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Abstract: Segmentation of human bodies in images is useful for a variety of applications, including
background substitution, human activity recognition, security, and video surveillance applications.
However, human body segmentation has been a challenging problem, due to the complicated shape
and motion of a non-rigid human body. Meanwhile, depth sensors with advanced pattern recognition
algorithms provide human body skeletons in real time with reasonable accuracy. In this study,
we propose an algorithm that projects the human body skeleton from a depth image to a color image,
where the human body region is segmented in the color image by using the projected skeleton as
a segmentation cue. Experimental results using the Kinect sensor demonstrate that the proposed
method provides high quality segmentation results and outperforms the conventional methods.

Keywords: depth image; graph cut; human body segmentation; image segmentation; Kinect
sensor; skeleton

1. Introduction

Segmentation of the human body regions is essential in several applications. For example,
segmented human bodies can be synthesized with a scene of another environment for immersive
virtual reality games and telepresence applications. Moreover, segmented human bodies can be
useful for human activity recognition, enabling efficient security and video surveillance applications.
However, due to the complicated shape and motion of human body parts, the automatic segmentation
of a human body remains a challenging problem. Alternatively, a chroma key that uses a green screen
or blue screen as a background has been widely-used [1]. The chroma key-based method makes
human body segmentation straightforward, since the foreground region can be readily extracted by
comparing the pixels with the predetermined background color. However, it is required to support an
automatic human body segmentation under general background environments.

Image segmentation is one of the most widely studied computer vision problems. In particular,
there have been several research endeavors to apply image segmentation to a specific human body
segmentation problem [2-5]. In Reference [2], a body pose is estimated from a color image and
a human body region is segmented using the super-pixel segmentation and part appearance map.
In Reference [3], face, torso, and limbs are detected to estimate the body pose and the graph-cut
algorithm is used to extract the human body region. In Reference [4], a machine learning approach is
used to extract the characteristics of the human shape. In Reference [5], human body skeletons are
provided by user clicks and human body boundary lines are found using many anthropometrically
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estimated parameters. In cluttered background environments, however, these methods cannot
accurately estimate the human body pose and thus the resultant segmentation can be unreliable.

Depth sensors, such as Microsoft Kinect, have been very successful in the gaming industry. The depth
sensors have also shown significant advantages in many applications, such as image rendering [6], image
segmentation [7], object tracking [8], activity recognition [9], and image enhancement [10]. Especially
for human body segmentation, the depth image can greatly facilitate the segmentation procedure. For
example, the background subtraction technique can be applied to the depth image to filter out the pixels
using the background depth values [11].

Since many of the aforementioned applications require a human body segmentation result of the
color image, the segmentation result of the depth image cannot be directly used. Instead, the depth
image can be used to help human body segmentation in the color image. In Reference [12], both color
and depth images are used to obtain the initial body skeletons and human body segmentation with
rough boundaries. The initial body skeletons are then refined using the body part labels and a kinematic
model. The most closely related method to ours is an adaptive multi-cue fusion framework [13]. Both
color and depth images are used to obtain the foreground region with precise boundaries, but the
conventional multi-cue fusion framework tends to correct only mislabeled pixels around the initial
foreground mask, and it is not tailored to the human body segmentation problem.

In this paper, we present a dedicated solution for human body segmentation using a pair of color
and depth images. In particular, we present an algorithm that uses the human body skeleton obtained
from a depth image as a shape prior in the graph-based optimization. Experimental results show the
effectiveness of the algorithm for human body segmentation.

The rest of the paper is organized as follows. Section 2 describes the conventional graph-based
segmentation approach that we adopted. Section 3 presents the proposed method, Section 4 provides
our experimental results, and Section 5 concludes the paper.

2. Graph Cut-Based Segmentation

Graph algorithms have been widely used for image segmentation problems [14-17]. By treating
a pixel or super-pixel as a node and assigning an edge to neighboring pixels or super-pixels, a graph
structure can be established from an image. Image segmentation is then performed by dividing
nodes into multiple groups according to a certain energy minimization criterion. To this end, image
segmentation is typically formulated as a pixel labeling problem, where different labels indicate
different group identifiers. Let L denote the pixel label vector, which is defined as follows:

L= (Ll/ R Lx/ IR LN)/ (1)

where N represents the number of pixels in the image and Ly denotes a label of pixel x (i.e., Ly = 0 for the
background and Ly # 0 for the foreground). The energy function to be minimized is defined as follows:

E(L)= A Y Ep(Lx) + Y  Es(xy)é(Lx Ly), ()
xeX (xy)EQ

where
0, lf Lx — Ly,
1, otherwise.

6(Ly, Ly) = { ®)

In Equation (2), X is a set of all pixels, () is a neighborhood system, and A is a scalar value that
specifies the importance of the data term Ep against the smoothness term Eg. The data term accounts
for the fitness of the label L, at pixel x, which is defined as follows:

ED(Lx> = _lnp(1x|Lx)- 4)



Sensors 2019, 19, 393 3o0f12

In other words, how the intensity or color at pixel x, I, fits into the background/object
histogram [14] or the Gaussian mixture model (GMM) [14] is measured as a negative log-likelihood.
The smoothness term is used to enforce the same label for the neighboring pixels with similar colors,
which is typically defined as follows:

L — |2
Es(x,y) = exp (”zﬁy”> (5)

where o denotes a standard deviation value and ||I; — I || measures the Euclidean distance between
the two color vectors. The graph-based segmentation algorithm has been used extensively, especially
with interactive segmentation, where the user-provided segmentation seeds are used in defining the
data term. For example, the GrabCut segmentation [15] requires a bounding box of the object to
determine the pixels to be used in GMMs.

In our application scenario, the aforementioned approach can be applied without explicit user
interaction. Once initial human body regions are obtained from the depth image, we can first project
them onto the color image and treat them as segmentation seeds. The segmentation result in the color
image can then be obtained by minimizing Equation (2). Figure 1 shows the example obtained using
the Microsoft Kinect v2 sensor (Microsoft Corporation, Redmond, WA, USA). The color and depth
sensors of the Kinect are used to obtain color and depth image pairs, as shown in Figure 1a,b. Using
the software development kit (SDK) of the Kinect, the foreground regions are then extracted from the
depth image and then projected the foreground region to the color image, as shown in Figure 1c.

(d)

Figure 1. Result of the graph-based segmentation: (a) Color images (1920 x 1080), (b) depth images
(512 x 424), (c) foreground regions, (d) segmentation results obtained by the graph-based segmentation
algorithm [14]. Background regions are blue-colored.
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Due to the performance limitation of the depth sensor, the foreground region extracted from the
depth image is not accurate enough. Under the simple background (first column in Figure 1), the
graph-based segmentation method [14] provides a high quality segmentation result. However, under
the cluttered background (second column in Figure 1), many background pixels that have similar
colors with the foreground are mislabeled as the foreground, as shown in Figure 1d. Without any prior
knowledge, this problem cannot be easily solved.

3. Proposed Method

One effective way to improve the segmentation accuracy is to use a shape prior [18,19]. If the
shape prior is included in the energy minimization framework, we can obtain the segmentation result
that complies with the shape prior. In our application of human body segmentation, the skeleton
data can be one of the best candidates for the shape prior and the skeleton information can be readily
obtained in depth images. In particular, we use a Microsft Kinect v2 device with SDK, which has been
extensively used in various applications [20-22]. The Kinect SDK extracts the foreground region for
extracting the skeleton in real-time using the random forest classifier [11]. The skeleton in the depth
image is then projected to the color image coordinate [23], and the projected skeleton is used as the
shape prior.

The remaining problem is how to model the shape prior. Figure 2 shows the estimated skeletons
overlaid on the color images. Although the skeleton joint positions are not perfectly matched with the
actual joint positions, the skeletons are included in the human body region. We thus modify the data
term of Equation (4) in a way that the pixels close to the skeleton are labeled as the foreground.

Figure 2. (a) Examples of the color images augmented with the skeleton and (b) their magnified
sub-regions.
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Let ®@; denote a binary map with the same size of the color image whose value is 1 at pixel x if x is
on one of the lines connecting the joints of the I-th object. The Bayes rule leads us thatp (Ly =1 | ) xp
(I, | Ly =1) p (Lx = I). Here p (Ly =) is a prior probability of x being labeled as [, which is determined

as follows:
dz(x,CDI)
Ly=1)= -, 6
p(Lx ) exp< 20]2 (6)

where 07 is the standard deviation and d(x, ®;) represents the distance between x and ®;. Specifically,
the L1 distance between x and its closest pixel in ®; whose value is 1 is computed by the distance
transform [24]. The probability of x being labeled as I exponentially decreases as the distance from the
skeleton of the I-th object increases. The probability of x being labeled as the background is defined as

p(Ly=0) =1 x p(Ly=1), @)

— ma
1e{1,2,,M}

where M represents the number of human bodies detected in the scene. The prior probabilities for

each pixel x are normalized such that they all sum to 1.

In Equation (6), the parameter o determines the effect of the shape prior. In general, with higher
reliability, a smaller value of 0} is desired. Since the reliability of each skeleton joint cannot be the
same, we assign different oy values to different joints. To this end, we use the Kinect SDK to classify
the skeleton joints into the three states: Tracked, inferred, and non-tracked [11]. First, we make the
non-tracked joints and the pixels connected to the non-tracked joints have the zero value in ®; to
prevent any abuse of the shape prior. Second, we adjust 0; values as 0}, for the tracked state and
as 07, for the inferred state, where 07; > 07,. For each pixel x, we find its closest joint and adjust oy
value according to the state of the closest joint. In Figure 2, the lines connected to the joints with the
tracked-state and the inferred-state are blue-colored and red-colored, respectively.

In addition, the scattering of the emitted infrared light reduces the reliability of depth estimates
in both time-of-flight (ToF) and structured light-based depth sensors. In particular, the reliability of the
skeleton joints is especially low at the head and foot joints, due to the scattering problem. We thus set
0y as 07y for the head and foot joints although when they are with the tracked state, where 0y ¢ > 07 .
Our parameter adjustment scheme is simple and heuristic, but essential, for the better use of the shape
prior. We will compare the results obtained with/without varying o values in Section 4.

Finally, the graph-based optimization is performed by minimizing the energy function in
Equation (2) with the following modified data term.

Ep(Ly) = —Inp(L|Ly) — In p(Ly). ®)

Owing to the modified data term, human body segmentation can perform robustly against the
cluttered environments. Except for the data term, the other parts in Reference [14] remain unchanged
to evaluate the effectiveness of our modification only. Note that the proposed method can be applied
to any advanced graph optimization methods for further performance improvement.

For the human body segmentation of video sequences, we apply the proposed method to each
frame individually. Although video segmentation can be performed using the three-dimensional (3-D)
graph structure [25], such a method is computationally expensive and memory demanding. We found
that the frame-by-frame segmentation is sufficient for human body segmentation owing to the robust
shape prior provided by the depth image.

4. Experimental Results

We constructed our own database that consists of 25 scenes, as shown in Figure 3. Each scene
contains one or two persons with different body poses. The Microsoft Kinect v2 sensor was used to
obtain the color and depth images and extract the skeletons [11]. The skeletons found from the depth
images were projected to the color image coordinates using the method of [23]. For the performance
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evaluation, direct projection of the foreground region detected from the depth image to the color image
(PROYJ) [11,23], graph-based segmentation (GSEG) [14], GrabCut in one cut (OCUT) [16], and multi-cue
fusion method (MFUS) [13] were compared with the proposed method.

Figure 3. Test images of 25 difference scenes.

For GSEG, the color model of each object was generated from the region of PROJ. The rectangular
region whose height and width are 40% larger than those of the bounding box containing the region
of PROJ was constructed. The pixels inside the rectangular region, but outside the region of PROJ,
were used for the background color modeling [14], as shown in Figure 4a. Here the GMMs were used
for object and background color modeling [15] and the default parameter settings were used for the
energy optimization in Equation (2) [24]. The original MFUS was modified by projecting the initial
segmentation map to the color image in order to apply the segmentation at the color image resolution.
Note that MFUS used consecutive color and depth frames for the segmentation. The original OCUT
requires user-provided segmentation seeds. We instead generated the foreground and background
segmentation seeds without user inputs. To this end, the skeleton in the color image was expanded
using the dilation operator with the 5 x 5 structural element. The expanded skeleton was used as the
foreground segmentation seed. For the background seed construction, the rectangular region whose
height and width are 40% larger than those of the bounding box containing the region of PROJ was
constructed. The region of PROJ was expanded using the dilation operator with the 51 x 51 structural
element, and the pixels inside the rectangular region, but outside the expanded region of PROJ, were
used as the background seed, as shown in Figure 4b. In other words, we made necessary modifications
to OCUT for the performance comparison, and all the experimental parameters were fine tuned to
obtain the best segmentation accuracy. The proposed method was implemented in the same manner
of GSEG with the modified data term in Equation (8). The parameters of the proposed method were
empirically chosen as ‘7]2,t =10, a% ;=80,and (7]2, nf = 0.

For the quantitative performance evaluation, we measured the Jaccard coefficient [26], which is
defined as follows:

o |Lgt N Lest|

Lot, L = ,
]( 8t est) |LgtULest|

©)



Sensors 2019, 19, 393 7 of 12

where Lgt and Lest denote the ground-truth and estimated binary segmentation maps, respectively. We
manually generated the ground-truth binary maps for all scenes in Figure 3 using an image editing
software. N and U denote the intersection and union operators, respectively, and |-| measures the
number of ones in the segmentation map. Here the binary segmentation map treats different human
body regions as the same foreground, and thus the Jaccard coefficient can be measured for the scenes
with single or multiple persons.

: ()‘

Figure 4. Foreground (blue) and background (red) seeds for (a) the graph segmentation method [14]

and (b) one cut segmentation method [16].

Figure 5 shows the Jaccard coefficients obtained by the five compared methods. The foreground
regions obtained from the depth images were considerably accurate as can be seen from the result of
PRQJ. The average Jaccard coefficient was obtained as 0.896. GSEG applies the graph-cut segmentation
to improve the segmentation accuracy, but the average Jaccard coefficient was even decreased by
0.130 compared to PROJ. This is because the segmentation failed for the scenes with complicated
backgrounds. MFUS could only refine the mislabeled pixels around the initial object boundaries, and
therefore the improvement was restricted. The average Jaccard coefficient was obtained as 0.897. Our
application of OCUT to human body segmentation was not as asuccessful as the average Jaccard
coefficient was obtained as 0.825. In the same manner of PROJ, OCUT also failed in the complicated
scenes. Our modified data term could contribute to the significant performance improvement over
PRQJ as the obtained average Jaccard coefficient was the highest, at 0.917. When we set the standard
deviation values to be the same as 0]2, P = 0]2, i = ]2 W= 30 or 50, the average Jaccard coefficients were
obtained as 0.880 or 0.836, respectively. In other words, it is necessary to adjust standard deviations
according to the reliability of the skeleton joints.

Figure 6 compares the segmentation results for the five methods. As can be seen from Figure 6b,
the segmentation accuracy of PROJ is stable, but not accurate enough. Due to the performance
limitation of the depth sensor, the foreground regions extracted from the depth image contain crude
boundaries. GSEG tends to improve the segmentation accuracy, but it fails when the background and
foreground share the similar color distribution, as shown in Figure 6¢. MFUS can correct mislabeled
foreground and background pixels, but it cannot recover a large amount of erroneous labels, as shown
in Figure 6d. OCUT fails when the background and foreground share the similar color distribution
or when the position of the skeleton is not accurate enough, as shown in Figure 6e. The proposed
method yields the best segmentation accuracy, as shown in Figure 6f. Figure 7a shows the test image
sequences that correspond to the first scene of Figure 3. The manually generated ground-truth maps
are also shown in Figure 7b. During 100 frames, the two persons walked toward the other’s position,
then passed by, and finally met together to simulate a challenging scenario. All the compared methods
are single image-based, and thus they were applied to image sequences in a frame-by-frame manner.
The segmentation accuracy can be compared from Figure 7c—g. Figure 8 shows Jaccard coefficients
for 100 frames, which are obtained by comparing each segmentation result with its corresponding
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ground-truth map. The average Jaccard coefficient is obtained as 0.866, 0.794, 0.866, 0.861, and 0.889
for PROJ, GSEG, MFUS, OCUT, and the proposed method, respectively.
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Figure 5. The Jaccard coefficients for the 25 scenes shown in Figure 3.

Last, we measured the processing time of different segmentation methods using a PC with an Intel
Core™ i5-4670 3.40 GHz CPU (Intel Corporation, Santa Clara, CA, USA), and 16-G RAM (Samsung
Electronics, Suwon, Korea). In our unoptimized implementation of GSEG, MFUS, OCUT, and the
proposed method, PROJ was commonly used to obtain initial estimates. We thus first stored all
the results of PROJ, which were mainly obtained using the SDK functions [11,23], and then applied
the other methods as offline processing. For 100 consecutive frames used in Figure 8, the average
processing time of segmenting one image was obtained as 2.59 s, 11.28 s, and 1.53 s for GSEG, OCUT,
and the proposed method, respectively. Note that we included the shape prior to the energy function
of GSEG, but the proposed method was found to be more computationally efficient than GSEG. This
is because the proposed shape prior could make the graph-based optimization process stable and
enabled convergence earlier than GSEG. The original MFUS showed the real-time performance of
about 30 frames per second [13], but we modified the original MFUS to apply segmentation at the
color image resolution. In our experiment, we mostly paid attention to the accurate reproduction of
MFUS, and our implementation of MFUS required more than one minute for segmenting one image.
The source code of the proposed method is provided as Supplementary Materials.
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(2) (b) (©) (d) (e) O]

Figure 6. Comparison of the segmentation results: (a) Ground-truth, (b) PROJ [11], (c) graph-based
segmentation (GSEG) [14], (d) multi-cue fusion method (MFUS) [13], (e) OCUT [16], and (f) the
proposed method. The results are best viewed in the electronic version.
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Figure 7. Results on image sequences: (a) Five sampled images out of 100 frames, (b) ground-truth
segmentation maps, segmentation results obtained by (c) PROJ, (d) GSEG, (e) MFUS, (f) OCUT, and (g)
the proposed method. The results are best viewed in the electronic version.
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Figure 8. The Jaccard coefficients for the image sequences corresponding to Figure 7.
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5. Conclusions

An algorithm that uses the human body skeleton obtained by the depth image for the human
body segmentation in a color image is presented. By defining the shape prior to the position of the
human body skeleton and then applying the shape prior to the graph-based energy minimization
framework, the human body region can be found around the human body skeleton. Experimental
results demonstrated the superiority of the proposed method. Although our proposed method is
based on the Kinect devices, it is straightforward to replace the SDK functions with our own methods
to make the proposed method generally applicable. Moreover, recent deep learning-based skeleton
estimation techniques using only color images show a promising result. As a future work, we also
plan to extract skeletons and human body regions from only color images.

Supplementary Materials: The supplementary materials are available online at http:/ /www.mdpi.com/1424-
8220/19/2/393/s1.
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