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Abstract: Commercial soil moisture sensors have been widely applied into the measurement of soil
moisture content. However, the accuracy of such sensors varies due to the employed techniques and
working conditions. In this study, the temperature impact on the soil moisture sensor reading was
firstly analyzed. Next, a pioneer study on the data-driven calibration of soil moisture sensor was
investigated considering the impacts of temperature. Different data-driven models including the
multivariate adaptive regression splines and the Gaussian process regression were applied into the
development of the calibration method. To verify the efficacy of the proposed methods, tests on four
commercial soil moisture sensors were conducted; these sensors belong to the frequency domain
reflection (FDR) type. The numerical results demonstrate that the proposed methods can greatly
improve the measurement accuracy for the investigated sensors.

Keywords: calibration; data-driven; impacts of temperature; soil moisture sensor

1. Introduction

The determination of soil moisture content is of great importance to the management of agriculture
and in the field of hydrological engineering [1,2]. In modern agriculture, soil moisture is frequently
monitored to better schedule irrigation [3,4]. A variety of approaches have been developed to measure
soil moisture content based on various techniques including the thermo-gravimetric technique, the
calcium carbide technique, the neutron scattering technique, dielectric techniques, electrical impedance
sensors, and the thermal dissipation block technique [5–7]. These techniques differ in measuring
principles, accuracy, and complexity. The thermo-gravimetric technique measures the soil moisture
content by drying the soil sample in an oven. This technique can provide accurate measurements of soil
moisture and is often used as the standard reference. However, thermo-gravimetric-technique-based
measurement is time-consuming and requires special equipment, which constrains the application
of such a technique, especially for in-situ measurements. Other techniques employ the physical and
chemical properties of soil to measure its moisture content.
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Dozens of commercial soil moisture sensors have been developed based on these techniques;
however, the difference between the measured and actual soil moisture is often observed, and the
accuracy of these sensors varies due to the employed techniques as well as the working conditions such
as the operating temperature. To improve the measurement accuracy, calibration of the soil moisture
sensor is required, including sensor-specific calibration and site-specific calibration [8,9]. The former
conducts direct calibration between sensor response and soil moisture content, while the latter takes
the soil texture variation into account. In [10], a sensor-specific procedure based on reference media is
proposed for the calibration of low-cost soil water content sensors. In literature, polynomial equations
are widely applied to calibrate soil moisture sensors [11,12]. Since polynomial equations are of fixed
forms, their capability of reflecting the complex relationship between the actual and measured soil
moisture is limited. Meanwhile, some environmental factors, especially the temperature, are normally
ignored during the calibration [10]. Recently, efforts have been made to understand and compensate
the temperature impacts on measurement accuracy [13,14].

In this paper, a pioneer study on the data-driven calibration of soil moisture sensors was
investigated. To our best knowledge, it is the first time that data-driven methods have been applied into
the calibration of soil moisture sensor. Two data-driven models including the multivariate adaptive
regression splines (MARS) [15,16] and the Gaussian process regression (GPR) [17,18] were developed to
calibrate soil moisture sensor considering the impacts of temperature on the accuracy of measurements.
Compared with the conventional polynomial models, MARS is a nonparametric regression technique
and can effectively model the nonlinearities and interactions between variables, while the GPR is
a kernel-based regression model. The efficacy of the proposed methods were verified on different
commercial soil moisture sensors.

The remainder of the paper is organized as follows: Section 2 describes the analysis of the impact of
temperature on measurement accuracy based on four commercial soil moisture sensors. The calibration
methods developed based on data-driven models considering temperature impacts are described in
Section 3, which is followed by numerical experiments in Section 4. Conclusions are drawn in Section 5.

2. Analysis of Temperature Impacts on Measurement Accuracy

This study was based on four commercial soil moisture sensors indexed as A, B, C, and D. These
sensors are widely used in China. The four sensors belong to the frequency domain reflection (FDR)
type, which measures the soil moisture through electronic constants. The specifications of the sensors
are summarized in Table 1.

Table 1. Specifications of the sensors.

Sensor Type Structure Range (v/v) Working Temperature (◦C)

A FDR Probe 0–100% −20–60

B FDR Probe 0–100% −20–60

C FDR Tube 0–100% −20–60

D FDR Tube 0–100% −20–60

In this study, the soil from the tillage layer (0–20 cm) was used for the experiments, and its
parameters of characteristics are given in Table 2. The procedures of the experiments composed
of the following steps: (1) The soil sample was dried and sieved with a 2 mm sieve; (2) the wet
soil samples with different levels of soil moisture content such as 9.58%, 18.25%, and 27.01% were
obtained by applying the soil mixing method; and (3) the readings of the sensors were recorded at
considered temperatures (0, 5, 10, 15, 20, 22, 25, 30, 35, 40, 45 ◦C) in temperature-controlled chambers.
In the experiment, the samples were sealed with film to avoid the impact of water evaporation. The
considered test temperatures fall in the range of the environmental temperature during the growth of
wheats and corns in Northern China. The standard Gravimetric technique was applied to obtain the
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actual soil moisture [19]. The soil samples were dried in the oven at 105◦C for 48 h to a constant weight
before the soil moisture was computed.

Table 2. Soil characteristics parameters.

Soil Type
Sand

Content
(%)

Silty
Content

(%)

Clay
Content

(%)

Dry Bulk
Density
(g/cm3)

Withering
Coefficient

(v/v)

Field
Capacity

(v/v)

Saturated
Water

Content
(v/v)

Sandy
Clay Loam 54.12 24.00 21.88 1.40 17.47% 26.34% 38.92%

The size of test data points for each sensor was 70. Examples of records of operating temperature
(T), sensor reading, and actual (reference) soil moisture content are illustrated in Table 3. From Table 3,
there are errors on the measurements of soil moisture content by the sensor, and the sensor reading can
be quite different under various operating temperatures.

Table 3. Examples of sensor readings under various temperatures.

T (◦C) Sensor (v/v) Actual (v/v)

0 11.80% 9.77%

5 31.00% 18.25%

10 32.50% 18.25%

15 33.30% 18.25%

To better illustrate the temperature impacts on the measurements, the sensor reading at various
temperatures for different levels of actual soil moisture content is illustrated in Figure 1. It is observable
that the sensor reading tends to increase with increasing temperature, while the trend of variation
highly depends on the level of actual soil moisture content and the type of soil moisture sensor. This is
partially due to the increasing temperature strengthening the polarization of the soil and the movement
of water molecules, resulting in a larger soil dielectric constant.
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Figure 1. Illustration of sensor readings at various temperatures: (a) sensor A; (b) sensor B; (c) sensor
C; and (d) sensor D.

From above analysis, it is valuable to investigate the calibration methods of soil moisture sensors
considering the impact of temperature.

3. Methodology

The framework of the proposed data-driven calibration methods is depicted in Figure 2, which
consists of the following four steps:

(1) Prepare the training dataset: Collect both the soil moisture sensor data and the actual soil moisture
content via experiments.

(2) Develop the calibration model: Train a regression model based on the multivariate adaptive
regression splines (MARS) and Gaussian process regression (GPR) algorithms on the
training dataset.

(3) Model evaluation: Compute the calibration errors using the learned model and the test dataset.
(4) Model application: Collect new sensor data and apply the calibration model to yield the calibrated

soil moisture content.
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The development of data-driven calibration methods based on the MARS and the GPR models
was introduced as follows.
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3.1. Multivariate Adaptive Regression Splines

The MARS model was built to generate more accurate soil moisture content from the original
sensor readings. Given the original sensor reading r, the calibrated soil moisture y was yielded
according to Function (1):

y = f (r, T) (1)

where T is the environmental temperature and f is the MARS model. The MARS model is described
as [15]:

f (x) =
k∑

i=1

ciBi(x) (2)

where x = [r,T], ci is a constant value, and Bi(x) is a basis function. In the MARS model, the basis
function includes the constant, hinge function, and product of two or more hinge functions. Two types
of hinge functions, max(0, x-constant) and max(0, constant), were considered in the MARS model.

The MARS model was trained by minimizing the loss function in Function (3) on the training data
set. The forward and the backward pass procedures [15] as well as the generalized cross-validation
were applied to avoid over-fitting, and thus a more robust model was obtained.

min
n∑

i=1

(yi − f (xi))
2 (3)

3.2. Gaussian Process Regression

To improve the accuracy of soil moisture content measurement, a GPR model was applied to
capture the relationship among the operating temperature T, original soil moisture sensor reading r,
and actual (reference) soil moisture content as in (4) [17]:

y = f (x) + ζ (4)

where y represents the actual (reference) soil moisture content, while x = [r, T], and ζ ~ N(0,
δ2). In Equation (4), f (x) are latent functions from a Gaussian process, which is a collection of
random variables, and any finite number of such variables follows a joint Gaussian distribution.
A Gaussian process is specified by its mean function m(x) and its covariance function g(x, x′) as
f (x) ∼ GP(m(x), g(x, x′)). In practice, the data are generally normalized to have a zero mean.

Consider the training data set D = (X, y), where X =
{
xi, x ∈ Rd

|
n
i=1

}
denotes the samples of

predictor and y =
{
yi, y ∈ R

∣∣∣n
i=1

}
denotes the samples of response. In Equation (4), the response y

results from additive combination of Gaussian variables f (x) and ζ; hence, y also follows a Gaussian
distribution. The GPR model associated to the training data set can be expressed as:

y ∼ N
(
0, G(X, X) + δ2I

)
(5)

where G(X, X) denotes the covariance matrix with Gij = g(xi, xj) and I is an identity matrix. The
Gaussian kernel (6) is frequently considered in the applications of GPR models:

g
(
xi, x j

)
= σ2

f exp
(
−

1
2

(
xi − x j

)
M

(
xi − x j

)T
)

(6)

In Equation (6), the σ2
f is the signal variance, and the diagonal matrix, M = diag [1/λ2

1, 1/λ2
2, . . . ,

1/λ2
d], contains the length scales of the process. Parameters θ = {δ2, M, σ2

f } of the GPR model are
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derived by maximizing the logarithm marginal likelihood function based on the training data set as in
Equation (7).

max log p(y|X,θ) = max(−
1
2

log|G| −
1
2
(y− 0)TG−1(y− 0) −

n
2

log(2π)) (7)

For a test point x∗, the joint distribution of the response y∗ associated to the training data set follows:[
y
y∗

]
∼ N

(
0,

[
G(X, X) + σ2I G(X, x∗)

G(x∗, X) g(x∗, x∗)

])
(8)

According to the theory of the joint Gaussian distribution, the predictive distribution of y∗ is
written as:

y∗
∣∣∣X, y, x∗ ∼ N

(
µ,

∑)
(9)

where µ = G(x∗, X)
[
G(X, X) + σ2I

]−1
y and

∑
= g(x∗, x∗) −G(x∗, X)

[
G(X, X) + σ2I

]−1
G(X, x∗).

The prediction of the response was assumed to be:

ŷ∗ = µ (10)

4. Computational Experiments and Results

4.1. Performance Metrics

In this study, error metrics including mean bias error (MBE), mean absolute error (MAE), and root
mean square error (RMSE) were employed to verify the effectiveness and efficiency of the proposed
methods in improving the accuracy of soil moisture content measurements by considering the impacts
of temperature:

MBE =
1
n

n∑
i=1

ŷi − yi (11)

MAE =
1
n

n∑
i=1

∣∣∣ŷi − yi
∣∣∣ (12)

RMSE =

√√
1
n

n∑
i=1

(ŷi − yi)
2 (13)

where ŷ and y indicate the modeling and actual soil moisture content, respectively, and n is the number
of test data points.

4.2. Experiment Results

The proposed calibration models were developed for each device. The size of available data points
was small. To comprehensively verify the efficacy of the proposed methods on the entire data set, the
cross-validation technique was applied to implement the proposed methods using the following steps:

(Step 1) The entire data set D is randomly partitioned into k folds, D = {D1, . . . , Dk};
(Step 2) Train a MARS/GPR model with data set Pi = D\Di, which is the complementary data set

of Di, for I = 1, . . . , k;
(Step 3) Apply the MARS/GPR model in Step 2 to predict the soil moisture content on the data set

Di for I = 1, . . . , k;
(Step 4) Calculate modeling errors on the entire data set D.
Table 4 illustrates one set of GPR model parameters for test sensors, while the prediction equations

of MARS model are given in Equations (14)–(17).
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Table 4. Gaussian process regression (GPR) model parameters.

Parameter Sensor A Sensor B Sensor C Sensor D

δ 0.0028 0.0118 0.0068 0.0028

σf 0.0688 0.1159 0.1193 0.0767

λT 25.0311 67.0012 33.0755 46.1573

λr 0.0356 0.1144 0.0630 0.0480

Sensor A:

y = 0.0954− 1.8543F(r
∣∣∣−1, 0.205, 0.22, 0.2665) − 0.0091F(T

∣∣∣+1, 18.5, 22, 23.5)
+1.2013F(r|+1, 0.2665, 0.313, 0.352) + 0.0072F(T

∣∣∣−1, 23.5, 25, 35) + 1.6958F(r
∣∣∣

− 1, 0.1485, 0.19, 0.205)
−0.0832F(r

∣∣∣−1, 0.352, 0.391, 0.4394) + 0.0072F(T
∣∣∣+1, 7.5, 15, 18.5) − 0.0057F(T

∣∣∣
− 1, 7.5, 15, 18.5)

(14)

Sensor B:

y = 0.1339− 0.7589F(r
∣∣∣+1, 0.1585, 0.163, 0.2445) − 0.0386F(T

∣∣∣+1, 21, 22, 23.5)
− 0.02774F(T

∣∣∣+1, 17.5, 20, 21)
+0.0128F(T

∣∣∣+1, 23.5, 25, 35) − 0.7369F(−1, 0.331, 0.336, 0.3912) + 0.5392F(r
∣∣∣

− 1, 0.2445, 0.326, 0.331)
+1.5544F(r

∣∣∣+1, 0.1425, 0.154, 0.1585) − 0.0034F(T
∣∣∣+1, 7.5, 15, 17.5)

+ 0.0008F(T
∣∣∣−1, 7.5, 15, 17.5)

(15)

Sensor C:

y = 0.0883− 0.0044F(T
∣∣∣−1, 21, 22, 33.5) − 0.0029F(T

∣∣∣
− 1, 7.5, 15, 17.5) + 2.7210F(r

∣∣∣+1, 0.047, 0.057, 0.0625)
−7.0325F(r

∣∣∣−1, 0.047, 0.057, 0.0625)+3.1351F(r
∣∣∣−1, 0.0625, 0.068, 0.081)

−1.1224F(r
∣∣∣+1, 0.081, 0.094, 0.172) − 0.0064F(T

∣∣∣+1, 17.5, 20, 21)
+ 0.0098F(T

∣∣∣−1, 17.5, 20, 21)

(16)

Sensor D:

y = 0.1066− 0.2902F(r
∣∣∣−1, 0.29955, 0.3737, 0.40195) + 0.0020F(T

∣∣∣
+ 1, 21, 22, 23.5)

+0.2107F(r
∣∣∣−1, 0.40195, 0.4302, 0.5105) − 0.0027F(T

∣∣∣
+ 1, 10, 20, 21) + 0.0018F(T

∣∣∣−1, 10, 20, 21)
+0.8319F(r

∣∣∣+1, 0.2071, 0.2254, 0.29955) − 1.2090F(r
∣∣∣−

1, 0.2071, 0.2254, 0.29955)

(17)

In Equations (14)–(17), the basis function is defined in Functions (18) and (19), where x is the input
variable being either r (moisture sensor reading) or T (temperature):

F(x|s = + 1, c−1, c, c+) =


0 for x ≤ c−
p+(x− c−)

2 + q+(x− c−)
3 for c− < x

x− c for x ≥ c+

< c+ (18)

F(x|s = −1, c−1, c, c+) =


−(x− c) for x ≤ c−
p−(x− c+)

2 + q−(x− c+)
3 for c− < x

0 for x ≥ c+

< c+ (19)
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with:

p+ = (2c+ + c− − 3c)/(c+ − c−)
2

q+ = (2c− c+ − c−)/(c+ − c−)
3

p− = (3c− 2c− − c+)/(c− − c+)
2.

To illustrate the effectiveness of the proposed calibration methods considering the impacts of
temperature, the performance of the proposed methods was compared with the sensor reading as well
as data-driven methods developed only using information from the original sensor reading.

The comparison of modeling performances by different methods are provided in Table 5. It is
observed from Table 5 that large differences exist between the measured and actual soil moisture data.
More accurate soil moisture was obtained by using the data-driven calibration methods in terms of
MBE, MAE, and RMSE. Moreover, the consideration of temperature impacts highly improved the
modeling accuracy with the data-driven models. Therefore, the MARS model and the GPR model
are effective for developing the data-driven calibration method for soil moisture sensors considering
temperature impacts. Between the MARS model and the GPR model, neither dominated the other for
all three metrics and four sensors.

Table 5. Modeling performance comparison (the best values are in bold).

Sensor Method MBE (%) MAE (%) RMSE (%)

A

Reading 12.93 12.93 13.58

MARS-1 2.95 × 10−3 1.21 1.48

MARS-2 2.92 × 10−3 2.08 2.89

GPR-1 00.15 0.70 1.03

GPR-2 −1.15 × 10−3 2.07 2.73

B

Reading 6.14 6.14 6.48

MARS-1 −2.24 × 10−3 0.83 1.06

MARS-2 −9.13 × 10−3 1.17 1.92

GPR-1 −0.14 0.83 1.40

GPR-2 −0.16 1.15 1.93

C

Reading −7.11 7.49 8.80

MARS-1 −3.48 × 10−3 0.80 1.02

MARS-2 −7.00 × 10−3 4.26 5.42

GPR-1 4.71 × 10−3 0.57 0.78

GPR-2 −1.16 × 10−3 4.40 5.48

D

Reading 13.12 13.12 13.36

MARS-1 4.96 × 10−3 0.65 1.02

MARS-2 3.75 × 10−3 0.84 1.37

GPR-1 −0.12 0.44 0.96

GPR-2 −0.28 0.91 1.98

MARS-1: Multivariate adaptive regression splines (MARS) model considering temperature impacts. MARS-2:
MARS model without the consideration of temperature impacts. GPR-1: GPR model considering temperature
impacts. GPR-2: GPR model without the consideration of temperature impacts.

Table 6 illustrates an example of the modeling performance at various temperatures. It is
observable that at the extremely high and low temperature, the improvement of modeling accuracy by
incorporating the temperature information was much greater than by only using the sensor reading. In
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China, the ambient temperature can be around 0 ◦C during the growth period of winter wheat, while
the ambient temperature can be greater than 35 ◦C during the growth period of summer corn. Hence,
the improvement of measurement accuracy at high/low temperatures can be of great importance to the
arrangement of irrigation during the growth period of crops in different seasons.

Table 6. The root mean square error (RMSE) in percentages at various temperatures on sensor C.

Method 0 ◦C 10 ◦C 20 ◦C 30 ◦C 40 ◦C

Reading 12.05 10.70 8.92 6.30 2.80

MARS-1 1.19 0.55 0.84 0.60 0.97

MARS-2 6.02 4.40 3.07 3.72 7.24

GPR-1 0.28 0.54 0.78 0.62 0.94

GPR-2 5.99 4.54 3.37 3.62 7.41

The boxplot of the bias error is illustrated in Figure 3. It is further demonstrated that the proposed
methods highly improved the accuracy compared to the sensor reading, while the variation of the bias
errors was also reduced.Sensors 2019, 19, 4381 9 of 11 
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To further demonstrate the performance of the proposed methods, the calibrated and actual soil
moisture at temperature 30 ◦C is depicted in Figure 4. It is observable that the modeling soil moisture
by the proposed data-driven calibration methods agreed well the actual soil moisture.
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From the above analysis, the proposed data-driven calibration of soil moisture sensors considering
the impact of temperature can greatly improve the accuracy of soil moisture content measurement.
The MARS and GPR model were used due to their strong capability in nonlinear modeling with a
limited training dataset. The MARS model can be more efficiently implemented on embedded devices
compared to the GPR model in terms of model complexity, while the latter achieved better performance
for most cases in this study. Hence, the trade-off between the modeling accuracy and the ease of model
implementation should be considered when selecting calibration models in practice. In the future,
more machine learning algorithms such as boosted regression trees and neural networks [20] can also
be applied to sensor calibration with rich data.

5. Conclusions

In this paper, data-driven methods based on the multivariate adaptive regression splines (MARS)
and Gaussian process regression (GPR) models were developed to calibrate soil moisture sensors
considering the impact of temperature. The effectiveness and efficiency of the proposed method were
verified on various soil moisture sensors that belong to the frequency domain reflection (FDR) type.
The numerical results demonstrate that the proposed methods can greatly reduce the measurement
errors. This study supports the application of data-driven models for the calibration of soil moisture
sensors to improve the measurement accuracy for the considered sensors.
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