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Abstract: Discovering the Bayesian network (BN) structure from big datasets containing rich causal
relationships is becoming increasingly valuable for modeling and reasoning under uncertainties in
many areas with big data gathered from sensors due to high volume and fast veracity. Most of the
current BN structure learning algorithms have shortcomings facing big data. First, learning a BN
structure from the entire big dataset is an expensive task which often ends in failure due to memory
constraints. Second, it is quite difficult to select a learner from numerous BN structure learning
algorithms to consistently achieve good learning accuracy. Lastly, there is a lack of an intelligent
method that merges separately learned BN structures into a well structured BN network. To address
these shortcomings, we introduce a novel parallel learning approach called PEnBayes (Parallel
Ensemble-based Bayesian network learning). PEnBayes starts with an adaptive data preprocessing
phase that calculates the Appropriate Learning Size and intelligently divides a big dataset for fast
distributed local structure learning. Then, PEnBayes learns a collection of local BN Structures in
parallel using a two-layered weighted adjacent matrix-based structure ensemble method. Lastly,
PEnBayes merges the local BN Structures into a global network structure using the structure ensemble
method at the global layer. For the experiment, we generate big data sets by simulating sensor data
from patient monitoring, transportation, and disease diagnosis domains. The Experimental results
show that PEnBayes achieves a significantly improved execution performance with more consistent
and stable results compared with three baseline learning algorithms.

Keywords: Bayesian network learning; big data; ensemble method; Distributed Data Parallelization;
scientific workflow

1. Introduction

A Bayesian network (BN) BBN is a probabilistic graphical model that represents a probability
distribution through a directed acyclic graph (DAG) that encodes conditional dependency and
independency relationships among variables in the model. BNs are widely applied to various forms
of reasoning in many domains such as healthcare, bioinformatics, finance, and social services [1–3].
With the increasing availability of big datasets in science, government, and business, BN learning
from big datasets is becoming more valuable than learning from conventional, small datasets. BN also
has a widespread application in multiple-criteria decision analysis as a graphical model in Anomaly
Detection [4] and Activity Recognition [5] from sensor data. However, learning BNs from big datasets
requires high computational costs [6], and complexities that are not well addressed with conventional
BN learning approaches. One solution is to perform the learning task in a distributed data processing
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and learning fashion using computation diagrams such as MapReduce [7,8]. Several research gaps still
exist. It is quite challenging to select a learner from numerous BN structure learning algorithms to
consistently achieve good learning accuracy. There are typically two approaches of ensemble learning
for big data—algorithm level or data level. However, there is a lack of research that conducts ensemble
learning at both the data level and the algorithm level. Furthermore, there is a lack of work for Bayesian
Network learning integrated as part of the big data modeling and scientific workflow engine.

There are three main challenges for learning a Bayesian network from big data. First, learning a
BN structure from the big dataset is an expensive task that often fails due to insufficient computation
power and memory constraints. It is necessary to find an intelligent way to divide the dataset into
small data slices suitable for distributed learning. Second, it is difficult to determine which BN learning
algorithm would work well on a particular dataset. Lastly, the distributed learned BN structures need
to be intelligently merged collectively to form a BN structure that follows the generative distribution
of the big dataset.

Facing these challenges, we propose a novel approach called PEnBayes (Parallel Ensemble-based
Bayesian network learning) to learn a Bayesian network from big data. The PenBayes approach consists
of three phases: Data Preprocessing, Local Learning, and Global Ensemble Learning. In the Data
Preprocessing phase, the entire dataset is divided into data slices for the Local Learners. We design
a greedy algorithm to intelligently calculate the appropriate size of each data slice, defined as the
Appropriate Learning Size (ALS). Then, the entire big dataset is divided into many data slices and sent
to the Local Learners. During the Local Learning phase, a two-layered structural ensemble method
is proposed to learn a Bayesian network structure from each data slice and then merge the learned
networks into one local BN structure. Lastly, in the Global Ensemble Learning phase, PEnBayes uses
the same structural ensemble method as in the Local Learners to merge the local BN structures into a
global structure. Experimental results on datasets from three well-known Bayesian networks validate
the effectiveness of PEnBayes in terms of efficiency, accuracy, and stability for learning a Bayesian
network from big datasets. PEnBayes uses the entire big dataset instead of sampling data for learning.

The main contributions of this paper are as follows:

• A greedy data size calculation algorithm is proposed for adaptively partitioning a big dataset into
data slices of appropriate size for distributed BN learning.

• A distributed three-layered ensemble approach called PenBayes is proposed to achieve stable and
accurate Bayesian network learning from big datasets at both data and algorithm levels.

• PenBayes enables Big Data Bayesian network learning by leveraging the distributed platform [9]
and the scientific workflow system [10] for advancing big data learning in the graphical model
research area.

The remainder of this paper is organized as follows. In the next section, we introduce the
background. Related work is in Section 3. The research problem is formalized in Section 4.
Our approach is described in Section 5, with workflow integration in Section 6. Sections 7 and 8
show experimental setups, results, and discussions. Finally, the paper is concluded in Section 9.

2. Background

2.1. Distributed Data-Parallel Patterns and Supporting Systems for Scalable Big Data Application

Several Distributed Data-Parallel (DDP) patterns, such as Map, Reduce, Match, CoGroup and
Cross, have been identified to easily build efficient and scalable data parallel analysis and analytics
applications [11–13]. DDP patterns enable programs to execute in parallel by splitting data in
distributed computing environments. Originating from higher-order functional programming, each
DDP pattern executes user-defined functions (UDF) in parallel over input datasets. Users only need
to select the appropriate DDP pattern for their specific data processing tasks, and implement the
corresponding UDFs.
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Due to the increasing popularity and adoption of these DDP patterns, a number of execution
engines have been implemented to support one or more of them. These DDP execution engines manage
distributed resources, and execute UDF instances in parallel. When running on distributed resources,
DDP engines can achieve good scalability and performance acceleration with good fault tolerance.
Hadoop is the most popular MapReduce execution engine [14]. The Stratosphere/Flink system
[15,16] supports five different DDP patterns. Many of the above DDP patterns are also supported by
Spark operations [9]. Since each DDP execution engine defines its own API for how UDFs should be
implemented, an application implemented for one engine may be difficult to run on another engine.
Wang et al. gives examples on how to run binary legacy tools in parallel with partitioned datasets
using the DDP framework [13].

2.2. Scientific Workflow System

Cloud computing evolved from the concept of utility computing, Workflows have emerged as a
way to formalize and structure data analysis, thus becoming an increasingly popular paradigm for
scientists to handle complex scientific processes [17]. The Kepler scientific workflow system [10] is an
open-source, cross-project collaboration to serve scientists from different disciplines [18,19]. Kepler
adopts an actor-oriented modeling paradigm for the design and execution of scientific workflows.
Kepler has been used in a wide variety of projects to manage, process, and analyze scientific data.

Kepler provides a graphical user interface (GUI) for designing, managing and executing scientific
workflows, which are a structured set of steps or tasks linked together that implement a computational
solution to a scientific problem. In Kepler, Actors provide implementations of specific tasks and can
be linked together via input and output Ports. Data are encapsulated in messages or Tokens, and
transferred between actors through ports. Actor execution is governed by Model of Computations
(MoCs), called Directors in Kepler [20].

Since each DDP pattern expresses an independent higher-order function, we can define a separate
DDP actor for each pattern. Unlike normal actors, these higher-order DDP actors do not process the
input data sent to them as a whole. Instead, they first divide the input data and then process each
partition independently.

The UDF for the DDP patterns is an independent component and can naturally be encapsulated
within a DDP actor. The logic of the UDF can either be expressed as a sub-workflow. In the first case,
users can compose a sub-workflow for their UDF in the Kepler GUI using specific subsidiary actors for
the DDP pattern and any other general actors. Since the sub-workflow is not specific to any engine
API, the same sub-workflow could be executed on different DDP engines. Like other actors, multiple
DDP actors can be linked to construct larger, more complex applications.

A Bayesian network (BN) is a probabilistic graphical model that represents a probability
distribution through a directed acyclic graph (DAG) that encodes conditional dependency and
independency relationships among variables in the model [21]. Consider the following example
in Figure 1, representing a simplified model to help diagnose the patients arriving at a respiratory
clinic. This BN is known as Cancer network [22] containing five nodes: Smoking, Bronchitis, Lung
cancer, Dyspnea, and X-ray. A history of smoking has a direct influence on both whether or not a
patient has bronchitis and whether or not a patient has lung cancer. Therefore, in the network model,
the node ’Smoking’ is the parent of nodes ’Bronchitis’ and ’Lung cancer’. In turn, the presence or
absence of lung cancer has a direct influence on the results of a chest X-ray test, so the node ’Lung
cancer’ is the parent of the child node ’X-ray’ with a directed arc connecting them.



Sensors 2019, 19, 4400 4 of 27

Figure 1. A Bayesian network example - Cancer Network.

2.3. Bayesian Network

In Bayesian network research, the notion of DAG-faithful was introduced in the work of Cheng et
al. [23]. A dataset is DAG-faithful if its underlying probabilistic model can be structured as a DAG.
This condition makes a dataset suitable for BN learning.

Definition 1. (DAG faithfulness)
A graph G is a dependency map (D-map) of a probabilistic distribution P if every dependence relationship

derived from G is true in P; G is an independency map (I-map) of P if every independence relationship derived
from G is true in P. If G is both a D-map and an I-map of P, then G is a perfect map (P-map) of P, and P is a
DAG-Isomorph of G [24]. Distribution P and DAG graph G are faithful to each other and P is a DAG-faithful
distribution [25]. A dataset D is DAG-faithful if and only if its underlying probability distribution P is a
DAG-faithful distribution.

Technically, the objective is to find a graph that is a P-map of the true distribution of the big
dataset. Spirtes et al. and Meek prove that both Gaussian and discrete distributions are faithful to a
Bayesian network [25,26].

The essential graph [23] of a BN is a graph that has the same edges of the BN and the same
v-structures. A triple of nodes X, Y, Z forms a v-structures if X → Z ← Y and X is not adjacent to Y.

In a Bayesian network, the Markov Blanket (MB) of a node includes its parents, its children, and the
children’s parents [24]. The MB of a node contains all the variables that shield the node from the rest of
the network and is the only knowledge needed to predict the behavior of the node. Many algorithms
like MMHC [27] were proposed to learn BN structure by discovering the MB of each node.

An important property for measuring the complexity of a BN is the Average Markov Blanket
Size [28], denoted as AMBS.

Definition 2. (Average Markov Blanket Size)
Given a Bayesian network structure B with P nodes, its Average Markov Blanket Size (AMBS) is the sum

of each node’s Markov Blanket Size MBSi divided by P.

Formally, AMBS is calculated by Equation (1):

AMBS = ∑
i=1..N

MBSi/P (1)
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Given a dataset D and a BN structure B, let X = {X1, . . . , Xn} be the set of discrete random
variables/nodes in B, πi be the set of parents of Xi and π = {π1, . . . , πn}, then the joint probability of
the B and D denoted as P(B, D) is defined as

P(B, D) = P(B)
n

∏
i=1

qi

∏
j=1

Γ(N
′
ij)

Γ(N′ij + Nij)

ri

∏
k=1

Γ(N
′
ijk + Nijk)

Γ(N′ijk)
(2)

Given a dataset D, qi is the number of unique configurations (i.e., states) of πi, ri is the number
of values for Xi, Nijk is the number of times when Xi = k and πi = j, Nij = ∑k Nijk, N

′
ijk is the

hyperparameter for when Xi = k and πi = j, N
′
ij = ∑k N

′
ijk and Γ(x) = (x− 1)! is the gamma function.

This joint probability is called the Bayesian Dirichlet equivalence with uniform prior (BDeu)
score function [29]. The BDeu score function is one of several Bayesian score functions. It verifies the
score equivalence property and is generally applicable when the search is carried out in the space of
equivalence classes. This paper uses the BDeu score function as the Bayesian score function.

2.4. Bayesian Network Learning Algorithms

In this paper, we conduct ensemble learning at both data and algorithm levels.
Over the last decades, numerous algorithms have been proposed for learning a Bayesian network

from data, such as Hill Climbing (HC) [29], Tabu Search (Tabu) [29], Three-Phase Dependency Analysis
(TPDA) [23], Inter-IAMB [30], Max-Min Hill-Climbing (MMHC) [27], Breeding Swarm based algorithm
[31], an improved heuristic equivalent search algorithm [32] and a data stream learning approach
[33]. However, these BN learning algorithms operate individually, they do not consider the structures
learned by other algorithms and incorporate them to obtain a more accurate and stable result.

There exists a type of method that finds the optimal solution in a search space [34]. Exact Bayesian
network learning methods aim to find the optimal network structure given a dataset [35–37]. However,
exact methods are usually associated with long execution times on small datasets [36,37]. This paper
chooses to use HC, Tabu, and MMHC as basic learning algorithms.

3. Related Work

In the field of BN learning from big data, Chickering et al. [6] showed that identifying high-scoring
BN from a large dataset is NP-hard. Yoo et al. [1] reviewed bioinformatics and statistical methods and
concluded that Bayesian networks are suitable in analyzing big datasets from clinical, genomic, and
environmental domains. In recent years, data parallelization techniques have become a key solution for
big dataset Bayesian network learning problems. Fang et al. [7] proposed a Map-Reduce-based method
for learning BN from massive datasets. Our previous work [8] adopted distributed data parallelism
techniques and scientific workflow for BN learning from big datasets to achieve better scalability and
accuracy. Yue et al. studied a parallel and incremental approach for D ata-Intensive BN learning [38].
A scalable approach for learning Bayesian network classifiers is proposed in [39]. It is quite difficult to
select a learner from numerous BN structure learning algorithms to consistently achieve good learning
accuracy. This is a research gap that needs to be filled. Furthermore, we significantly extend our
previous work [8,40] in adopting different BN structure learning algorithms in the Local Learner and
design a three-layered ensemble approach to ensure learning stability and accuracy. There are three
major differences: (1) formalized problem definition and a new theorem are provided; (2) an additional
layer of ensemble is added at the data slice level to leverage multiple BN structure learning algorithms
for achieving learning stability; (3) extensive experiments and results analyses on much larger datasets
on a distributed platform integrating scientific workflow are presented.

In machine learning, ensemble methods [41] use multiple learning methods to obtain better
predictive performance than learning from any of the constituent methods. Because the multiple
learning methods of ensemble learning can run independently before their results are merged, it is a
natural fit to use the MapReduce model for ensemble learning. There are typically two approaches of
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ensemble learning for big data: (1) data level, where the results of the same learner on different data
sets are merged in the end [42]; (2) algorithm level, where the results of different learning algorithms
on the same data are merged in the end. As a data-level approach, Ref. [43] partitions the data, uses a
decision tree method called C4.5 at Map phase for each data partition, and bagging ensemble learning
[44] where individual learner results are assembled during the Reduce phase. As one of the first big
data ensemble learning studies of a Bayesian network, our previous work [8] also uses the data-level
approach because it uses the MMHC algorithm. As an algorithm-level approach, Refs. [45,46] support
parallel ensemble learning of multiple classifiers on the same data. Different from these approaches, in
this paper, we conduct ensemble learning at both the data level and algorithm level.

There have been machine learning libraries built on big data engines to support distributed
learning. The most popular ones include Spark MLlib [47], Mahout [48], H2O [49], and FlinkML [50].
Users can build machine learning applications using these libraries and the inherent parallel execution
from the underlying big data engines. However, to the best of our knowledge, there is no library built
on big data modeling engines for Bayesian Network learning, this research fills this gap. Further, in
contrast to these libraries, our approach allows researchers with limited knowledge programming to
implement their own learning algorithms, and the parallel computation work is integrated as part of
the big data modeling and workflow engine.

4. Problem Formulation

Our goal is to use the big training data to learn an accurate model of the underlying distribution at
both data level and algorithm level to achieve better learning accuracy, stability, and usability towards
integrating Bayesian network learning as part of the big data modeling and scientific workflow engine.
We need to state and elaborate this more precisely using the following definitions and theorem.

Given a very large DAG-faithful dataset, it is desirable to divide it into many slices for distributed
learning. The key challenge is to determine the data slice size. A size that is too small breaks the
DAG-faithful property of the data slice, resulting in a poor BN structure, whereas a size that is too
large may incur a high computation cost. Thus, we introduce a concept called Appropriate Learning
Size (ALS), as defined below.

Definition 3. (Appropriate Learning Size)
Given a DAG-faithful and independent identically distributed (iid) big dataset D, its Appropriate Learning

Size (ALSD) is the minimal data slice size that maintains the DAG-faithful property.

Definition 4. (Edge Strength) Given a dataset D containing N records and a Bayesian network B containing
M edges, the Edge Strength (ES) of B is the Bayesian score of B given D divided by M and N.

Formally, Edge Strength of B given D is calculated by Equation (3):

ES(B, D) =
P(B, D)

(N ∗M)
(3)

Edge Strength (ES) indicates the average contribution of each edge to the overall score of the BN.
A lower ES value means higher network quality and structural stability. This paper uses the BDeu
score function for Edge Strength calculation throughout the experimental study.

Theorem 1. Given a distribution P, and a sufficiently large DAG-faithful dataset DS2 with S2 records and a
DAG structure BNDS2 , there exists a DAG-faithful dataset DS1 drawn from P, with S1 records and a DAG
structure BNDS1 (S1 < S2). The difference of the average Markov blanket size between the BNDS1 and BNDS2 is
less than a small threshold β. The absolute value difference of the Edge Strength between the BNDS1 and BNDS2

is less than a small threshold ε.
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This theorem can be formalized as:

∀P, DS2, ∃ε, β, ∃DS1, S1 < S2|
AMBS(BNDS1)− AMBS(BNDS2) < β

|ES(BNDS1 , DS1)− ES(BNDS2 , DS2)| < ε

(4)

Proof. By Definition 1, since DS1 and DS2 are both DAG-faithful datasets, their generative probability
distributions P have unique essential graphs GDS1 and GDS2 , which encodes the same conditional
independences in P [23]. Since the essential graphs DS1 and DS2 are drawn from the same distribution
P, then GDS1 and GDS2 are identical. The only difference between an essential graph and a DAG
structure is the edge direction, but because the change of arc direction does not effect the sum of
each node’s Markov Blanket, the change of edge direction will not affect the AMBS. Thus, we can
transform GDS1 and GDS2 into two DAGs: BNDS1 and BNDS2 , and consequently, AMBS(BNDS1) is
equal to AMBS(BNDS2). Therefore, there must exist a threshold value β such that AMBS(BNDS1)−
AMBS(BNDS2) < β.

Furthermore, since BNDS1 and BNDS2 have the same edges, the differences between
ES(BNDS1 , DS1) and ES(BNDS2 , DS2) are determined by the Bayesian score calculation over the
different orientation of edges, which is insignificant and converges towards 0 when S1 and S2
become sufficiently large [29]. Therefore, given a distribution P, and a sufficiently large DAG-faithful
dataset DS2 with S2 records, there exists a small threshold, ε, and DS1 such that S1 < S2 and
|ES(BNDS1 , DS1)− ES(BNDS2 , DS2)| < ε.

Based on Theorem 1, we can propose a new greedy method that keeps increasing the size of data
slice D until AMBS(BND) and ES(BND, D) both converge. In this way, we can quantitatively estimate
ALS and verify dataset’s DAG-faithful property for distributed Bayesian network learning on a big
dataset. Details of this greedy method can be found in Algorithm 1.

In practice, the underlying network structure of a dataset D is unknown. The only way to estimate
the AMBS is through learning and obtaining the BN structure from the D. To address this challenge,
based on Theorem 1, we propose a greedy algorithm (Algorithm 1) to estimate the value of ALS using
AMBS and Edge Strength.

Algorithm 1 starts with a small data slice, Dsliced. It learns the BN from Dsliced (Step 4) and
obtains AMBS (Step 5) and Edge Strength(ES) (Step 5) . Since Dsliced may not be large enough
to be DAG-faithful, resulting in inaccurate and unstable AMBS and ES. In order to make Dsliced
DAG-faithful, the loop in the algorithm (Steps 7–16) doubles sliceSize at each iteration, the loop
condition ensures that currentAMBS and currentES values converge after each iteration. We choose
to double the size because this is a reasonable learning rate that serves as a balanced tradeoff point
between quality and efficiency. If the size increases at a lower learning rate, then it will take longer for
the algorithm to converge, if the rate is a more significant number such as 3, then the ALS will grow
too fast, resulting in a relatively large data slice that may slow down the learning process. The loop
stops when both AMBS and ES become stable, which satisfies Theorem 1. This indicates, based on
Theorem 1, that the size of Dsliced is close to ALS (Step 17) and can approximate the real ALS value.
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Algorithm 1 CalculateALS.

Input:

D: Dataset;

ε1, ε2: Thresholds;

mstep: Maximum loop steps.
Output:

AMBS: Average Markov blanket size;

ALS: Appropriate Learning Size.
1: bestAMBS = 1; bestES = −1; step = 0;
2: sliceSize = InitialSize * number of attributes in D; // Initial data slice size
3: Dsliced = read sliceSize rows from D;
4: BNDS = LearnBNStructure(Dsliced);
5: currentAMBS = average Markov Blanket size of BNDS;
6: currentES = Edge Strength of BNDS;
7: while (step ≤ mstep) AND ((|currentAMBS− bestAMBS| > bestAMBS ∗ ε1) OR (|currentES−

bestES| > bestES ∗ ε2)) do

8: sliceSize = sliceSize ∗ 2;
9: bestAMBS = currentAMBS;

10: bestES = currentES;
11: Dsliced = readData(D, nrows = sliceSize);
12: BDDS = learnBNStructure(Dsliced);
13: currentAMBS = AMBS of BNDS;
14: currentES = Edge Strength of BNDS;
15: step = step + 1;
16: end while
17: ALS = number of records in Dsliced;
18: return ALS.

Definition 5. (Weight of Bayesian network )
Given M Bayesian network structures, each structure denoted as Bi, a dataset D and a Bayesian score

function P on Bi and D denoted as P(B, D), then, the weight of a structure Bk, denoted as W(Bk), is its score
divided by the sum of scores of all the structures.

Formally, W(Bk) is calculated using Equation (5):

W(Bk) =
P(Bk, D)

∑
i=1..M

P(Bi, D)
(5)

Definition 6. (Weighted Adjacent Matrix)
Given N Bayesian network structures, each structure denoted as Bi, a dataset D and a score function

F(B, D). The Weighted Adjacent Matrix of the structure Bi, denoted as WAMBi , is the product of Bi’s adjacent
matrix AMBi and W(Bi).

Formally, WAMBi is calculated using Equation 6:

WAMBi = AMBi ×W(Bi) (6)

Definition 7. (Final Weighted Adjacent Matrix)
Given a collection of N weight adjacent matrix WAMBi , i ∈ [1..N], the final weighted adjacent matrix

FWAM is their sum, denoted as:
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FWAM = ∑
i=1..N

WAMBi (7)

5. The Proposed Approach

5.1. Overview of PEnBayes

Figure 2 provides an overview of PEnBayes for learning Bayesian network from big data.
PEnBayes contains three phases: Data Preprocessing, Local Learner, and Global Ensemble.

Big Dataset

BLS Calculation

Local Data Slicing

Data slices

Data slices

Data slices

LBN1

LBNk

LBN2

Global 
Ensemble

Local Learner k

…

MMHC

HC

TABU

    DS Learner

    DS  Learner

Local Learner 1

S

E

Local Learner 2

Adaptive Two Stage 
Data Slicing 

DS Learner

S

E
…

Global Data Slicing

Figure 2. An Overview of PEnBayes approach.

5.1.1. Adaptive Two-Stage Data Slicing

Given a big dataset containing N records and K local learners, the first step in Adaptive Two-Stage
Data Slicing is to perform the global data slicing on the big dataset to allocate data evenly among
available local learners for load balancing and consequent learning. Each local learner will receive
a global data slice of N/K rows as the input for local learning. Then, the Appropriate Learning Size
(ALS) value is calculated to obtain the appropriate size of each local data slice using the algorithm
proposed in Section 4. The global data slice on each local learner is adaptively divided into many local
data slices of size ALS for efficient and distributed learning.

Given K Local Learners, each local learner will receive Nd data slices for distributed learning,
each data slice is of size ALS. Nd calculated by Equation (8).

Nd =
N

K ∗ ALS
(8)

5.1.2. Local Learner

Each Local Learner has two components: Data Slice Learner and Local ensemble.
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Each Data Slice Learner (DS learner) learns K BN structures from one data slice using K different
Bayesian network structure learning algorithms. In the experiment, three BN structure learning
algorithms are used, namely MMHC, HC, and Tabu. Therefore, the value of K equals 3. Each DS
learner then uses the first layer of the weighted adjacent matrix based structure ensemble method to
combine these BN structures into one BN.

Then, the Local Learner uses the second layer of the Structure Ensemble to merge the networks
learned from all data slices into one local network. As a result, each Local Learner produces one local
BN. Our ensemble method is a bagging strategy based on weighted voting.

5.1.3. Global Ensemble

In this final stage, upon the completion of all Local Learners, PEnBayes uses the third layer of the
ensemble method to merge the network structures learned from each Local Learner into one global BN
structure, thus achieving the task of learning a complete BN from a big dataset.

5.2. Structure Ensemble Method

The main reasoning for the Structure Ensemble Method (Algorithm 2) is based on Definition 5
and Definition 7. Given N BN structures and a dataset D, the goal is to merge these structures into one
network structure BNE. Edge Strength is used as the score function F(Bk, D) to indicate the quality of
a learned structure among all the structures (Definition 5). Then, by modeling the learned structures as
the Final Weighted Adjacent Matrix FWAM (Definition 7), an edge e should exist in the BNE when
e exists in the majority of the learned structures. This is equivalent to the the formalized condition
FWAM[i, j] > γ in which γ is the Structure Ensemble Threshold.

Algorithm 2 StructureEnsemble.

Input:

BN: BN Structures;

D: Data set;

T: Threshold factor.
Output:

BNE: Ensembled BN Structure.
1: Obtain AM[i] from BNi;
2: ES[i] = ES(BNi, D) ;
3: W(BNi)= ES[i]/∑ ES[k]
4: WAMBNi = AM[i] * W(BNi);
5: FWAM = ∑ WAMBNi ;
6: γ = T ∗min(W(BNi)),
7: if FWAM[i, j] > γ and i->j does not form a circle in BNE then

8: BNE[i, j] = 1;
9: end if

10: return BNE.

Specifically, the Structure Ensemble Method works as follows: First, the Structure Ensemble
encodes each network BNi into an adjacent matrix AM[i], then, it calculates the weight of each
network using Edge Strength as the score function, and obtains the weighted adjacent matrix using
Equation (6) (Steps 2–4). In Step 5, the final weighted adjacent matrix FWAM is obtained. FWAM[i, j]
is the collective voting results of the structures with respect to their weights and is calculated using
Equation (7). Based on majority voting, if a directed edge exists between node i and node j in most of
the networks, then FWAM[i, j] should be larger than the Structure Ensemble Threshold γ Equation (9).
The basic threshold is equal to the minimal structure weight min(W(Bi)). Given that T is the basic
threshold factor, if an entry FWAM[i, j] is larger than the threshold T ∗ min(W(Bi)), then there are
more than T structures containing the edge j → i. Therefore, the Structure Ensemble adds an edge
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between i and j in the network BNE (Step 8). After iterating all the entries in FWAM, a merged network
structure BNE is produced from BN.

γ = T ∗min(W(Bi)) (9)

For example, suppose there is a dataset D from the Cancer network, and we learned three
different networks B1, B2 and B3 from D with the following Adjacent Matrix.

B1 =


0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

, B2 =


0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 1 0 0

, B3 =


0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 1 1 0 0
0 0 0 0 0


The Structure ensemble calculates the Edge Strength of each network Bi given D and uses

Equation (5) to calculate the W(Bi). In this case, we have W(B1) = 0.31, W(B2) = 0.34, W(B3) = 0.35.
Then,

FWAM =


0 0 0 0 0

0.31 0 0 0 0
0.31 0 0 0 0

0 0.31 0 0 0
0 0 0.31 0 0

 +


0 0 0 0 0

0.34 0 0 0 0
0.34 0 0 0 0

0 0 0.34 0 0
0 0 0.34 0 0

 +


0 0 0 0 0

0.35 0 0 0 0
0.35 0 0 0 0

0 0.35 0.35 0 0
0 0 0 0 0

 =


0 0 0 0 0

1.0 0 0 0 0
1.0 0 0 0 0
0 0.66 0.69 0 0
0 0 0.65 0 0


If we set the basic threshold factor T as 2, then the Structure Ensemble Threshold γ = 2 ∗

min(W(BNi)) = 0.62, the merged network structure is as follows: BNE =


0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 1 1 0 0
0 0 1 0 0

.

BNE is the correct adjacent matrix presentation of the Cancer network. Through this example, we
can see that even though B1, B2 and B3 all miss one edge, the Structure Ensemble can identify all five
directed edges and obtain the correct network structure of the Cancer network.

5.3. Data Slice Learner

Data Slice Learner is the first layer of the ensemble method that executes Algorithm 3 to combine
BNs learned by different learning algorithms using majority voting. Algorithm 3 invokes three BN
learning algorithms (namely MMHC, HC, and Tabu) to learn a BN structure for each data slice DS.
Then, it calls Structureensemble to merge the three learned networks into one network structure BNDS.
For Data Slice Learner, the basic threshold factor T is set as two for majority voting.
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Algorithm 3 DataSliceLearner.

Input:

DS: Data slice.
Output:

BNDS: Merged network structure in matrix.
1: BNMMHC = MMHC(DS);
2: BNHC = HC(DS);
3: BNTabu = Tabu(DS);
4: BNs = [BNMMHC, BNHC, BNTabu]
5: T = 2;
6: BNDS = StructureEnsemble(BNs, DS, T);
7: return BNDS.

5.4. Local Learner

Each Local Learner (shown in Algorithm 4) is given Nd data slices Equation (8). Then, the Local
Learner learns a network for each data slice using DataSliceLearner (Step 3). The Local Learner keeps
track of the data slice DSB with the best Edge Strength. After completing data slice learning, the Local
Learner calls the Structureensemble to merge the learned networks into one local network BNlocal . By
Definition 5, the weight of each learned network is calculated using one dataset. For the Local Learner,
the threshold factor T = Nd/2, this means the Local Learner identifies an edge if that edge exists in
more than half of networks learned by the Data Slice Learners. Local Learner is the second layer of the
network ensemble scheme.

Algorithm 4 LocalLearner.

Input:

DS: Data slices;

Nd: number of data slices.
Output:

BNLocal : Local network structure.
1: For each DSk
2: BNDS[k] = DataSliceLearner(DSk);
3: DSB = the data slice with the best Edge Strength;
4: End For
5: BNlocal = Structureensemble(BNDS, DSB, Nd/2)
6: return BNlocal .

5.5. Global Ensemble

Upon the completion of all the Local Learners, each Local Learner sends its local BN and its best
data slice to the Global Ensemble for the final merging process (shown in Algorithm 5). Similar to
the Local Learner, the third layer of the network ensemble is executed to produce one final network
structure BN f inal using all the local structures and a data slice (denoted as DSBG ) as representative
for the entire dataset for fast calculation here. For the Global Ensemble, given K Local Learners, the
threshold factor is T = K ∗ 2/3. This means that the Global Ensemble adds an edge in the final network
BN f inal if that edge exists in more than two-thirds of networks learned by all the Local Learners.
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Algorithm 5 GlobalEnsemble.

Input:

LS: Local Structures;

DSBG: Data slice with the best global Edge Strength;

K: Number of Local Learners.
Output:

BN f inal : Local network structure.
1: BN f inal = StructureEnsemble(LS, DSBG, 2 ∗ K/3)
2: return BN f inal .

5.6. The Time Complexity of PenBayes

Since PEnBayes is a parallel learning algorithm, the time complexity is determined by the local
learner. As specified in Section 5.1, each local learner receives Nd data slices. Therefore, the time
complexity of PEnBayes is defined as:

Nd ∗ T(DS), (10)

where T(DS) is the time spent on learning the BN structure from one data slice of size ALS and can
be regarded as a constant value given the learning algorithms in the Data Slice learner and the data
slice. Therefore, the time complexity of PEnBayes is linear with the value of Nd. The learning time will
decrease with more local learners and will increase with fewer local learners. The experiment results
in Section 8.3 confirm this theoretical analysis.

6. PEnBayes Workflow in Kepler

6.1. Overall Workflow

We build our PEnBayes workflow by embedding the components in Section 5 into the Kepler
workflow system [10]. The overall workflow is shown in Figure 3. Following the phases explained in
Section 5, the workflow has three main sub-workflows: namely Data Preprocessing, Local Learner,
and Global Ensemble. We use the DDF Director for Dynamic Dataflow execution semantics because
the workflow has branching control structures.

Figure 3. Full PEnBayes Workflow in Kepler.

6.2. ALS Calculation Sub-Workflow

Figure 4 shows how the Data Preprocessing is implemented in Kepler. The core component here
is the DataPreprocessing actor which is an RExpression Actor to run R programs, where the R program
is shown in the lower part of the figure. Algorithm 1 is implemented in R and embedded in this actor.
The dark triangles on the left of the actors are used to feed parameters of the algorithm so that users
can specify parameter values via the Kepler GUI or command line settings. The outputs of Algorithm 1
are fed to its downstream actor, called ParameterSetting. This actor sets values to global parameters
like the Appropriate Learning Size (Definition 3), so that the calculated values can be used in Local
Learner and Global Ensemble sub-workflows.
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Figure 4. Data Preprocessing Sub-workflow.

6.3. Local Learner Sub-Workflow

Local Learner is a composite actor whose sub-workflow is shown in Figure 5. Map DDP actor
is used here to achieve parallel Local Learner execution. DDP Director is used to manage the
sub-workflow execution by communicating with the underlying DDP engines. DDPDataSource
actor reads global data slices generated by PartitionData actor and sends each global data slice to a
Local Learner instance that runs across the computing nodes. The sub-workflow of the Map actor,
shown in the lower part of the figure, mainly calls a RExpression actor to run the Local Learner R
script shown in Algorithm 4.

Figure 5. Local Learner Sub-workflow.
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6.4. Global Ensemble Sub-Workflow

The sub-workflow of the Global Ensemble actor is shown in Figure 6. It mainly calls a RExpression
actor to run the GlobalEnsemble R script (Algorithm 5) based on user-specified parameters. The Kepler
engine manages their executions so that the GlobalEnsemble actor can only be executed after the Map
actor finishes all Local Learner processing.

Figure 6. Global Ensemble Sub-workflow.

In summary, this workflow demonstrates how Kepler can facilitate building parallel network
learner algorithms. The DDP framework of Kepler provides the basic building blocks for the DDP
patterns and supports the dependencies between them. The RExpression actor can easily integrate user
R scripts with other parts of the workflow. Kepler also provides subsidiary actors, such as Expression
and DDPDataSource, for minor operations needed for a complete and executable workflow. Overall, a
Kepler user can build scalable network learner workflows without writing programs, except for the
core analytic scripts.

7. Experimental Setup

Hardware specification, datasets, and experimental setups are described in this section, and
experimental results are presented in the next section.

7.1. Hardware Specification

The machine specification for the evaluation of all results is as follows. Two to sixteen compute
nodes in a cluster environment are employed, where each node has two eight-core 2.6 GHz CPUs, and
64 GB memory. Each node can access the input data via a shared Lustre parallel file system.

7.2. Datasets

We used three sets of datasets to evaluate performance in our experiments. The first set of
datasets are generated by ALARM (A Logical Alarm Reduction Mechanism) network, is used to build
a Bayesian network designed to provide an alarm message system for patient monitoring [51]. The
second set of datasets, Child, is used to build a Bayesian network for diagnosing lung diseases [52].
The third set of datasets, Insurance, is used to build a Bayesian network for evaluating car insurance
risks in the transportation domain [53]. Each dataset was generated with 10 million samples (denoted
10 M), 20 million samples (20 M), 50 million samples (50 M), 100 million (100 M), 150 million (150 M),
and 200 million (200 M) samples. Ten datasets were generated for each size. Each of these datasets
was independently generated by the SamIam tool [54]. The properties of three Bayesian networks are
listed in Table 1, these three networks have distinct and different structures. The experiment datasets
and their sizes are listed in Table 2.

Table 1. Bayesian Networks.

Name Nodes Edges AMBS Edge Strength

Alarm 37 46 3.51 0.23
Child 20 25 3.0 0.49

Insurance 27 52 5.19 0.25
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Table 2. Data set sizes (unit: GB).

Dataset 10 M 20 M 50 M 100 M 150 M 200 M

Alarm 1.828 3.656 9.140 18.280 27.421 36.561
Child 1.073 2.146 5.364 10.728 16.093 21.457

Insurance 1.829 3.658 9.144 18.288 27.432 36.576

7.3. PEnBayes Experimental Setup

For software, we used Kepler version 2.5 with bioKepler suite version 1.1 as add-on modules. We
used Spark version 1.5.2 with scripts for starting Spark automatically and trigger Kepler workflow
execution. For configuration, we set the number of worker processes per node of Spark, i.e.,
SPARK_WORKER_INSTANCES, to be 8, and the localLearnerNum and degreeOfParallelism parameter
of Kepler to be half of the total available core number. It is based on our findings that half the number
of the available core can achieve the best performance when executing legacy tools on top of the big
data platform [13]. The thresholds ε1 and ε2 used in Algorithm 1 are set to be 0.05 for calculating
ALS. BDeu score [29] is used throughout the experiment as the Bayesian score. We choose 0.05 as the
threshold based on the experiment conducted in Section 8.1. The data set is stored in the data server,
and is accessed by the local learner through DataFrames of Spark and R.

7.4. Baseline Experimental Setup

To quantify the benefits of PEnBayes for Bayesian network learning on big data, we conducted a
series of baseline experiments using conventional learning algorithms to construct Bayesian networks.
The R package bnlearn [55] was used to implement these algorithms, and the three algorithms used
were MMHC, HC, and Tabu.

The baseline experiments were executed on the same machine described in Section 7.1. The setup
was different, however, in that each baseline experiment was run serially on a single node since there
is no parallelism in conventional Bayesian learning algorithms. Each of the three algorithms (MMHC,
HC, and Tabu) was used to learn a network for each of the datasets described in Section 7.2.

8. Experimental Results

This section presents experimental results with our PEnBayes approach. Section 8.1 discusses
evaluation of the ALS calculation algorithms to determine the Appropriate Learning Size for big
datasets. Section 8.2 compares execution time and accuracy for PEnBayes with the baseline algorithms
for learning Bayesian networks. Section 8.3 explores the scalability of PEnBayes. Note that PB16, PB32,
PB64 and PB128 refer to results of PEnBayes with 16, 32, 64 and 128 Local Learners, respectively. Based
on the setup in Section 7.3, they each run with 32, 64, 128 and 256 CPU cores.

8.1. ALS Calculation Results

Table 3 shows the computation results for Appropriate Learning Size (ALS) and comparison
between the calculated AMBS and actual AMBS from the three known BNs. We observe that the
calculated AMBS by Algorithm 1 is very close to the actual AMBS, indicating an accurate estimation of
ALS by Algorithm 1.

Table 3. ALS study results.

Network Calculated ALS Calculated AMBS Actual AMBS

Alarm 14,800 3.656 3.51
Child 4000 3.00 3.00

Insurance 43,200 4.66 5.19
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To further verify the correctness of the ALS calculation, we performed BN learning using the
calculated ALS values (the second column in Table 3) as reference values (circled in red). Each reference
value was repeatedly halved or doubled to create a new dataset size. For each dataset size, a network
was learned using the HC algorithm, and the resulting structural Hamming distance (SHD) between
the learned network and the correct network was recorded [27]. We only use SHD because it can
distinguish the differences between the learning results clearly. Bayesian score comparison results are
much closer, and differences in the learned network are hard to identify and distinguish. Figures 7–9
show SHD trends over varying data slice size on the three synthetic datasets. The reference values are
circled in red.

Data set Size * 1000

Figure 7. Structural Hamming distance (SHD) of different data set sizes using calculated ALS (Table 3)
as reference value (red circle), Child Dataset.

Data set Size * 1000

Figure 8. Structural Hamming distance (SHD) of different data set sizes using calculated ALS (Table 3)
as reference value (red circle), Insurance Dataset.

Data set Size * 1000

Figure 9. Structural Hamming distance (SHD) of different data set sizes using calculated ALS (Table 3)
as reference value (red circle), Alarm Dataset.
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Notice that a lower SHD value indicates a more accurate BN structure. From the figures, we
observe that SHD drops sharply as the data slice size increases until the reference value of ALS is
reached. We also notice that as the data slice size increases from the reference value, SHD remains
stable. In Figure 9, the calculated ALS does not achieve the lowest SHD. Further, SHD increases as data
size increases, indicating the existence of overfitting with the growth of the data set size. However, we
observe that the SHD value of the calculated ALS is 13, which is very close to the lowest SHD value
being 12. This indicates that the calculated ALS is the smallest data slice size that returns the lowest or
close to lowest SHD values, thus optimizing the trade-off between learning accuracy and computation
efficiency and avoiding overfitting. These results show the effectiveness of Algorithm 1 for calculating
ALS. This empirical study also supports setting the value of thresholds ε1 and ε2 as 0.05.

8.2. PEnBayes and Baseline Experimental Result Comparison

Execution time, as well as accuracy, are compared for different PEnBayes setups (with different
numbers of Local Learners) and different baseline Bayesian learning algorithms, namely MMHC, HC,
and Tabu.

Figures 10–12 compare execution times of the different setups for the Alarm, Child, and
Insurance datasets, respectively. As these figures show, execution times for the baseline algorithms are
exponentially higher than for PEnBayes and increase at a much faster rate as the dataset size increases.
Note that for the Insurance dataset, MMHC was able to complete learning for only the 10-M dataset.
For all other Insurance dataset sizes, MMHC was not able to learn the network within the maximum
allotted amount of 12 h for the wall-time. These results demonstrate the significant improvement of
computational efficiency of PEnBayes compared with traditional baseline BN learning algorithms.

Av
er

ag
e E

xe
cu

tio
n 

Tim
e (

mi
nu

tes
)

Alarm Dataset
Average Execution Times for Different Setups

PB128
PB64
PB32
PB16
MMHC
HC
Tabu

10M 20M 50M 100M 150M 200M
0

100

200

300

400

Figure 10. Alarm Set Execution Time.
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Figure 11. Child Set Execution Time.
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Figure 12. Insurance Set Execution Time.

Figures 13–15 compare accuracy of the different setups for the Alarm, Child, and Insurance
datasets, respectively. Accuracy is measured by the structural hamming distance (SHD) between the
learned network and the true network structure. Lower SHD indicates a more accurate BN structure.
In these figures, a value of zero for SHD indicates that the learned network exactly matches the true
network. A negative value for SHD, on the other hand, indicates that network learning was not
completed within the maximum allotted amount of 12 h for the wall-time.
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Figure 13. Alarm Dataset Accuracy Results. Negative values indicate that the algorithm was
unsuccessful in learning a network for the dataset.
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Figure 14. Child Dataset Accuracy Results.
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Figure 15. Insurance Dataset Accuracy Results.

Figure 13 shows that for the Alarm 50-M dataset, MMHC was able to identify the structure of the
true network. For the Alarm 100 M dataset, both MMHC and Tabu were able to achieve this. However,
for the Alarm 150-M and 200-M datasets, none of the baseline learning algorithms was able to learn a
network at all within the maximum allotted time. Only PEnBayes was able to learn a BN structure
from these very large datasets. Among the baseline algorithms, MMHC achieved the best learning
accuracy. On 20-M, 50-M and 100-M datasets, PEnBayes achieves better accuracy than whole dataset
learning by HC and Tabu algorithms. This indicates the effectiveness and robustness of PEnBayes in
obtaining more consistent and accurate BN structures through multi-layered ensembles.

Figure 14 shows accuracy results for the Child data. All setups achieved a perfect SHD value of
zero, except for PB128, PB64, and PB32 on 10 million datasets. Note that PB16 achieved 100% learning
accuracy with 0 SHD.

Figure 15 summarizes accuracy results for the Insurance data. Note that for Insurance 200 M,
none of the baseline algorithms was able to learn a network. An important observation from this plot
is that MMHC performed very poorly on the Insurance data. MMHC learned a network with very
high SHD for Insurance 10 M, and was not able to complete network learning for all other Insurance
datasets. However, with the multi-layered ensemble approach, PEnBayes was not affected by the poor
performance of MMHC. In contrast, Figure 15 shows that PEnBayes achieved a slightly higher learning
accuracy than all baseline algorithms, with smaller SHD values on all Insurance datasets.

We also noted that for the same big dataset, different numbers of Local Learners may result in
different learning accuracies. This is because the Bayesian networks learned by the Local Learners
are different in number and structurally varied, thus resulting in different final network structures,
and consequently, slightly different accuracy results. In addition, we observe that there is no optimal
number of Local Learners for learning accuracy in general.

To study the accuracy and the stability of PenBayes, we compared the SHD standard deviation of
PenBayes vs. the baseline algorithms. Figure 16 shows the standard deviation of the SHD for Alarm
for different dataset sizes. As with previous figures, negative values indicate that the algorithm was
unsuccessful in learning a network for the dataset. We observe that even though the SHD standard
deviation of PenBayes was not always the lowest, it was more consistent across all dataset sizes
compared to the baseline algorithms. For example, even though MMHC obtained lower SHD standard
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deviation values than PenBayes for the smaller datasets, it was not able to learn a network for dataset
sizes 150-M and 200-M. Tabu had higher SHD standard deviation values than PenBayes for dataset
sizes 10 M to 50 M, then abruptly dropped to 0 for 100-M, and was not able to process dataset sizes
150-M and 200-M. This indicates that PenBayes achieves more stable learning accuracy than any
individual baseline algorithm alone.
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Figure 16. Alarm Set Standard Deviation Results.

In summary, compared with the baseline learning algorithms, these experimental results indicate
that PEnBayes is more stable and robust regarding learning BN structures from big datasets than
traditional learning algorithms.

8.3. PEnBayes Scalability Experiments

Figures 17–19 show the scalability of our workflow with different Local Learner number and
distributed nodes. We always allocate eight Local Learners on one compute node. Therefore, more
Local Learner means the execution runs on more compute nodes. We can see that most of the execution
times decreased with more Local Learners, showing a linear relationship between the number of
Local Learners and the execution time. This indicates that PenBayes can scale well, achieving better
execution performance with more computation nodes.

We observe that there were a few cases where the execution times increased with more Local
Learners. We investigated the logs on these cases and found that while more Local Learners decreased
learning time for each Local Learner, data reading times by the Local Learner program were nearly
constant. In the experiments, data was read from a shared data node with a Lustre parallel file system.
The reason for the constant data reading time is because more Local Learners will have fewer data to
be read for each Local Learner, but more reading competition among more simultaneous data readers.
This means that data reading became more and more dominant in the overall execution time. Also, the
same amount of data sent to the Local Learners does not mean the same local learning time because
learning time, especially its convergence, depends on both data content and data size. Data content
affects how samples for different dependency relationships are distributed among different data slices.
Therefore, if the jobs scheduled on one compute node by Spark happen to have more data reading
time and learning time, the node becomes a straggler [56] and slows down the overall execution
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time. Additionally, these experiments were conducted in a shared cluster environment where network
congestion varies depending on the load. Due to these reasons, we do not always see the overall times
decrease with more Local Learners. This abnormal behavior occurred more with the Child datasets
since their learning times are relatively shorter compared to Alarm and Insurance.
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Figure 17. Alarm Set Execution Time vs. Number of Local Learners.
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Figure 18. Child Set Execution Time vs. Number of Local Learners.
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Figure 19. Insurance Set Execution Time vs. Number of Local Learners.

9. Conclusions

In this paper, we propose a novel parallel learning approach called PEnBayes (Parallel
Ensemble-based Bayesian network learning) for a learning Bayesian network (BN) structure from big
data. PEnBayes contains a novel greedy data size calculation algorithm for adaptively partitioning a
big dataset into data slices of appropriate size for distributed BN learning. It achieves a stable and
accurate Bayesian network learning from big datasets in a distributed multi-layer ensemble fashion at
both data and algorithm levels.

Experimental results on big datasets generated by simulating sensor big data from patient
monitoring, transportation, and disease diagnosis domains demonstrate that PEnBayes brings
significant improvements in execution time compared with whole dataset learning. Moreover,
PEnBayes achieves more consistent and robust Bayesian network structure learning than baseline
algorithms. PEnBayes enables big data Bayesian graphical modeling and makes algorithm selection
and learning results integration automatic when performing BN structure learning tasks. Our future
work will focus on enriching the ensemble of learning algorithms [57] and making the local learning
more adaptive and distributed to achieve higher earning accuracy and efficiency. Also, causality,
interpretability as part of explainable AI [58] is of utmost importance for future research.
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Abbreviations

The following abbreviations are used in this manuscript:
BN Bayesian Networks
PEnBayes Parallel Ensemble based Bayesian network learning
MB Markov Blanket
ALS Appropriate Learning Size
DAG directed acyclic graph
DDP Distributed Data-Parallel
UDF User Defined Functions
GUI Graphical User Interface
BDeu Bayesian Dirichlet equivalence with uniform prior
UDF User Defined Functions
HC Hill Climbing
TPDA Three Phase Dependency Analysis
MMHC Max-Min Hill-Climbing
AMBS Average Markov Blanket Size
ES Edge Strength
FWAM Final Weighted Adjacent Matrix
AMBS Average Markov Blanket Size
ALARM A Logical Alarm Reduction Mechanism
SHD Structural Hamming distance
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