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Abstract: Molecular communications provide an attractive opportunity to precisely regulate
biological signaling in nano-medicine applications of body area networks. In this paper, we utilize
molecular communication tools to interpret how neural signals are generated in response to external
stimuli. First, we propose a chain model of molecular communication system by considering three
types of biological signaling through different communication media. Second, communication
models of hormonal signaling, Ca2+ signaling and neural signaling are developed based on existing
knowledge. Third, an amplify-and-forward relaying mechanism is proposed to connect different
types of signaling. Simulation results demonstrate that the proposed communication system facilitates
the information exchange between the neural system and nano-machines, and suggests that proper
adjustment can optimize the communication system performance.

Keywords: molecular communication; hormonal signaling; Ca2+ signaling; neural signaling; chain
modeling; body area network

1. Introduction

Rapid progress of nano-technology enables the manufacturing of nano-machines for medical
applications of body area network (BAN) [1]. Thus far, a bio-inspired manufacturing method has
attracted considerable attention. It assembles biological molecules or atoms into a micro- to nano-scale
unit based on the functional structure of nature cells. To finish a complex task, the cooperation of
nano-machines is indispensable due to their limited size and power. Molecular communication (MC)
is a promising technology for the cooperation of nano-machines, exploiting biological molecules as
intra-body information carriers [2]. Design of MC is inspired by mechanisms of biological activities
in nature (e.g., hormone communication between ants and neural signaling inside human body),
which can be promoted by the experience from diverse traditional communication systems [3,4].
Promising MC applications include health monitoring systems, drug delivery systems and bio-sensor
networks [5].

MC could be divided into wireless and wired types based on different properties of biological
mechanisms. Existing research efforts generally focus on a single MC type and lack the comprehensive
understanding of the complex biological activities in human bodies. Biologically speaking, the human
body is a complex system composed of various biological substances including organs, tissues, cells,
molecules, etc. It is widely accepted that, even for a simple biological activity, different substances
interact with each other through exchange of power and substance. Moreover, processes of biological
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activities usually involve multiple types of biological signaling, which should be investigated jointly
rather than independently. From the aspect of communication, proper integration of bio-systems
promote the implementations of complex functionalities. For example, neurons and blood vessels form
neurovascular unit, which performs more complex functions via communication pathways, including
maintaining the normal activities of neural system, repairing the damaged neurons with the nutrition
from the blood, and regulating the vasodilatation of blood vessels [6].

In this paper, we develop a chain model of MC system, based on biological cells, and motivated
by different chemical stimuli methods [7]. The model considers three types of MC signaling: hormonal
signaling, Ca2+ signaling and neural signaling. Hormonal signaling is based on the diffusion of
hormones in fluid medium. Ca2+ signaling is based on the oscillation of Ca2+ ions in astrocytes.
Neural signaling is based on the spike train transportation of action potential in neurons. The proposed
model involves a chain of communications, in which hormonal signals are considered as the input,
triggering oscillation of Ca2+ signals. As the relay, Ca2+ signals further induce neural signals as the
output. The proposed chain model relies on different bio-sensors in biological cells. For example,
hormones are observed by G-protein bio-sensors in astrocytes (see Section 5), and neural signals are
collected by AMPA or NMDA bio-sensors in neurons (see Section 6).

This paper is developed based on our earlier work [8], where an initial hybrid model of MC
is proposed including diffusive and neural channels. In that work, nano-machines are grouped to
function as the sender, relay and receiver. The communication model in [8] includes high biological
plurality and therefore is reliable. Novel contributions of this paper are listed as follows.

• First, we develop a chain model of molecular communication based on biological signaling.
The proposed model considers the biological interactions among hormone, Ca2+ and neural
signals, which is more general than the model of [8].

• Second, we propose an implementable amplify-and-forward relaying mechanism instead of
decode-and-forward relaying as in [8]. In addition, multiple astrocytes are utilized instead of
a nano-machine, elevating the reliability of relaying from Ca2+ signaling to neural signaling.

• Third, based on the work in [8], we examined the relations between communication performance and
more parameters of the proposed model. We also found that source coding is efficient in improving
the communication performance, which may provide a guidance for nano-machine design.

2. Related Work

We examined the literature on MC related to this work. Diffusion-based MC has attracted
great attention due to its universality in biology. In [9], a mathematical model of communication is
developed based on Brownian motion, and the channel capacity is theoretically deduced. In [10],
a joint optimization strategy is developed to improve the performance of the two-hop diffusion-based
MC system. In [11], different constant composition codes are designed for channel detection at the
receiver without channel state information.

Another potential type of MC is Ca2+ signaling. In [12], a linear channel model for intra/inter-cellular
Ca2+ MC system is developed, where the channel gain and communication delay are analyzed. In [13],
Ca2+ signaling models for different types of cells are introduced and compared. In addition, various
communication performance indicators are deduced for these models. In [14], a channel switching
functionality is designed using Ca2+ signaling in three biological cells, and different gating properties
of gap junction channels are considered.

Neural signaling has been abundantly studied based on the knowledge of neural science.
What concerns us most is the communication model in neural networks, and there are innumerable
studies focusing on this area. In [15], a multi-input-single-output model of synaptic channel in
hippocampus area of the brain is developed, and the communication performance is analyzed using
Shannon theory. In [16], the capacity of the axonal channel is derived, where parameters are optimized
to improve the performance. In [17], a fast algorithm is proposed for performance analysis of artificial
and biological neural systems.
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3. Overview of the Communication System

The proposed MC system is illustrated in Figure 1. The proposed communication system is
motivated by the experience of multiple traditional communication systems [18–23]. Specifically,
the communication system is modeled as a chain, which is composed of a sender, a receiver and three
types of communication media. The sender and receiver are nano-machines with different functions,
respectively, denoted by Tx and Rx. Tx is assumed to release hormones in response to external stimuli.
Tx can be, for example, engineered endocrine cells [2], which are able to release hormones under
control. Rx is a bio-inspired or electronic nanomachine that is able to detect neural signals.

Figure 1. Proposed chain of MC system containing hormonal, Ca2+ and neural signaling.

The first type of communication medium is the fluid, where hormones propagate around the
astrocytes. There are two types of propagation mechanisms, determined by types and properties of
the hormones and fluid medium. First, hormones perform approximative random walk towards any
direction with low energy consumption in the passive diffusion mechanism. For example, steroid
hormones propagate in the brain via lipid mediator and passive diffusion [24]. Second, hormones drift
towards specific directions with high energy consumption in active diffusion. For example, thyroid
hormones permeate blood–brain barrier by a slow flux rate in bloodstream via active diffusion [25].

The second type of communication medium is astrocytes, which are specific cells connected with
neurons. Astrocytes are closely related to neural activities, such as physically supporting structures
of neurons, providing nutrition for neurons, and promoting the growth of neurons [26]. Astrocytes
can promote the generation of neural signals through adjustment of Ca2+ oscillation, thereby serving
as nature bridges between another biological system and neural system. Reportedly, astrocytes
can respond to hormones (e.g., norepinephrine) in generation of Ca2+ signals [27]. Based on this
knowledge, astrocytes function as the perfect relay in our proposed model, connecting hormonal
signaling with neural signaling.

The third type of communication medium is neuron, which processes and transmits information
through the human body. Neural communication is an efficient and reliable biological signaling,
exploiting both electrical and chemical methods. Different types of neurons respond to different
external stimuli (e.g., electricity, chemical and light) [28].

As shown in Figure 1, the communication system is developed to interpret the neural signaling
evoked by chemical stimuli. We assume that the proposed biological communication system transmits
information by encoding the presence or absence of signals in time scale. Moreover, we assume that
time-slotted mechanism works for the proposed communication system, based on the biological clocks
guaranteeing the synchronization of biological cells [29].

The communication process is described as follows. Initially, Tx releases hormones in a controlled
pattern, responding to external stimuli. Then, hormones diffuse in the fluid medium, some of which are
absorbed by the astrocytes, inducing the oscillation of Ca2+ signaling. Oscillated Ca2+ ions in astrocytes
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flow into the neurons and trigger neural signaling. Finally, the neural signals are detected and decoded
by Rx.

4. Hormonal Signaling Model

In Tx, a list of binary information is encoded with the number of released hormone molecules per
time slot. One bit is transmitted in a symbol period, denoted by T. It is found that secretion pattern of
hormones is usually with burst and not sustaining [30]. Accordingly, we apply a simple coding for MC,
i.e., on–off key (OOK) with square pulses. During a time of T, a certain number of hormone molecules
Q0 are released into fluid medium, if Tx transmits bit “1”; no hormone molecules are released into fluid
medium, if Tx transmits bit “0”. Let RH(t) be the released molecules during the ith slot, the expression
of OOK coding is given by,

RH(t) =

{
Q0δ(t− iT) bit = “1”

0 bit = “0”
(1)

where δ(t) is the Dirac’s delta function of t. Hormone molecules propagate with random or directed
walks, motivated by the passive or active diffusion mentioned in Section 3. Plenty of factors
impact the distance and velocity of diffusion processes, including molecules diameter, medium
type, temperature and pressure. For simplicity, we only consider passive diffusion of hormones, i.e.,
hormones performing random walks. Concentration of the hormone molecules presents a decreasing
gradient with the distance, which could be expressed by the well-known Fick’s second law,

dCH(x, t)
dt

= DH∇2CH(x, t) + RH(t) (2)

where∇2 is the Laplace operator, indicating the sum of the second derivatives of CH(x, t). RH(t) is the
releasing rate of molecules at Tx in time scale. DH is the diffusion coefficient of hormones, indicating the
diffusion rate. Let xS be the position of Tx, and xA denote the position of an astrocyte. By solving
Equation (2), the concentration accumulated at the position of xA is given by,

CH(xA, t) =RH(t) · g(dS,A, t)

=
RH(t)

(4πDHt)
3
2

exp(−
d2

S,A

4DHt
)

(3)

where g(x, t) is the Green function of hormones [9], expressing the concentration distribution of
hormone molecules in space and time. dS,A denotes the distance between Tx and an astrocyte, given by
dS,A = |xA − xS|. A single hormonal molecule could be released by Tx in the nSth slot and absorbed
by an astrocyte in the nAth slot. The corresponding probability is given by [31],

un =
∫ (n+1)T

nT
g(dS,A, t)

∫ ∞

t
mH(v)dvdt (4)

where n = nA − nS, and mH(v) denotes the probability function distribution of the molecular life
expectancy, given by mH(v) = ιe−ιv with mean of 1/ι.

5. Calcium Signaling Model

Astrocytes are special star-shaped glial cells, physically close to neurons, and play a crucial role
in regulation of neural activities. It is observed that astrocytes propagate Ca2+ waves in response to
external stimuli, which further induce and impact the behaviors of neural signaling [32]. In this section,
we explain how Ca2+ signals are generated and propagate in astrocytes.

We introduce a mathematical model of Ca2+ signaling in astrocytes according to experimental
observations [27]. The dynamic of Ca2+ signaling in an astrocyte is shown in Figure 2. One major
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organelle that stores Ca2+ ions is endoplasmic reticulum (ER). With an external stimulus in astrocyte,
Inositol 1,4,5-trisphosphate (IP3) molecules are generated by G-protein coupled receptors (GR),
changing the permeability of IP3-sensitive Ca2+ receptors (IP3R) of the ER and induce the Ca2+ fluxes.
Three major Ca2+ fluxes are considered, namely channel fluxes released from the ER to the cytoplasm
via receptors of IP3 (Uchan), uptake fluxes from the cytoplasm to the ER by Ca2+ pumps (Upump),
and leak fluxes from from the ER to the cytoplasm (Uleak). Induced Ca2+ fluxes incur the oscillation
of Ca2+, and patterns of Ca2+ waves are positively related to the concentration of external stimuli.
Let CCY and CER denote the Ca2+ concentrations in cytoplasm and ER. Variable h∞ is employed to
denote the Ca2+ channel inactivation gate. On the time scale, the introduced model of Ca2+ signaling
is expressed as a set of equations,

dCCY
dt

= a1(Uchan + Uleak)−Upump (5)

dCER
dt

= Uchan + Uleak −
1
a1
·Upump (6)

dh∞

dt
=

a3 − h∞

a2
(7)

where,

Uchan = vchan · (
CIP3

CIP3 + b1
)3(

CCY
CCY + b2

)3h3
∞(CER − CCY) (8)

Uleak = vleak · (CER − CCY) (9)

Upump = vpump ·
CCY

2

CCY
2 + b3

2 (10)

a2 =
1

b6(b f + CCY)
(11)

a3 =
b f

b f + CCY
(12)

b f = b5
CIP3 + b1

CIP3 + b4
(13)

In the above equations, a1 denotes the ratio of ER to cytoplasm, a2 denotes the time constant of the
inactivation gate, and a3 denotes the steady value of the inactivation gate. vchan, vleak and vpump denote
the maximum flux rates of Uchan, Uleak and Upump, respectively. b1–b6 are constants of the model, and
CIP3 denotes the concentration of IP3.

On the spatial scale, the propagation of Ca2+ ions in astrocytes is based on the diffusion of
Ca2+ [12]. ER is modeled as a point source of releasing Ca2+. Ca2+ ions around the boundary of
astrocytes can flow into the connected neurons. For any position x inside an astrocyte, the dynamic of
the Ca2+ concentration via diffusion can be expressed by,

dCCY(x, t)
dt

= DCa∆CCY(x, t) + RCa(t) (14)

where DCa denotes diffusion coefficient of Ca2+ smf RCa(t) denotes the variation rate of Ca2+

concentration, determined by Equations (5)–(13). Equation (14) can be solved similarly to Equation (3).
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Figure 2. Dynamic of Ca2+ signals in an astrocyte.

6. Neural Signaling Model

Neural communication is a fast biological signaling, and its velocity varies due to different
neuron types. Neural communication is also biologically reliable, as the neurons are able to eliminate
errors in communications. In this section, we introduce a signaling model across two neighboring
neurons, including the processes of neural firing, axonal transmission, gap junctional transmission,
and postsynaptic response.

One neuron is normally composed of different number of dendrites, axons, somas, and axonal
terminals. In a communication, neural signals are first generated by ions through neural firing process in
soma, transmitted along the axon fiber in the pattern of electrical impulses. Then, the electrical impulses
trigger the release of neurotransmitters from the vesicles located in axon terminals. The neurotransmitters
propagate to the neighboring neurons, until they are absorbed by the dendrites. Finally, the postsynaptic
response is induced that might trigger firing of neighboring neurons.

6.1. Amplify-and-Forward Neural Firing

The generation of neural signals is called neural firing, which is an all-or-none process. Various
types of ions including Ca2+ are released by astrocytes and flow into neurons. During the process, local
potentials of neuron membrane are gradually elevated and aggregated into a global potential. If the
global potential exceeds a threshold, neural signals are generated. Otherwise, it fails to generate neural
signals since the global potential falls quickly.

Neural firing is a relaying process, in which information carrier varies from Ca2+ to neural signals.
In our model, we apply amplify-and-forward (AF) relaying in neural firing process. AF relaying is
based on the concentration-mediated mechanism in astrocyte–neuron communications [33]. We assume
that local neural signals are positively elevated according to the concentration of Ca2+ without
decoding.

To generate neural signals, there must be adequate Ca2+ ions flowing into neurons. The number
of astrocytes should be sufficient to generate the required intensities of Ca2+ flows. The local potentials
are elevated by Ca2+ from connected astrocytes, which cooperate for achieving neural firing. This
process is expressed by the well-known Hodgkin–Huxley model [34], given by,

VN(t) = Vr +
MA

∑
i

∫ ∞

ti

ν(s)AN,i(t− s)ds (15)

where MA is the total number of astrocytes contributing to the neural firing, VN(t) denotes the
global potential on the neural membrane during the firing process, Vr is the resting global potential
without any stimuli, ν is the linear response of the neural membrane to an input pulse of Ca2+ flow,
AN,i(t) denotes the intensity of Ca2+ flow released by the ith astrocyte, injected into the neuron at
time ti, and AN,i(t) is proportional to Ca2+ concentration of astrocyte, expressed by AN,i(t) ∝ CCY(t).
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The action potential spikes are typical neural signal S(t), generated when VN(t) is strong enough to
exceed firing threshold θ1,

S(t) = ∑
j

ϕ(t− tj) (16)

where ϕ(t) denotes the waveform of action potential spike, and tj denotes the time that the spike occurs.
Based on experimental observations, S(t) follows or approaches Poisson distribution in response to
random intensities of Ca2+ flows [35]. We employ λ(t) to denote the firing rate, which is determined
by not only the Ca2+ flows, but also the inherent capability of neurons. The distribution of S(t) could
be impacted by the noise or some other stochastic factors.

6.2. Axonal Transmission

In the process of axonal transmission, action potential spikes transmit along the axon until they
arrive in the axon terminals. During the process, various ions (e.g., K+, Na+ and Cl−) exchange
between the inside and outside of the axon fiber. The axonal transmission process could be modeled
by the cable theory, expressed by the quantitative equation in [36],

γm

γl

d2VN(x, t)
dx2 = γcγm

dVN(x, t)
dt

+ VN(x, t) (17)

where γm, γl and γc denote the membrane resistance, longitudinal resistance and capacitances,
respectively. VN(x, t) denotes the potential of axonal fiber at time t and location x. The boundary
condition of the axonal transmission is given by,{

VN(x, 0) = V0(x)

VN(0, t) = 0
(18)

The above equations can be solved using the Fourier method [37], namely VN(x, t) is calculated as,

VN(x, t) = exp(
t

−γmγc
)

∞

∑
i=1

ζiexp[− π2i2t
LN

2rlγc
]cos(

π · i · x
LN

) (19)

where LN is the length of the axon fiber. ζi denotes the Fourier coefficient, following the boundary
conditions in Equation (18), and can be obtained by,

ζi =
2

LN

∫ LN

0
V0(x)cos(

π · i · x
LN

)dx (20)

6.3. Gap Junctional Transmission

6.3.1. Vesicle Release

We show the process of gap junctional transmission in Figure 3. Action potential spikes arrive in
the axonal terminals, triggering vesicle movements and inducing vesicle-membrane fusion. As a result,
neurotransmitters stored inside vesicles are released into the gap junction. The release process of
neurotransmitters is stochastic, related to the vesicle-membrane distance [38]. Therefore, we exploit
a pool model to classify vesicles into readily releasable pool (RRP) and reserve pool (RP), respectively.
The vesicles of RP are difficult to release, since they are far from the membrane, whereas the vesicles of
RRP are easy to release, since they are close to the membrane.

Let NRRP and NRP, respectively, denote the sizes of RRP and RP. The vesicles of RP are assumed
to fill the RP with rate of τf , if NRRP is reduced due to the release process. The average firing rate of
vesicles is denoted by λ̄, which is calculated as the integral of firing rate λ(t) during a time slot,
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λ̄ =

∫ T
0 λ(t)dt

T
(21)

The release probability of a vesicle is related to λ̄ and NRRP, given by,

Prele = 1− exp(λ̄NRRP) (22)

Neurotransmitters

RRP

RP
Axonal 
TerminalReceptors

Dendrite

Gap Junction

Vesicles

Figure 3. Diagram of gap junctional transmission.

In local scale, Prele can be approximated as the linear relation with λ̄, i.e., Prele = λ̄NRRP. Due to the
stochastic behavior of neurotransmitters, it is possible to cause errors during the vesicle release process.
For binary information, the error probabilities of bit “1” and “0” are, respectively, calculated by,

P(1)
e_neuron1 = 1− (Prele)

ki (23)

P(0)
e_neuron1 = Pki

rele (24)

where ki is the number of action potential spikes during the ith slot. Equations (23) and (24) indicate
that error transmission of binary information is caused by miss or redundant release of vesicles.

6.3.2. Queueing Model of Neurotransmitters

The neurotransmitters diffuse in the gap junctions until absorbed by the dendrite receptors of
neighboring neurons. Due to the stochastic behavior of the vesicle release process, the absorbed time
of neurotransmitters is random. The diffusion of neurotransmitters is slow; this process is normally
ignored since gap junctions are extremely short (several nanometers). However, neurotransmitters
can be absorbed with delay due to the limited absorbing ability of dendrites [39]. Generally,
neurotransmitters gather around the receptors of dendrites and wait to be absorbed. To study this
phenomenon, we use the queuing theory to calculate the delay of gap junctional transmission.

In our model, the neurotransmitters are defined as the batched customers, which are independent
with identical distributions. We adopt the Mx|G|1|K model, where Mx is the absorbing time of these
batched neurotransmitters. The time intervals of vesicle release follow the negative exponential
distribution, i.e., f (ti) = σλbexp(−σλbti)(0 < σ < 1). µb and τb, respectively, denote the batch size
and batch service rate, satisfying λb = µbτb. K denotes the capacity of the receptor. G denotes absorbing
time ts of the receptor with a distribution G(t), which is given by 0 < ts = 1

µ =
∫ ∞

0 tdG(t) < ∞.
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The distribution of the batch sizes is expressed as ε(x) = (1− σ)x−1σ. Based on the result of [40],
the blocking probability is given by,

Pblo = pT(0)
τb(1− σ)0

τb(1− σ) + σ
+

N−1

∑
t=1

pT(t)(1− σ)(N−t) + pT(N) (25)

where pT(k) is the probability that neurotransmitters are absorbed by k customers. The blocking
phenomenon is more serious for bigger λb. Based on the previous derivations, the average delay is
calculated as,

ω =
∑N−1

k=1 ∑∞
r=i ∑N−k

i=1 pT(t)ε(r)
∫ ∞

0 g0(k + i− 1, t)dt
ε(1− Pblo)

+
∑∞

r=i ∑N
i=1 pT(0)ε(r)

∫ ∞
0 g0(i− 1, t)dt

ε(1− Pblo)

(26)

where g0(x, t) is the probability that customers are served at time t.

6.4. Postsynaptic Response

The process of postsynaptic response includes the formation of postsynaptic potential and the
decoding of neural signals.

6.4.1. Postsynaptic Potential

The neurotransmitters are absorbed by dendrites of neighboring neurons via various receptors,
such as the AMPA and NMDA receptors. Neurotransmitters accumulate on the dendrite membrane,
namely postsynaptic terminals. During this process, the postsynaptic potential of dendrite membrane
is elevated to generate the waveform of output signals, which could be expressed by an alpha
function [41],

z(t) = Gmax
t
tp

exp(1− t
tp
) (27)

where Gmax is the maximum amplitude of the potential, and tp is the corresponding time to peak.

6.4.2. Neural Decoding

Decoding process of the neural signal includes two steps: (1) estimation of the action potential
spikes; and (2) extraction of the binary information.

In the first step, a waveform of output signal is denoted by y(t), which could be calculated as
a convolution of the action potential spikes and z(t),

y(t) = q ∑
i

δ(t− ti) ·z(t) (28)

where q denotes a stochastic variable in the signal amplification, following the Gamma distribution [42].
To extract the binary information of y(t), we first sample y(t) into discrete signal y(n) with interval τs,

y(n) =
Nsam/2

∑
j=−Nsam/2

y(n− jτs) (29)

where Nsam is the number of samplings in waveform of y(t), which depends on Gmax and tp. Let
tp be the origin point; Nsam

2 sampling points are determined on both sides of the origin point, where
kτs < min(tj − tj−1) is satisfied. The sampling interval τs should be properly regulated to alleviate the
distortion of sampling signals. We adopt threshold ϑ2 to determine whether a spike exists or not at the
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position of sampling. If ∑k
n=1 y(n)

k < ϑ2, a spike exists. Accordingly, we obtain a pattern of estimated spikes,
denoted by y′(t).

In the second step, we extract the binary information by examining the distribution of y′(t).
The Kolmogorov–Smirnov test [43] is employed to verify whether the distribution of y′(t) follows
the Poisson distribution in time slot T. We say y′(t) follows the Poisson distribution if the following
condition is satisfied, √

iκi > Kα (30)

where variable Kα meets condition P(K 6 Kα) = 1− α, K denotes the Kolmogorov distribution, and κi
is the Kolmogorov–Smirnov statistic of the Poisson process during the ith slot. We obtain λ′ using the
Maximum Likelihood Estimation (MLE). Threshold ϑ3 is employed for decoding, which is smaller
than λ. For the ith bit, if the condition in Equation (30) is satisfied and estimated λ′ is higher than ϑ3,
the decoded information is bit “1”. Otherwise, the decoded information is bit “0”. Further, we deduce
the transmission error probabilities of decoding for both bit “1” and “0”,

P(0)
e_neuron2 = P(

√
iκi > Kα)P(λ′ > ϑ3) (31)

P(1)
e_neuron2 = P(

√
iκi 6 Kα) + P(

√
iκi > Kα)P(λ′ < ϑ3) (32)

According to Equations (23), (24), (31) and (32), the error probability of transmitting one bit neural
signal is expressed as,

Pneuron(1|0) =P(bit = “0′′)P(0)
e_neuron1(1− P(1)

e_neuron2)

+ p(bit = “0′′)(1− P(0)
e_neuron1)P(0)

e_neuron2

(33)

Pneuron(0|1) =P(bit = “1′′)P(1)
e_neuron1(1− P(0)

e_neuron2)

+ p(bit = “0′′)(1− P(1)
e_neuron1)P(1)

e_neuron2

(34)

7. Channel Capacity and Transmission Delay

In this section, we deduce the expressions of channel capacity and transmission delay for the
proposed communication system.

7.1. Channel Capacity

Let Xi, Yi and Zi, respectively, represent the input, relay and output signal, indicating the diffusive
concentration of hormone, oscillating concentration of Ca2+, and decoded action potential spikes. To
deduce the channel capacity, we define the following equations,

P(1,1)
i = P[Yi = 0|Xi = 0] (35)

P(1,2)
i = P[Yi = 1|Xi = 1] (36)

P(2,1)
i = P[Yi = 0|Xi = 0]P[Zi = 0|Yi = 0] (37)

P(2,2)
i = P[Yi = 1|Xi = 1]P[Zi = 1|Yi = 1] (38)

P(2,3)
i = P[Yi = 0|Xi = 1]P[Zi = 1|Yi = 0] (39)

P(2,4)
i = P[Yi = 1|Xi = 0]P[Zi = 0|Yi = 1] (40)
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In the above equations, P(1,1)
i and P(1,2)

i are related to the probability of transmitting bit “1”,

denoted by p. According to the conclusions in [31], the expressions of P(1,1)
i and P(1,2)

i are, respectively,
given by,

P(1)
i =

Nb−1

∏
i=1

(1− pui) (41)

Q(1)
i = 1− (1− u0)

Nb−1

∏
i=1

(1− pui) (42)

where ui is the probability of Equation (4), and Nb is the total number of time slots. The expressions of
P[Zi = 1|Yi = 0] and P[Zi = 0|Yi = 1] can be calculated according to Equations (33) and (34). Based on
information theory, the channel capacity is expressed as,

C = max
Nb

∑
i=1

I(Xi; Zi)

Nb
(43)

We assume that, under the condition of Y, X is uncorrelated to Z. During the ith time slot,
the mutual information is given by,

I(Xi; Zi) = I(Xi; YiZi)− I(Xi; Yi/Zi)

= I(Xi; Yi)− I(Xi; Yi/Zi)
(44)

The mutual information between X and Y is further calculated as,

I(Xi; Yi) =H(Yi)− H(Yi|Xi)

=Ψ((1− p)P(1,1)
i + p(1− P(1,2)

i ))

− pΨ(P(1,2)
i )− (1− p)Ψ(P(1,1)

i )

(45)

where the Ψ(x) = −xlogx− (1− x)log(1− x). The second item of Equation (44) is further expanded as,

I(Xi; Yi/Zi) = H(Xi|Zi)− H(Xi|YiZi)

= −H(YiZi|Xi) + H(YiZi) + H(Zi|Xi)− H(Zi)
(46)

7.2. Delay

Transmission delay of the proposed communication system is denoted by Ω, which is calculated
as the delay summation of hormonal signaling ΩH , Ca2+ signaling ΩCa and neural signaling ΩN ,

Ω = ΩH + ΩCa + ΩN (47)

The estimation of ΩH is related to the emission, propagation and reception processes of hormones.
For simplicity, we only consider the propagation process in channel for the transmission delay
calculation. The transmission delay is related to two factors on the scales of time and space. The first
factor is the transmission distance on the spatial scale. One feasible method is to estimate based on the
probability distribution function along propagation distance dS,A, given by,

fΩH (dS,A) =
∫ dS,A

0
g(x, t)dx

=
er f (

√
d2

S,A
4DHΩH

)

8πDHΩH

(48)
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where er f (x) is the error function, expressed as er f (x) = 2√
π

∫ x
0 e−u2

du. Another factor determining
transmission delay is the variation rate of molecules at the sender on the time scale. Due to the fixed
number of molecules Q0 in one time slot, the variation rate of molecules is determined by the length of
each time slot. The average delay of hormonal diffusion is calculated as,

ΩH(dS,A) =
∫ T

0
ΩH f (ΩH)dΩH (49)

The estimation of ΩCa is based on the time difference, which starts with the generation of Ca2+

waves in connected astrocytes, ends with the absorbing of Ca2+ by a neuron. Similar with the
estimation of Taynnan et al. [13], the variational concentrations of Ca2+ in the astrocytes are assumed
to be equal with the absorbed concentrations of Ca2+ during an increasing delay of ΩCa [13], i.e.,

MA

∑
i=1

∫ T

0
∆(Ci

CY(t))dt =
∫ T+ΩCa

0
∆(CN(t))dt (50)

where ∆(x) denotes the variation of x during a time period, Ci
CY(t) denotes the Ca2+ concentration in

cytoplasm of the ith connected astrocyte with the neuron, and CN(t) is the variational concentration of
Ca2+ absorbed by the neuron.

In the calculation of the neural signaling delay, we mainly consider the contribution of gap
junctional transmission. Based on the proposed queuing model of gap junctional transmission,
the average delay of the vesicle release process is approximated as the average waiting time ω of the
queueing model. The delay of axonal transmission ΩAx is calculated based on Equation (19). Let NN
be the number of neurons, and the average delay between two neighboring neurons is expressed as,

ΩN = NN(ω + ΩAx) (51)

8. Performance Evaluation

A computer simulation was employed to examine the performance of proposed communication
system. The control variate method was exploited since there are too many parameters in the proposed
system. We verified the relations between some important parameters and the performance indicators
(i.e., channel capacity and transmission delay).

8.1. Simulation Design

Simulation parameters were grouped according to hormonal, Ca2+ and neural
signaling, respectively.

Parameters of the hormonal signaling are listed in [9,31,44]: diffusion coefficient DH was fixed at
4.8 µm2/ms, number of released molecules per bit Q0 varied from 1000 to 10,000, the distance between
Tx and astrocytes were randomly generated within 1–20 µm, the length of time slot T varied from
1 s to 20 s, molecule life expectancy ι was set to 0.2, and probability p of transmitting bit “1” varied
between 0 and 1.

Parameters of the Ca2+ signaling are listed in [27]: ratio of ER to cytoplasm a1 was 0.185,
the maximum released flux rate from ER to cytoplasm vchan was 6 s−1, the maximum leaked flux rate
from ER to cytoplasm vleak was 0.11 s−1, the maximum pumped flux rate from cytoplasm to ER vpump

was 0.9 µMs−1, b1 was 0.13 µM, b2 was 0.08234 µM, b3 was 0.1 µM, b4 was 0.9434 µM, b5 was 1.049
µM, b6 was 0.2 µM−1s−1, diffusion coefficient DCa was 20 µ2s−1, the average propagation distance of
Ca2+ signaling dER,B was 10 µm, and the length of time slot T varied from 1 to 20 s.

Parameters of neural signaling is listed in [15,36,38]: firing rate λ̄ of neural signaling varied from
15 to 30 Hz, the average release probability of vesicles pv was set to 0.4, pool size of readily release
pool NRRP varied from 3 to 10, the pool size of reserve pool NRP was set to 60, and the average filling
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time τf varied from 10 to 40 ms. In axonal transmission, membrane resistance γm was set as 64.1 MΩ,
longitudinal resistance γl was set as 8 MΩ, and capacitances γc was set to 1 mF/cm2, the average
length of axons LN was set to 43.2 µm, and the length of time slot T varied from 1 to 20 s.

8.2. Behaviors of Signals

In the simulation, we present how various signals behave in 40 s to transmit 4 bits of
binary information. Figure 4a,d,g presents hormonal signals, Figure 4b,e,h presents Ca2+ signals,
and Figure 4c,f,i presents neural signals. The results reveal that the hormonal and Ca2+ signals
propagate with low frequency, and the neural signals propagate with high frequency.
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Figure 4. Behavior of signals: (a) hormonal signals for “1001”; (b) Ca2+ signals for “1001”; (c) neural
signals for “1001”; (d) hormonal signals for “1011”; (e) Ca2+ signals for “1011”; (f) neural signals for
“1011”; (g) hormonal signals for “1111”; (h) Ca2+ signals for “1111”; and (i) neural signals for “1111”.

We analyzed the chain models by comparing a group of different signals. For example, the
signals in Figure 4d,e,f transmit “1011”. Hormone concentrations generate three waves during 0–10 s
and 20–40 s. Accordingly, oscillation of Ca2+ concentration is triggered to generate periodic waves.
However, oscillation frequency of 20–30 s is smaller than that of 30–40 s, because a part of hormones
during 20–30 s still remain in 30–40 s (i.e., memory effect), increasing the hormonal concentration in
30–40 s and promoting the oscillation of Ca2+. Similarly, a faster oscillation of Ca2+ generates more
action potential spikes during 30–40 s, compared with those in 20–30 s.

We analyzed the behaviors of various signals by sending different bits. Comparing Figure 4a,d,g,
we see that concentrations of hormones are elevated by the percentage of sending bit “1”. Similarly,
the frequency of Ca2+ oscillation is also related to percentage of sending bit “1”. In Figure 4h, there are
totally four peaks, and the intervals between different peaks are decreasing, since the frequency of
Ca2+ oscillation is regulated. Moreover, Ca2+ oscillation stops after 30 s, when hormonal concentration
is too high, and the concentration of Ca2+ stabilizes at a high level. In addition, the number of action
potential spikes seems positively related to the oscillation frequency of Ca2+.
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8.3. Channel Capacity

Channel capacity of the proposed communication system is jointly determined by the three types
of signaling. Our target was to check the relations between channel parameters and the channel
capacity.

Figure 5 shows how channel capacity C changes with different Q0, p and λ. Apparently, C is
elevated by increasing number of released molecules Q0, because that astrocytes can easily absorb
hormones due to the increase of Q0 and the error probability of hormonal signaling is decreased.
In addition, C reaches its peak if p is closer to 0.5. By comparing Figure 5a–c, we note that increase of
firing rate λ of neural signaling restrains C, because a larger λ increases the error probability of vesicle
release process.
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Figure 5. Channel capacity vs. neural firing rate, number of released molecules and probability of
transmitting “1”. NRRP = 8, τf = 30 ms, MA = 3: (a) λ̄ = 20; (b) λ̄ = 25; and (c) λ̄ = 30.

Figure 6 shows how channel capacity C changes with different MA, p, NRRP and τf . Obviously,
the optimal p of maximizing C is not 0.5, which is different with traditional wireless communication.
Thereby, the source coding of MC should be particularly designed. Increasing the number of astrocytes
MA also elevates C, since the relaying capability of Ca2+ signaling is enhanced. Moreover, Figure 6b
reveals that C is larger with a larger readily release pool NRRP and a shorter filling time τf .
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Figure 6. Channel capacity versus: (a) astrocytes numbers; and (b) vesicle pool models.

8.4. Transmission Delay

We checked the relations between various channel parameters and the transmission delay.
Figure 7a presents how transmission delay of hormonal signaling ΩH changes with different T and
dS,A. Apparently, increasing the length of time slot T results in the growing ΩH , because releasing rate
is decreased by increasing T and a fixed number of molecules Q0 is released for each bit. The increasing
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rate of ΩH degrades fast when T is large. Therefore, we deduce that it is important to choose a proper
T in the proposed model. Besides, we note that ΩH increases with growing distance dS,A between
astrocyte and Tx, since the molecular concentration degrades significantly on the spatial scale.
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Figure 7. Transmission delay: (a) delay of hormonal signaling vs. time slot length and distance;
(b) delay of Ca2+ signaling vs. number of supporting astrocytes and time slot length; and (c) delay of
neural signaling vs. pool models.

Figure 7b presents how ΩCa changes with different T and MA. Similar with ΩH , the increased
length of time slot T signifies the increased ΩCa. We guess that the variation of T impacts the hormonal
signaling and Ca2+ signaling. Moreover, a larger MA results in a smaller ΩCa, because the proposed
system could transmit more Ca2+ in a unit time, with the stronger relaying ability.

Figure 7c presents how the average waiting time ω in neural signaling changes with different
NRRP, τf and λ̄. The values of ω is much smaller than ΩCa and ΩH . We see that ω increases with firing
rate λ, because firing rate promotes the vesicle release process, more neuro-transmitters are blocked in
gap junctions, and ω increases. In addition, ω grows with the increasing size of readily release pool
NRRP and the decreasing filling time τf , since vesicle release process is promoted by those parameters.

9. Conclusions

In this paper, we design a chain model for molecular communication to understand and interpret
neural signaling. The proposed model contains three types of signals, where Ca2+ signals of astrocytes
function as the relay of communication. Due to this advantage, the proposed model becomes more
implementable. Behaviors of the different signals demonstrate their close relations with each other.
Simulation results validate the effectiveness of the proposed chain model, and also reveal that proper
source encoding helps improve the system performance.

Our work provides a philosophy of exploiting complex biological reactions for communication
engineering in body area network. Future work will address the expansion of chain modeling and
molecular communications in more complex networks, and explore more practical and complex
biological activities.
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