 3 shows the t-SNE scatter plots for the input (raw
ECG) and the extracted features from each stage. Each point represents states of the label (i.e., rest and
stress). The input is from a subject who participated in the mental arithmetic task and is sliced using
a 10 s window. The proposed model, trained by Type III training, generated features in each stage.
As shown in Figure 3, there was almost no difference between the stress- and rest-labeled ECGs. By
considering the features passed through the stages, a distinction could be observed between the labels.
The t-SNE plots imply that it is possible to distinguish the two labels clearly through the softmax
classifier after the last stage.

200 100 0 100 200

200

100

0

100

200

Input
rest
stress

10 5 0 5 10
10

5

0

5

10

Stage1

rest
stress

7.5 5.0 2.5 0.0 2.5 5.0 7.5

6

4

2

0

2

4

6

8

Stage5

rest
stress

15 10 5 0 5
4

2

0

2

4

6

8

Stage8
rest
stress

Figure 3. The t-SNE plots of raw ECG and extracted features from the stages. Round points denote
features of ECG labeled as rest, and crosses represent stress-labeled features. This figure shows only
the extracted features from stage 1, stage 5, and the last stage.

3.2. Performance of the End-to-End Model

Figure 4 shows the accuracy of the proposed model for the binary classification of rest and stress.
We compared the results of the three training types, based on the input windows. Overall, Type I, which
was trained using the driving data set, showed the best performance for all the windows. It reached the
highest mean accuracies at 89.38%, 87.16%, and 79.12% for the 10 s, 30 s, and 60 s windows, respectively.
The accuracy of Type I training, 89.38%, was significantly different from both the Type II accuracy,
61.33%, and Type III accuracy, 69.71%, for the 10 s window (p < 0.001). Additionally, there was a
significant difference between the accuracy of Type II and Type III training (p < 0.05). In the case
of the 30 s window, Type I training achieved an accuracy of 87.16%, whereas Type II and Type III
training achieved 68.38% and 72.13%, respectively (p < 0.001). For the 60 s window, the accuracies
of Type I, 79.12%, and Type III, 79.50%, training were slightly different, but the accuracy of Type II
training, 71.50%, was significantly different from that of Type III training (p < 0.05). Considering Type
II and Type III training, which were both trained with the same data set (mental arithmetic), there were
improvements of 12.01% and 10.06% in accuracy for the 10 s and 60 s windows (p < 0.05), respectively;
while there was no significant improvement in the 30 s window at the 0.05 level.

Sensors 2019, 19, 4408 12 of 18

T y p e I T y p e I I T y p e I I I T y p e I T y p e I I T y p e I I I T y p e I T y p e I I T y p e I I I
w 1 0 w 3 0 w 6 0

0

2 0

4 0

6 0

8 0

1 0 0

Ac
cu

rac
y(

%)

* *
*

*
*

* *

* *
*

*

Figure 4. Accuracy of the end-to-end model in binary classification. Types are grouped by each raw
ECG window (i.e., 10 s, 30 s, and 60 s) fed to the model. * and ** indicates that difference of the means
is significant at the 0.001 and 0.05 level, respectively.

We plotted the ROC and PR curves by each type and window in Figure 5. The ROC curves need
to be located above the baseline (y = x) to satisfy the model performance. We can observe that Type I
training showed the best performance in the ROC and PR curves. Type III training demonstrated little
improvement over Type II training, based on the curves. However, both the ROC and PR curves of
Type III training are generally positioned higher than the curves of Type II. It is difficult to evaluate the
performance of the model with the ROC and PR curves only. Therefore, we calculated the AUC of the
ROC curves. It shows the performance on the numerical results, which makes it possible to compare
the models.

0 . 0 0 . 5 1 . 0
0 . 0

0 . 5

1 . 0

0 . 0 0 . 5 1 . 0
0 . 0

0 . 5

1 . 0

0 . 0 0 . 5 1 . 0
0 . 0

0 . 5

1 . 0

 T y p e I
 T y p e I I
 T y p e I I I
 [9]

Se
ns

itiv
ity

1 - S p e c i f i c i t y

W i n d o w , 1 0 s

1 - S p e c i f i c i t y

 T y p e I
 T y p e I I
 T y p e I I I
 [1 1]

W i n d o w , 3 0 s

1 - S p e c i f i c i t y

 T y p e I
 T y p e I I
 T y p e I I I
 [1 0]

W i n d o w , 6 0 s

(a)

0 . 0 0 . 5 1 . 0
0 . 0

0 . 5

1 . 0

0 . 0 0 . 5 1 . 0
0 . 0

0 . 5

1 . 0

0 . 0 0 . 5 1 . 0
0 . 0

0 . 5

1 . 0

Pre
cis

ion

S e n s i t i v i t y (R e c a l l)

 T y p e I
 T y p e I I
 T y p e I I I

W i n d o w , 1 0 s

S e n s i t i v i t y (R e c a l l)

 T y p e I
 T y p e I I
 T y p e I I I

W i n d o w , 3 0 s

S e n s i t i v i t y (R e c a l l)

 T y p e I
 T y p e I I
 T y p e I I I

W i n d o w , 6 0 s

(b)

Figure 5. ROC and PR curves. Each line represents a curve from Type I, Type II, and Type III training,
respectively. A cross refers to the performances of the conventional model. (a) ROC curves and
(b) PR curves.

Sensors 2019, 19, 4408 13 of 18

Table 6 shows the evaluation metrics, including the AUC, F1 score, sensitivity, and specificity.
Both the mean and standard deviation were calculated based on cross-validation. We compared the
performance between Type I and Type II training, which were both trained without any pretrained
model, but trained with the different sizes of data sets (i.e., the driving and the mental arithmetic data
sets). Type I training for the 10 s window shows the best performance for the AUC, F1 score, sensitivity,
and specificity. It had a value of 0.938 for the AUC (p < 0.001), 0.922 for the F1 score (p < 0.001),
and 0.930 for sensitivity (p < 0.001). Although the specificity of Type I training for the 10 s window,
0.854, showed the highest value, it did not show a significant difference from Type II training. Based on
the mean values, Type III training showed an improvement over Type II training, except for specificity
with the 10 s window. For the 10 s window, the improvements were 8.00% for the AUC, 19.90% for the
F1 score (p < 0.001), and 29.77% for sensitivity (p < 0.05). For the 30 s window, the improvements were
5.07% for the AUC, 7.42% for the F1 score, 1.81% for sensitivity, and 16.61% for specificity. The 60 s
window showed improvements of 18.66% for the AUC (p < 0.05), 13.23% for the F1 score (p < 0.05),
7.32% for sensitivity, and 20.71% for specificity. In summary, the transfer learning method improved
performances by 11.57%, 10.57%, 13.52%, 12.96%, and 9.41% on average for accuracy, the AUC, the F1

score, sensitivity, and specificity, respectively, along all window lengths.

Table 6. Evaluation metrics.

Type Window
Length (s)

Evaluation Metrics

AUC F1 Score Sensitivity Specificity

I

10

0.938
(0.053)

0.922
(0.044)

0.930
(0.035)

0.854
(0.094)

II
0.701

(0.069)
0.602

(0.094)
0.552

(0.186)
0.759

(0.173)

III
0.761

(0.088)
0.752

(0.079)
0.787

(0.117)
0.696

(0.144)

I

30

0.924
(0.072)

0.922
(0.050)

0.949
(0.039)

0.788
(0.161)

II
0.766

(0.049)
0.755

(0.050)
0.815

(0.143)
0.665

(0.165)

III
0.807

(0.131)
0.815

(0.063)
0.830

(0.130)
0.797

(0.170)

I

60

0.857
(0.141)

0.901
(0.036)

0.923
(0.044)

0.755
(0.214)

II
0.679

(0.113)
0.717

(0.078)
0.760

(0.227)
0.670

(0.258)

III
0.835

(0.095)
0.826

(0.089)
0.820

(0.162)
0.845

(0.161)

3.3. Comparison with Different Models

We compared the proposed end-to-end model with conventional methods [9–11]. Rigas et al. [9]
used physiological signals including HRV, SC, and respiration while using 10 s length of window.
Smets et al. [11] additionally utilized skin temperature. Castaldo et al. [10] used non-linear HRV
parameters, including the sample entropy (SampEn), recurrence plot mean line length (RPlmean),
and shannon entropy (ShanEn). Figure 5a shows the comparison results to the proposed model using
the ROC curves. Each blue cross is positioned at the best performance in [9–11]. To assess the model
exactly, we compared it with [9,11], which used 10 s and 30 s windows, to the proposed model with
the same window lengths. To best match Castaldo et al. [10], which used a 3 m window to extract the
HRVs from the ECG, we compared the proposed model with the 1 m window. Based on Figure 5a,
all blue crosses are positioned lower than Type I, or are similar to it. From the perspective of sensitivity

Sensors 2019, 19, 4408 14 of 18

and specificity, the proposed model shows better performance than the conventional methods for
a certain range of thresholds.

Both Hwang et al. [12] and Saeed et al. [13] utilized DNNs to classify stress. The comparison
results are shown in Table 7. Hwang et al. [12] used a CNN and LSTM with a raw ECG signal
and achieved an 87.39% and 73.96% accuracy for each case. Their architecture consisted of one
convolutional layer and two LSTM layers. Our proposed model shows improvements in accuracy of
3.10% and 18.00% for each case, with the same window (10 s). Saeed et al. [13] used raw HR signals
derived from the ECG and raw SC signals. They used the same driving data set from Healey et al. [14]
to train and evaluate their model. The model [13] showed the best performance, with a value of 0.918
for the area under the ROC curve, while the proposed model reached 0.938.

Table 7. Comparison with models featuring a DNN algorithm.

[12] [13] Proposed

Window 10 s - 10 s
Input Raw ECG Raw HR and SC Raw ECG

Accuracy 87.39%, 73.96% - 90.19%
AUC - 0.918 0.938

4. Discussion and Conclusions

We have proposed a novel end-to-end architecture that uses raw ECG signals for stress detection
and validated its performance with two different data sets. We believe that our model could replace
the conventional machine learning-based methods in several ways. First, in terms of model simplicity,
our model has an advantage over conventional methods, which require a few additional steps, such as
preprocessing, feature selection, and feature extraction, before classification. As our model was built
with an end-to-end architecture, it does not necessarily require such additional steps. The end-to-end
architecture enables the detection of stress by automatically extracting features without feature
selection. We observed that the successive deep convolutional layers extract distinguishable features,
as shown in Figure 3. Second, in the same vein, our model may not depend on the performance of
these steps. The methods that use HRV parameters depend highly on the performance of the R-peak
detection algorithm. Considering stress management in daily life, R-peak detection in ECG signals
recorded in real-world environments may require additional steps, as proposed in [33]. In addition to
the independence of the model, our results showed that the detection performance of the proposed
model was superior to that of the conventional methods [9–11], as shown in Figure Figure 5a and
Table 5. With raw ECG signals, conventional machine learning methods did not show acceptable
performance in detecting stress, and rarely can be trained with non-linear inputs (i.e., raw signals).
Finally, whereas the HRV parameters require at least a short-term (5 m) or long-term window (24 h)
to properly reflect the stress response, our model used much shorter windows (10 s, 30 s, and 60 s).
Our approach demonstrates a practically applicable system for daily stress management. As it takes
an average of 2.490 ms to estimate stress state by inputs of raw ECGs, it is possible to apply the
proposed model in the real-world to detect stress in real-time.

Despite the advantages described above, the performance of the DNN depends highly on the size
of the data set used to train a neural network. To investigate the effect of the data set size on stress
detection, we compared three different types of models with different training strategies. As expected,
the model Type I, which was trained using a larger data set, showed better performance than the model
Type II, trained using a smaller data set. There was a size difference of more than four times between
the driving [14] and the mental arithmetic data sets. For the last type of model (Type III), we utilized
the pretrained model, trained using the driving data set, to train the model with a smaller data set.
From the comparison between Type II and Type III training, Type III, which used the pretrained model,
showed an improvement over Type II, which did not. Although the size of the mental arithmetic data
set might not be large enough to train the neural network, it is possible to achieve a fine-tuned model,

Sensors 2019, 19, 4408 15 of 18

based on pretraining with a larger data set. However, it could not reach the performance of the Type I
model, trained using a larger data set, which presented the best performance. Unlike other domains of
data, such as speech or image, a sufficient amount of physiological data may not be easily accessed
or obtained. Thus, our approach can be utilized to train a DNN with a smaller data set, based on the
pretrained model.

In this study, we used two different data sets (i.e., driving and mental arithmetic) under the
ambulatory and laboratory environments for model development and validation. Mental arithmetic
is one of the representative test paradigms used to assess mental stress. It was proved, by two
questionnaires (self-assessment manikin and distress thermometer), that mental arithmetic induced
a mental load in the participants. However, to develop a stress management method for daily life,
there is a need to validate the method out-of-laboratory, as well. Thus, we also chose the driving
data set to assess stress out-of-laboratory. Although these data sets cannot represent all of the stress
situations that can occur in everyday life, such as workload stress, physical stress, anxiety, and so on,
we demonstrated an end-to-end architecture to detect mental stress for both in- and out-of-laboratory
environments. However, there were still limitations in this study. Although the two sensors used in the
two data sets were individual, in view of generalization, the model needs to be validated by using ECG
from diverse sensors, including other electrode configurations. We have fed other data sets, which
were different from those using during training, into the model. This showed high-biased results about
a specific type of stress and recording sensor dependency. Even though bias or dependency remains,
transfer learning from one data set to other may provide a solution to break the limited applicability in
real-world settings. As mentioned above, all of the data sets used in this study were acquired during
specific stressful tasks. However, ECGs during daily activities are necessary for considering daily
monitoring of stress. In future studies, we will apply this model to detect other stressful events, such as
workload stress or anxiety, and will apply it to multi-class problems or continuous level recognition.
Additionally, we will investigate how to augment physiological signals to train a neural network to
overcome the limitations of the data set.

Author Contributions: Conceptualization, H.-M.C., S.-Y.D., and I.Y.; data curation, S.-Y.D., H.P., and H.-M.C.;
funding acquisition, I.Y.; investigation, H.P. and H.-M.C.; methodology, H.-M.C. and S.-Y.D.; software, H.-M.C.;
supervision, S.-Y.D. and I.Y.; writing–original draft, H.-M.C.; writing–review and editing, S.-Y.D. and I.Y.

Funding: This research was supported in part by the Bio Medical Technology Development Program of the
National Research Foundation (NRF) funded by the Korean government, MSIP (2014M3A9D7070128); a grant of
the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI),
funded by the Ministry of Health & Welfare, Republic of Korea (grant number : HI14C3477); and the National
Research Council of Science & Technology (NST) grant by the Korea government (MSIT) (No. CAP-18-01-KIST).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. More detailed information about the proposed architecture. “conv” denotes “conv(filter
width)-(filter channel)”. Similar to “conv”, “maxpool16” refers to max pooling with 16 lengths of
the filter.

Order Operation Output Stride # of Parameters

0 input (?, 2560, 1) - -

1-1 conv16-8 (?, 2560, 8) 1 128
1-2 conv16-8 (?, 1280, 8) 2 1024
1-2 maxpool16 (?, 1280, 8) 2 -
1-3 concatenating (?, 1280, 16) - -
1-4 batch normalization (?, 1280, 16) - 32
1-5 activation & dropout (?, 1280, 16) - -

Sensors 2019, 19, 4408 16 of 18

Table A1. Cont.

Order Operation Output Stride # of Parameters

2-1 conv16-8 (?, 1280, 8) 1 2048
2-2 conv16-8 (?, 640, 8) 2 1024
2-2 maxpool16 (?, 640, 8) 2 -
2-3 concatenating (?, 640, 16) - -
2-4 batch normalization (?, 640, 16) - 32
2-5 activation & dropout (?, 640, 16) - -

3-1 conv16-16 (?, 640, 16) 1 4096
3-2 conv16-16 (?, 320, 16) 2 4096
3-2 maxpool16 (?, 320, 16) 2 -
3-3 concatenating (?, 320, 32) - -
3-4 batch normalization (?, 320, 32) - 64
3-5 activation & dropout (?, 320, 32) - -

4-1 conv16-16 (?, 320, 16) 1 8192
4-2 conv16-16 (?, 160, 16) 2 4096
4-2 maxpool16 (?, 160, 16) 2 -
4-3 concatenating (?, 160, 32) - -
4-4 batch normalization (?, 160, 32) - 64
4-5 activation & dropout (?, 160, 32) - -

5-1 conv16-32 (?, 160, 32) 1 16,384
5-2 conv16-32 (?, 80, 32) 2 16,384
5-2 maxpool16 (?, 80, 32) 2 -
5-3 concatenating (?, 80, 64) - -
5-4 batch normalization (?, 80, 64) - 128
5-5 activation & dropout (?, 80, 64) - -

6-1 conv16-32 (?, 80, 32) 1 32,768
6-2 conv16-32 (?, 40, 32) 2 16,384
6-2 maxpool16 (?, 40, 32) 2 -
6-3 concatenating (?, 40, 64) - -
6-4 batch normalization (?, 40, 64) - 128
6-5 activation & dropout (?, 40, 64) - -

7-1 conv16-64 (?, 40, 64) 1 65,536
7-2 conv16-64 (?, 20, 64) 2 65,536
7-2 maxpool16 (?, 20, 64) 2 -
7-3 concatenating (?, 20, 128) - -
7-4 batch normalization (?, 20, 128) - 256
7-5 activation & dropout (?, 20, 128) - -

8-1 conv16-64 (?, 20, 64) 1 131,072
8-2 conv16-64 (?, 10, 64) 2 65,536
8-2 maxpool16 (?, 10, 64) 2 -
8-3 concatenating (?, 10, 128) - -
8-4 batch normalization (?, 10, 128) - 256
8-5 activation & dropout (?, 10, 128) - -

Total 435K

References

1. Cohen, S.; Janicki-Deverts, D.; Miller, G.E. Psychological stress and disease. JAMA 2007, 298, 1685–1687.
[CrossRef] [PubMed]

2. Smets, E.; De Raedt, W.; Van Hoof, C. Into the Wild: The Challenges of Physiological Stress Detection in
Laboratory and Ambulatory Settings. IEEE J. Biomed. Health Inform. 2018, 23, 463–473. [CrossRef] [PubMed]

3. Sztajzel, J. Heart rate variability: A noninvasive electrocardiographic method to measure the autonomic
nervous system. Swiss Med. Wkly. 2004, 134, 514–522. [PubMed]

4. Shaffer, F.; Ginsberg, J. An overview of heart rate variability metrics and norms. Front. Public Health 2017,
5, 258. [CrossRef] [PubMed]

http://dx.doi.org/10.1001/jama.298.14.1685
http://www.ncbi.nlm.nih.gov/pubmed/17925521
http://dx.doi.org/10.1109/JBHI.2018.2883751
http://www.ncbi.nlm.nih.gov/pubmed/30507517
http://www.ncbi.nlm.nih.gov/pubmed/15517504
http://dx.doi.org/10.3389/fpubh.2017.00258
http://www.ncbi.nlm.nih.gov/pubmed/29034226

Sensors 2019, 19, 4408 17 of 18

5. McCraty, R.; Atkinson, M.; Tiller, W.A.; Rein, G.; Watkins, A.D. The effects of emotions on short-term power
spectrum analysis of heart rate variability. Am. J. Cardiol. 1995, 76, 1089–1093. [CrossRef]

6. Appelhans, B.M.; Luecken, L.J. Heart rate variability as an index of regulated emotional responding. Rev. Gen.
Psychol. 2006, 10, 229–240. [CrossRef]

7. Camm, A.; Malik, M.; Bigger, J.; Breithardt, G.; Cerutti, S.; Cohen, R.; Coumel, P.; Fallen, E.; Kennedy, H.;
Kleiger, R.; et al. Heart rate variability: Standards of measurement, physiological interpretation and clinical
use. Task Force of the European Society of Cardiology and the North American Society of Pacing and
Electrophysiology. Circulation 1996, 93, 1043–1065.

8. Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng 1985, 32, 230–236.
[CrossRef]

9. Rigas, G.; Goletsis, Y.; Fotiadis, D.I. Real-time driver’s stress event detection. IEEE Trans. Intell. Transp. Syst.
2012, 13, 221–234. [CrossRef]

10. Castaldo, R.; Xu, W.; Melillo, P.; Pecchia, L.; Santamaria, L.; James, C. Detection of mental stress due to
oral academic examination via ultra-short-term HRV analysis. In Proceedings of the 2016 38th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL,
USA, 16–20 August 2016; pp. 3805–3808.

11. Smets, E.; Casale, P.; Großekathöfer, U.; Lamichhane, B.; De Raedt, W.; Bogaerts, K.; Van Diest, I.; Van Hoof, C.
Comparison of machine learning techniques for psychophysiological stress detection. In Proceedings
of the International Symposium on Pervasive Computing Paradigms for Mental Health, Milan, Italy,
24–25 September 2015; Springer: Cham, Switzerland, 2015; pp. 13–22.

12. Hwang, B.; You, J.; Vaessen, T.; Myin-Germeys, I.; Park, C.; Zhang, B.T. Deep ECGNet: An Optimal Deep
Learning Framework for Monitoring Mental Stress Using Ultra Short-Term ECG Signals. Telemed. e-Health
2018, 24, 753–772. [CrossRef] [PubMed]

13. Saeed, A.; Ozcelebi, T.; Lukkien, J.; van Erp, J.; Trajanovski, S. Model Adaptation and Personalization for
Physiological Stress Detection. In Proceedings of the 2018 IEEE 5th International Conference on Data Science
and Advanced Analytics (DSAA), Turin, Italy, 1–4 October 2018; pp. 209–216.

14. Healey, J.A.; Picard, R.W. Detecting stress during real-world driving tasks using physiological sensors.
IEEE Trans. Intell. Transp. Syst. 2005, 6, 156–166. [CrossRef]

15. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems; Curran Associates Inc.: Red Hook, NY, USA, 2012;
pp. 1097–1105.

16. Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Turakhia, M.P.; Ng, A.Y.
Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep
neural network. Nat. Med. 2019, 25, 65. [CrossRef] [PubMed]

17. Manawadu, U.E.; Kawano, T.; Murata, S.; Kamezaki, M.; Muramatsu, J.; Sugano, S. Multiclass
Classification of Driver Perceived Workload Using Long Short-Term Memory based Recurrent Neural
Network. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China,
26–30 September 2018; pp. 1–6.

18. Xu, S.S.; Mak, M.W.; Cheung, C.C. Towards end-to-end ECG classification with raw signal extraction and
deep neural networks. IEEE J. Biomed. Health Inform. 2018, 23, 1574–1584. [CrossRef] [PubMed]

19. Acharya, U.R.; Fujita, H.; Lih, O.S.; Hagiwara, Y.; Tan, J.H.; Adam, M. Automated detection of arrhythmias
using different intervals of tachycardia ECG segments with convolutional neural network. Inf. Sci. 2017,
405, 81–90. [CrossRef]

20. Kiranyaz, S.; Ince, T.; Gabbouj, M. Real-time patient-specific ECG classification by 1-D convolutional neural
networks. IEEE Trans. Biomed. Eng. 2016, 63, 664–675. [CrossRef]

21. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation.
In Proceedings of the International Conference on Medical Image Computing And Computer-Assisted
Intervention, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015, pp. 234–241.

22. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
23. Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody,

G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research
resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [CrossRef]

http://dx.doi.org/10.1016/S0002-9149(99)80309-9
http://dx.doi.org/10.1037/1089-2680.10.3.229
http://dx.doi.org/10.1109/TBME.1985.325532
http://dx.doi.org/10.1109/TITS.2011.2168215
http://dx.doi.org/10.1089/tmj.2017.0250
http://www.ncbi.nlm.nih.gov/pubmed/29420125
http://dx.doi.org/10.1109/TITS.2005.848368
http://dx.doi.org/10.1038/s41591-018-0268-3
http://www.ncbi.nlm.nih.gov/pubmed/30617320
http://dx.doi.org/10.1109/JBHI.2018.2871510
http://www.ncbi.nlm.nih.gov/pubmed/30235153
http://dx.doi.org/10.1016/j.ins.2017.04.012
http://dx.doi.org/10.1109/TBME.2015.2468589
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1161/01.CIR.101.23.e215

Sensors 2019, 19, 4408 18 of 18

24. Bradley, M.M.; Lang, P.J. Measuring emotion: The self-assessment manikin and the semantic differential.
J. Behav. Therapy Exp. Psychiatry 1994, 25, 49–59. [CrossRef]

25. Jacobsen, P.B.; Donovan, K.A.; Trask, P.C.; Fleishman, S.B.; Zabora, J.; Baker, F.; Holland, J.C. Screening for
psychologic distress in ambulatory cancer patients: A multicenter evaluation of the distress thermometer.
Cancer 2005, 103, 1494–1502. [CrossRef]

26. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

27. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. arXiv 2015, arXiv:1502.03167.

28. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980
29. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on

imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago,
Chile, 7–13 December 2015; pp. 1026–1034.

30. van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
31. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]
32. Saito, T.; Rehmsmeier, M. The precision-recall plot is more informative than the ROC plot when evaluating

binary classifiers on imbalanced datasets. PLoS ONE 2015, 10, e0118432. [CrossRef]
33. Lee, M.; Park, D.; Dong, S.Y.; Youn, I. A Novel R Peak Detection Method for Mobile Environments.

IEEE Access 2018, 6, 51227–51237. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0005-7916(94)90063-9
http://dx.doi.org/10.1002/cncr.20940
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1371/journal.pone.0118432
http://dx.doi.org/10.1109/ACCESS.2018.2867329
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Material and Methods
	Subjects and Data Acquisition
	Driving Data Set
	Mental Arithmetic Data Set

	Data Preprocessing and Annotation Procedures
	The Deep Neural Network
	Training the Neural Network
	Type I Training
	Type II Training
	Type III Training

	Model Evaluation
	Cross-Validation
	Statistical Analysis

	Results
	Feature Representation
	Performance of the End-to-End Model
	Comparison with Different Models

	Discussion and Conclusions
	
	References

