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Abstract: Side effects occur when excessive or low doses of analgesics are administered compared
to the required amount to mediate the pain induced during surgery. It is important to accurately
assess the pain level of the patient during surgery. We proposed a pain classifier based on a deep
belief network (DBN) using photoplethysmography (PPG). Our DBN learned about a complex
nonlinear relationship between extracted PPG features and pain status based on the numeric rating
scale (NRS). A bagging ensemble model was used to improve classification performance. The DBN
classifier showed better classification results than multilayer perceptron neural network (MLPNN)
and support vector machine (SVM) models. In addition, the classification performance was improved
when the selective bagging model was applied compared with the use of each single model classifier.
The pain classifier based on DBN using a selective bagging model can be helpful in developing a pain
classification system.
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1. Introduction

The pain that people experience in their lives is very diverse in cause and extent. Even when
exposed to the same stimulus, some people carry out their daily activities with an acceptable level of
pain, while others experience extreme pain. This phenomenon results because sensitivities to stimuli
differ depending on an individual’s constitution and tendencies. Most pain occurs as a major symptom
of a medical condition, but pain can also occur despite lack of any stimulation or pathological cause [1].
If such pain persists, a complex stress response is generated in the body. Persistence of this stress
response can seriously affect the manner in which people live and perform basic functions [2].

The stress response experienced by individuals during surgery is an unconscious response
to tissue injury and refers to autonomic, hormonal, and metabolic changes that follow injury [3].
This sustained stress during surgery leads to high mortality and delayed postoperative recovery,
so analgesics are administered to control stress [4]. However, when an excessive amount of an analgesic
is administered compared to the required amount to mediate the pain induced during surgery, the vital
signs of the patient are excessively lowered during the surgical procedure. This phenomenon can lead
to obstacles to circulation that make it difficult to maintain proper functioning of the body and may
result in delayed postoperative recovery. Conversely, if analgesics are not adequately administered,
stress caused by persistent pain during surgery may lead to a negative effect on the surgical outcome
and postoperative aftereffects, which can result in a prolonged hospital stay and increased treatment
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costs. Therefore, it is important to accurately assess the pain level of anesthetized patients during
surgery to allow administration of analgesics at appropriate times and levels to individual patients,
maintain stable vital signs during surgery, and avoid side effects from overdosage or underdosage [5].

In hospitals, several methods are used to measure and assess patients’ pain levels. For conscious
patients, the numeric rating scale (NRS) is used to measure numerical pain from no pain (0 points) to
extreme pain (10 points). Pain measured with the NRS can be classified as mild (1–3 points), moderate
(4–6 points), and severe (7–10 points) [6]. However, the NRS cannot be used in patients who have
been anesthetized for surgery. Clinical signs of inadequate anesthesia, such as facial expressions,
movements, blood pressure, and flushing, are used to assess pain levels in anesthetized patients [7].
However, as this assessment is subjective, the results are dependent on the physician’s experience,
and the results are likely to vary from person to person.

This study was conducted as a preliminary study to develop a pain assessment system for patients
with surgery. In this study, we present our analysis based on the time domain and frequency domain
features extracted from the collected photoplethysmography (PPG) signal, which is easy to measure
by minimizing the burden on the conscious patient from the status without pain in the preoperative
period and the status with pain in the immediate postoperative period. In addition, we propose a
technique using a deep belief network (DBN) to model the complex nonlinear relationship between the
features extracted from the PPG and NRS-based pain status. DBN is a probabilistic generative model
that reduces the problem of local minima through a greedy layer-wise unsupervised pre-training stage
using a stack of restricted Boltzmann machines (RBMs) that initializes the weights of DBN from high
dimensional input data and solves classification problems through supervised fine-tuning that adjusts
weights in the direction of minimizing classification errors.

Therefore, the proposed DBN, more than the traditional models such as multilayer perceptron
neural network (MLPNN) and support vector machine (SVM), is expected to show excellence as a
pain classifier. In addition, the performance of the classifier is improved by using a bagging ensemble
technique that combines multiple classifiers.

2. Materials and Methods

An experiment was conducted to acquire PPG signals in the absence of pain status at
pre-operation and in the presence of pain status at post-operation. The subjects were 100 adult
patients (53.8 ± 12.4 years old) scheduled for regular surgery for conditions such as gastric cancer,
breast cancer, and colon cancer with no accompanying disorders that can cause spontaneous pain
or affect the autonomic nervous system. This study was approved by the Asan Medical Centre
Institutional Review Board (approval number: 2016-0477) and registered on an international clinical
trials registry platform (http://cris.nih.go.kr, KCT0002080), and written informed consent was
obtained from all patients. Subjects voluntarily agreed prior to the experiment to participate in
this clinical study, and the experiment was conducted with subjects lying on a bed. First, the PPG
signal was measured for 14 min in the recovery room before entering the operating room. Subsequently,
general anesthesia was performed according to usual medical procedures and surgery was conducted
in the operating room. At the end of the operation, the patient was awakened and moved to the
recovery room. Thereafter, the PPG signal was again measured for 14 min. Every measurement was
conducted at room temperature.

The PPG signals were acquired using S/5 Anesthesia Monitor (Datex-Ohmeda, Inc., Helsinki,
Finland) and collected at a sampling frequency of 300 Hz. The PPG signal was measured by attaching
the sensor to the left index finger. The PPG signal is versatile because it can extract various parameters
such as heart rate, peripheral oxygen saturation (SpO2), respiration rate of electrocardiogram (ECG),
and respiration signal indicating the autonomic nervous system response [8]. We used a PPG signal
that is easy to measure and minimizes the burden on the patient by attaching it to one finger because
the adhesive pads of the ECG and belt devices of respiration are known to be uncomfortable owing to
movement restriction, and their measurement is limited in actual surgical situations.

http://cris.nih.go.kr
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During the experiment, the subjects were interviewed using the NRS (0-no pain to 10-most pain) to
determine the current status of pain. The subjects’ responses were used to confirm and assess the level
of pain in each situation. In the preoperative period, all 100 subjects reported no pain (0 points), and it
was confirmed that almost all subjects felt no pain. In the immediate postoperative period, there was
variation in the pain status of the subjects (Table 1). The 11-level of pain classification using NRS is
statistically insignificant because of the small number of data points for each level. If the NRS score is
more than 4 points, indicating moderate or severe pain, active treatment is considered necessary for
the patient [9]. Therefore, we designed a model to classify no pain status and pain status requiring
active treatment for appropriate administration of analgesics to anesthetized patients. We selected
78 subjects who reported moderate and severe pain in immediate postoperative period for analysis.
We classified the data acquired in the preoperative period as no pain status (N) and that in the
immediate postoperative period as pain status requiring active treatment (P). Additionally, we tried
to classify the 4-class pain status—no pain status in the preoperative period and mild pain status,
moderate pain status, severe pain status in immediate postoperative period. The data were analyzed
using MATLAB (R2016a release, MathWorks, Inc., Natick, MA, USA).

Table 1. Numerical rating scales of pain status in the immediate postoperative period.

NRS
(Pain Level)

No Active Treatment Required Active Treatment Required

None Mild Moderate Severe

0 1 2 3 4 5 6 7 8 9 10

Subjects in the
immediate

postoperative period
(N = 100)

7 2 4 9 10 20 7 17 17 5 2

Amplitude changes of the waveform in the PPG signal detected by the sensor represent blood
volume changes synchronized to each heartbeat [10]. As the response of the autonomic nervous
system to external stimuli reflects cardiovascular disease, emotional status, etc., clinically significant
parameters such as heart rate and heart rate variability (HRV) have been extracted from the PPG
signal [8]. In this study, the signal processing algorithm is designed to extract the features that
determine the accurate pain status using the PPG signal (Figure 1).
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Since the measured PPG signal acquired from the operating room or the recovery room is
considerably vulnerable to noises introduced from a variety of patient monitoring equipment, surgery
assist devices, and power sources, a second-order Butterworth low pass filter with a cut-off frequency
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of 8 Hz is used to remove such noises. In order to calculate the peak-to-peak interval representing the
heartbeat period, a technique to detect systolic peaks from the filtered PPG signal is required. Peaks that
are local maxima of the PPG signal are extracted using the systolic peak detection algorithm proposed
by Elgendi [11]. A second-order Butterworth high pass filter with a cut-off frequency of 0.5 Hz for
removing baseline variation was applied to the noise filtered PPG signal. The high pass filtered PPG
signal (H[n]) was negatively filtered by the clipped signal (C[n]) (Equation (1)). A squared signal (S[n])
was calculated to emphasize the peak component from the clipped signal (C[n]) (Equation (2)).

C[n] = max(0, H[n]) (1)

[n] = (C[n])2 (2)

A Moving Average method was used to calculate the block of interest including the peak point
from the squared signal (S[n]) for the vasoconstriction interval and heart rate cycle interval. The first
moving average (MAPeak) emphasized the vasoconstriction interval (Equation (3)) and the second
moving average (MABeat) emphasized the heartbeat interval (Equation (4)). W1 and W2 mean the
window size of the vasoconstriction interval and the heartbeat interval, which means 111 msec and
667 msec, respectively.

MAPeak[n] =
1

W1
(S[n− W1 − 1

2
]+ · · ·+ S[n] + · · ·+ S[n +

W1 − 1
2

]) (3)

MABeat[n] =
1

W2
(S[n− W2 − 1

2
]+ · · ·+ S[n] + · · ·+ S[n +

W2 − 1
2

]) (4)

The adaptive threshold is obtained to detect the peak through two moving averages
(Equations (5) and (6)).

Threshold1 = MABeat[n] + 0.02S[n] (5)

Threshold2 = W1 (6)

An interesting block containing the peak point was obtained by comparing the first threshold
(Threshold1) with the first moving average (MAPeak), and the erroneous block of interest generated
by the noise was removed by comparing the size of each block of interest with the second threshold
(Threshold2). Finally, the peak data were detected by calculating the time index at which the maximum
value in the block of interest is located, and the valley data were detected by calculating the time
index where the minimum value between the two consecutive peaks is located. HRV can be measured
by the variation in the peak-to-peak interval, which is the time interval between adjacent peaks.
HRV is an important indicator for evaluating the sympathetic and parasympathetic activity of the
autonomic nervous system [12]. Therefore, it is important to construct an accurate HRV measure to
analyze the pain status by evaluating the autonomic nervous system activity. In fact, it is difficult
to identify the correct peak-to-peak interval owing to various disturbances such as external noise,
motion noise, and ectopic beats. To remove these artifacts, we used the filtering method proposed by
Logier [13]. To illustrate the method, three threshold conditions were used for the peak-to-peak interval
(Equations (7) and (8)). Peak-to-peak intervals belonging to one or more conditions are regarded as
erroneous peak-to-peak intervals and are reconstructed at normal peak-to-peak intervals using linear
interpolation. PPIi is the peak-to-peak interval, and m20 and σ20 are the respective mean and standard
deviation of the previous 20 peak-to-peak intervals. Peak, valley detection and heart rate variability of
the PPG signal through the signal processing algorithm are shown in Figure 2.

T1 = PPIi< m20 − 2σ20 and PPIi+1 >m20 + 2σ20 (7)

T2 = PPIi < 0.75PPIi−1 or PPIi+1 < 0.75PPIi−1 (8)
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HRV results following filtering were utilized to extract the time domain and frequency domain
of HRV. Because of different physical responses depending on pain status, we extracted the features
according to the properties of the PPG that show the autonomic nervous system response. The extracted
features are time-domain features from the geometry of the PPG signal, time domain features of
HRV using statistical methods, and frequency domain features of HRV using spectrum analysis.
This resulted in a total of 17 features. To extract the consecutive features from each signal data in the
preoperative and immediate postoperative period, a 1-min sliding window method based on the PPG
signal for 5 min, which is an appropriate time for short-term HRV analysis, was used [14].

The time-domain features from the geometry of the PPG signal were extracted from each 5-min
window (Table 2). Instantaneous heart rate refers to the number of beats per minute calculated from
the peak-to-peak interval. The instantaneous heart rate and the average heart rate can be estimated
from Equations (10) and (11). N represents the number of samples of the instantaneous heart rate for
5 min.

InstantaneousHR =
60× Sampling frequency (300 Hz)

Peaktopeak Interval
(10)

AverageHR =
1
N

N

∑
i=1

(InstantaneousHR)i (11)

Table 2. Time-domain features from geometry of PPG signal.

Features Description

Pulse height Average of the distances between Peaks and Valleys in a 5-min window
Rise time Average of the time it takes to rise from Valley to Peak in a 5-min window
Fall time Average of the time it takes to fall from Peak to Valley in a 5-min window

Average heart rate Average of the instantaneous heart rate in a 5-min window
T3 = PPIi > 1.75PPIi−1 (10)

Analysis of HRV in the time domain and frequency domain is used to assess not only heart disease
but also stress status by estimating the periodic change of the heart rate [15]. The features of HRV are
divided into the time domain and frequency domain. First, we extracted time domain features of HRV
(Table 3).
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Table 3. Time domain features of HRV.

Features Description

AVNN Average of the Peak to Peak (NN) intervals observed in a 5-min window
SDNN Standard deviation of the Peak to Peak intervals observed in a 5-min window
RMSSD Root mean square difference of successive Peak to Peak intervals in a 5-min window

NN20 Number of pairs of successive Peak to Peak intervals that differ by more than 20 ms in
a 5-min window

pNN20 The proportion of NN20 divided by the total number of Peak to Peak intervals in a
5-min window

NN50 Number of pairs of successive Peak to Peak intervals that differ by more than 50 ms in
a 5-min window

pNN50 The proportion of NN50 divided by the total number of Peak to Peak intervals in a
5-min window

In order to analyze HRV in the frequency domain, HRV time series data must be converted to the
frequency domain. Therefore, the HRV power spectrum for specific frequency bands was calculated
by converting it to the frequency domain using a fast Fourier transform (FFT) (Table 4).

Table 4. Frequency domain features of HRV.

Features Description

VLF power Power in very low frequency range (0.003–0.04 Hz)
LF power Power in low frequency range (0.04–0.15 Hz)
HF power Power in high frequency range (0.15–0.4 Hz)

Total power Power in very low frequency range (0.003–0.4 Hz)
LF/HF Ratio LF/HF

Respiratory rate power Maximum power in frequency range (0.1–0.25 Hz)

The 17 features that were extracted in each 5-min window constitute the feature vector for
generating the inputs of the classifier to identify the pain status. Biological signals such as PPG
differ depending on the external environment and individual characteristics. The feature vectors
extracted from the measured PPG signal include outliers. These outliers must be removed because
they affect the performance of the pattern classifier. The median absolute deviation (MAD) method,
which provides stronger performance for measures of dispersion, was used as an outlier removal
method [16]. The MAD and the outlier removal method using it were modeled by Equations (12) and
(13), respectively. A ± 2.5 MAD range at median value was set as the confidence interval and the
outliers were removed.

MADj = 1.4826×median(
∣∣xi,j −median

(
xj
)∣∣) (12)

Outlier→
{

xi,j ≤ median
(
xj
)
− 2.5×MADj

xi,j ≥ median
(
xj
)
+ 2.5×MADj

(13)

Moreover, the features extracted from the PPG signal have different ranges of values. Therefore,
it is necessary to normalize all feature vectors to values between 0 and 1 to allow efficient learning of
the pattern using the input vector of the classifier. The feature vectors with outliers removed for each
feature were normalized through min-max normalization (Equation (14)).

DNormalized
i,j =

Di,j −Dmin
i,j

Dmax
i,j −Dmin

i,j
(14)

Several classifiers have been used in pattern classification varying from linear discriminant
analysis (LDA), artificial neural network (ANN), support vector machine (SVM), convolutional neural
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network (CNN), deep belief network (DBN), etc. In the present study, we used and evaluated 3
network architectures MLPNN, SVM, and DBN. MLPNN is a statistical learning algorithm that models
biological brain structures. The MLPNN is composed of an input layer, at least one hidden layer,
and an output layer according to a hierarchical structure [17]. The input layer and the output layer
serve to receive the input data and output the result, and the hidden layer is used to calculate the
data from the input layer as an active function and transmit it to the output layer. There are weights
indicating the degree of connection between each layer. Weights are modified in the direction of
decreasing the error between the output value according to the given input data and the target value
desired by the user using a back-propagation algorithm with gradient descent [18]. SVM is a learning
algorithm based on supervised learning, which is widely applied to binary classification problem
and regression analysis [19]. Although the existing MLPNN and other neural networks are based on
minimizing classification error, SVM attempts to maximize generalization ability to classify new data
not used for learning [20]. DBN is a deep learning model that learns restricted boltzmann machine
(RBM) by stacking several layers. DBN learning is divided into two stages. The first is the pre-training
of unsupervised learning, which initializes all the weights and bias of the DBN. It plays a role of
reconstruction, which is a process of estimating the probability distribution of input data. The second
is fine-tuning of supervised learning, which uses the back propagation algorithm used in the MLPNN
to fine-tune the weights and bias initialized in the pre-training to minimize the error between the
target values of the given input data. It acts as a classifier. An ensemble model was applied to improve
the performance of classifying pain status using these classifiers. The ensemble model is a model
that combines multiple classifiers by a specific method to achieve better classification performance
than a single classifier in classification problems [21]. In order for the ensemble model to perform
well, it is important that each base classifier constructed has diversity. In other words, even if a few
base classifiers are misclassified, if the rest of the base classifiers are correctly classified, the ensemble
model is correctly classified through combining. We use the most typical bagging method among
the ensemble models [22]. Bagging generates N different sets of training data by random sampling
of the same size by bootstrap sampling, which is an extraction (duplication allowance) method from
original training data. The base classifiers with diversity are generated by learning each base classifier
using the generated different training data, and the results of classification for the original testing
data are obtained. Finally, the final classification result is calculated by combining the classification
result values of the base classifiers through a majority voting method among the combining methods.
However, due to the random sampling through the bootstrap technique, some base classifiers improve
final classification performance, but other base classifiers lower the final classification performance.
Therefore, we proposed a selective ensemble model of the Hill-Climbing (HC) method. The selective
ensemble model is not a combination of all the base classifiers generated in the model. Among these,
the ensemble model is constructed by selecting only the base classifier which is expected to improve
the performance in combining. At this time, a hill-climbing method was used to select only specific
base classifiers [23].

3. Results

In this study, we compared the performance of the pain status classifiers developed through
DBN, MLPNN, and SVM for the 2-class & 4-class pain classification according to the results of the
NRS, and attempted to improve the performance by applying the bagging method to each classifier.
The performance of pattern classifiers was evaluated with commonly used evaluation parameters
such as accuracy, sensitivity, and specificity. These are statistical measures of the performance of a
binary classification test. Sensitivity measures the proportion of positives that are correctly identified.
Specificity measures the proportion of negatives that are correctly identified. Accuracy is expected
to measure how well the test predicts both categories (positives and negatives). Therefore, we used
accuracy to assess the performance of the pain status classifiers (Equation (15)). The process of
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calculating the accuracy of the classifiers uses the number of true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN) in a confusion matrix.

Accuracy =
TP + TN

TP + FP + FN + TN
× 100 (15)

3.1. Assessment of 2-Class Pain Status Classification Using Pattern Classification Algorithms

To compare the mean differences of the classification groups for the 17 extracted features according
to pain status, we performed the Wilcoxon signed-rank test on the extracted features. The analysis
revealed that there were statistically significant differences at the significance level p < 0.05 for 15
features excluding RMSSD and NN50 (Table 5). Features with insignificant differences for N and P
(significance level p > 0.05) were excluded from the input variables to classify the 2-class pain status.

Table 5. Statistical significance of the extracted features.

Feature
Preoperative

Period
[Mean ± SD]

Immediately
Postoperative Period

[Mean ± SD]
p-Value Significant

Pulse Height 0.908 ± 0.206 0.673 ± 0.489 <0.0001 Yes
Rise time 0.219 ± 0.05 0.227 ± 0.046 <0.0001 Yes
Fall time 0.700 ± 0.128 0.660 ± 0.115 <0.0001 Yes

Average heart rate 66.32 ± 10.30 69.66 ± 10.28 <0.0001 Yes
AVNN 0.928 ± 0.145 0.883 ± 0.130 <0.0001 Yes
SDNN 0.041 ± 0.016 0.039 ± 0.019 <0.0001 Yes
rMSSD 0.031 ± 0.016 0.032 ± 0.019 0.6798 No
NN20 133.1 ± 61.65 104.3 ± 65.65 <0.0001 Yes

pNN20 42.61 ± 22.02 31.39 ± 20.28 <0.0001 Yes
NN50 32.12 ± 31.33 30.05 ± 29.21 0.1573 No

pNN50 10.02 ± 9.808 9.069 ± 8.903 0.0279 Yes
VLF power 0.517 ± 0.374 0.453 ± 0.399 <0.0001 Yes
LF power 0.298 ± 0.220 0.209 ± 0.190 <0.0001 Yes
HF power 0.256 ± 0.204 0.214 ± 0.190 <0.0001 Yes

Total power 1.145 ± 0.770 1.053 ± 0.894 0.0005 Yes
LF/HF ratio 1.647 ± 1.202 1.190 ± 0.871 <0.0001 Yes

Respiratory rate power 7.958 ± 6.532 6.060 ± 5.620 <0.0001 Yes

To evaluate the performance of the classifiers for N and P, the data were split into six groups;
a 6-fold cross validation was used. The feature vectors of subjects were divided into a training
set (1040 data points obtained from 52 subjects with 5-min windows each in two situations
[preoperative period and immediate postoperative period]) and a validation set (260 data points
obtained from 13 subjects with 5-min windows each in two situations [preoperative period and
immediate postoperative period]), a testing set (260 data points obtained from 13 subjects with 5-min
windows each in two situations [preoperative period and immediate postoperative period]). A training
set was used for training, that is, to fit the parameters of a classifier. A validation set was used to tune
the hyperparameters of a classifier. The testing set was never used in training. The testing set was
used only to assess the performance of a classifier. The data used in the training, validation and testing
process were divided evenly into two statuses to avoid focus on one status.

We set the parameters of our DBN-based pain status classifier model (Table 6). The number
of features represents the 15 features excluding RMSSD and NN50 through statistical significance
evaluation above. Based on these, we tuned the number of epochs in the pre-training of DBN. As a
result, the reconstruction error was gradually decreased and converged from 20 epochs in 2 hidden
layers (Figure 3). We then tested the reconstruction error on the same conditions with the number
of epochs in the fine-tuning of DBN. The performance of a single DBN model designed in this way
was compared with a basic bagging model using DBN as a base classifier and a hill-climbing selective
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bagging model using DBN as a base classifier. The classifier of the ensemble model using the bagging
differs according to the total number of base classifiers constituting the ensemble. The bootstrap
sample size used for the bagging was the same as the original training data, and the total number of
base classifiers was fixed at 50. The performance of the 2-class pain status classification for the three
models using DBN was compared (Table 7).

Table 6. Parameters of DBN-based pain status classifier model.

Structure from Input Layer to Output Layer 15-6-6-2

Number of features 15
Number of hidden layers 2

Number of hidden neurons on the hidden layers 6
Learning rate for weight 0.08

Learning rate for biases of visible units 0.08
Learning rate for biases of hidden units 0.08

Number of batch size 104
Momentum rate 0.9

Number of epoch in the pre-training 10 to 100
Number of epoch in the fine-tuning 100 to 800

Weight decay 0.00029
Activation function sigmoid function
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Table 7. Performances of the 2-class pain status classification for the three models using DBN.

Classifier Model

Input Vector
15 Features

Single model 82.88
basic bagging model 81.99
selective bagging model 86.79

We also constructed a model using MLPNN without RBM to compare the classification
performance under the same conditions as DBN (Table 8). The performance of a single MLPNN model
designed in this way was compared with a basic bagging model using MLPNN as a base classifier and
a hill-climbing selective bagging model using MLPNN as a base classifier. The performance of the
2-class pain statuses classification for the three models using MLPNN was compared (Table 9).
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Table 8. Parameters of MLPNN-based pain status classifier model.

Structure from Input Layer to Output Layer 15-6-6-2

Number of features 15
Number of hidden layers 2

Number of hidden neurons on the hidden layers 6
Learning rate for hidden layers 0.08

Number of batch size 104
Number of epoch in the training 800

Weight decay 0.00029
Activation function sigmoid function

Table 9. Performances of the 2-class pain status classification for the three models using MLPNN.

Classifier Model

Input Vector
15 Features

Single model 80.25
basic bagging model 82.95
selective bagging model 85.32

To compare performance using another traditional model, SVM, we used a single SVM model,
a basic bagging model using SVM as a base classifier, and a hill-climbing selective bagging model using
SVM as a base classifier. In this case, we compared the performance by fixing the error penalty variable,
C, to the default value of 1 and changing the parameter γ value of the RBF kernel considering the SVM
model complexity (Table 10). According to the results, the optimal value of 0.05 was considered to be
the γ value showing the highest classification accuracy of 82.12%. The performance of the 2-class pain
statuses classification for the three models using SVM was compared (Table 11).

Table 10. Performances of the 2-class pain status classification by γ value using SVM (RBF).

γ

Input Vector
15 Features

0.001 70.51
0.005 77.50
0.01 79.81
0.05 82.12
0.1 80.71
0.5 75.32
1 72.69

Table 11. Performances of the 2-class pain status classification for the three models using SVM.

Classifier Model

Input Vector
15 Features

Single model 82.12
basic bagging model 82.63
selective bagging model 84.23

Figure 4 shows the classification accuracy of each model for the 2-class pain status classification.
Here, Single refers to a single model, Bagging refers to a standard bating model, and HCBagging
refers to the hill climbing selective bating model. It can be seen that the accuracy of each of the three
classifiers is higher than that of each single model when applying the HC based selective bagging
model. Also, DBN showed the best performance when comparing the accuracy of the three classifiers
based on the selective bagging model.
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We performed Receiver operating characteristics (ROC) analysis on the MLPNN, SVM and DBN
based pain status classifier of selective bagging model [24]. We observed the ROC curves for a randomly
selected test group for 2-class pain status: Class 1 (no pain status) and Class 2 (pain status requiring
active treatment) (Figure 5). The area under the ROC curve (AUC) was used to analyze the accuracy of
the developed classifiers statistically. The classification performance was estimated using the AUC
value. As the AUC value approaches 1, the classification model correctly classified the data. The results
of ROC analysis for the MLPNN, SVM and DBN based pain status classifier of selective bagging model
were shown in Table 12. The performance of the MLPNN based pain status classifier was revealed
(AUC = 0.824 ± 0.029; mean ± s.d., n = 300, in a range of 0.820–0.827). The performance of the SVM
based pain status classifier was revealed (AUC = 0.834 ± 0.029; mean ± s.d., n = 300, in a range of
0.831–0.837). Finally, The performance of the DBN based pain status classifier was revealed (AUC
= 0.841 ± 0.039; mean ± s.d., n = 300, in a range of 0.836–0.845). The AUC values of the developed
models were significantly higher than the theoretical baseline of 0.5 (one sample t-test, two-tailed, p
< 0.0001, p < 0.0001, p < 0.0001, respectively for MLPNN, SVM, and DBN; n = 300). The developed
models have good performance of pain status classification, and DBN of the three showed the highest
AUC value.
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Table 12. ROC analysis of the pain status on the developed models.

Metrics MLPNN SVM(RBF) DBN

Mean AUC 0.824 0.834 0.841
Standard deviation AUC 0.029 0.029 0.039

Lower limit of 95% Confidence interval 0.820 0.831 0.836
Upper limit of 95% Confidence interval 0.827 0.837 0.845
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3.2. Assessment of 4-Class Pain Status Classification Using Pattern Classification Algorithms

Depending on the results of the NRS we used to determine the actual patient’s pain status,
we further classified the 4-class pain status—no pain status in the preoperative period and mild
pain status, moderate pain status, severe pain status in immediate postoperative period. Therefore,
we selected 93 subjects who reported mild, moderate, and severe pain in immediate postoperative
period for analysis. Similar to the 2-class pain classification, we compared the performance of the
pain status classifiers developed through DBN, MLPNN, and SVM for the 4-class pain classification.
Table 13 shows the results of the significance tests for the 17 features extracted from the one-way
ANOVA for the 4-class pain classification. The analysis showed that there were statistically significant
differences at the significance level p < 0.05 for 17 features.

Table 13. Statistical significance of the extracted features for 4-class pain status classification.

Feature p-Value F-Value Significant

Degrees of Freedom (dF) (Between Groups = 3, Within Groups = 1856)

Pulse Height <0.0001 72.39 Yes
Rise time <0.0001 10.11 Yes
Fall time <0.0001 28.66 Yes

Average heart rate <0.0001 21.50 Yes
AVNN <0.0001 23.37 Yes
SDNN <0.0001 17.07 Yes
rMSSD <0.0001 10.43 No
NN20 <0.0001 45.38 Yes

pNN20 <0.0001 58.53 Yes
NN50 <0.0001 22.20 Yes

pNN50 <0.0001 22.63 Yes
VLF power <0.0001 10.61 Yes
LF power <0.0001 61.75 Yes
HF power <0.0001 26.40 Yes

Total power <0.0001 25.77 Yes
LF/HF ratio <0.0001 32.53 Yes

Respiratory rate power <0.0001 37.13 Yes

To evaluate the performance of the classifiers for no pain status, mild pain status, moderate pain
status and severe pain status, the data were split into five groups; a 5-fold cross validation was used.
The feature vectors of subjects were divided into a training set of 54 subjects and a validation set of
18 subjects, a testing set of 21 subjects. The data used in the training, validation and testing process
were divided evenly into four statuses to avoid focus on one status.

The performance of a single DBN model designed to classify 4-class pain status was compared
with a basic bagging model using DBN as a base classifier and a hill-climbing selective bagging model
using DBN as a base classifier. The performance of the 4-class pain status classification for the three
models using DBN was compared (Table 14).

Table 14. Performances of the 4-class pain status classification for the three models using DBN.

Classifier Model

Input Vector
17 Features

Single model 62.38
basic bagging model 59.00
selective bagging model 65.57

The performance of a single MLPNN model designed to classify 4-class pain status was compared
with a basic bagging model using MLPNN as a base classifier and a hill-climbing selective bagging
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model using MLPNN as a base classifier. The performance of the 4-class pain statuses classification for
the three models using MLPNN was compared (Table 15).

Table 15. Performances of the 4-class pain status classification for the three models using MLPNN.

Classifier Model

Input Vector
17 Features

Single model 58.23
basic bagging model 61.33
selective bagging model 64.14

The performance of a single SVM (RBF) model designed to classify 4-class pain status was
compared with a basic bagging model using SVM (RBF) as a base classifier and a hill-climbing selective
bagging model using SVM (RBF) as a base classifier. The performance of the 4-class pain statuses
classification for the three models using SVM (RBF) was compared (Table 16).

Table 16. Performances of the 4-class pain status classification for the three models using SVM.

Classifier Model

Input Vector
17 Features

Single model 61.71
basic bagging model 61.43
selective bagging model 63.67

Figure 6 shows the classification accuracy of each model for the 4-class pain status classification.
Likewise, the accuracy of each of the three classifiers was higher than that of each single model when
the HC based selective bating model was applied. DBN showed the best performance based on the
selective bating model.
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4. Discussion

The present study was conducted on subjects who were conscious and as a preliminary study
to develop a pain assessment system for patients in operation. The purpose of the present study
was to design a pain classifier with high accuracy in classifying the status of conscious patients’ pain.
The actual status of conscious subjects’ pain was determined using the numeric rating scale (NRS),
and the status of pain was classified on the basis of the determined pain status. Accurate classification
of pain status is difficult because humans have different sensitivities to painful stimuli according to
an individual’s physical constitution and inclination. In the present study, photoplethysmography
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signals depending on the preoperative and postoperative pain status of conscious patients were
obtained for the objective determination of pain status, and the characteristics of the signals were
extracted by accurate and continuous signal analysis based on a sliding window method. The extracted
characteristics were learned by multilayer perceptron neural network (MLPNN) and support vector
machine (SVM), which are machine learning methods, and deep belief network (DBN), which is a
deep learning method to determine the pain status. The classification performance was improved by
applying a selective bagging model.

The results showed that the classification performance was better with the DBN method than
with the MLPNN method, by which local solutions were obtained, or with the SVM, which is often
employed to solve classification problems, by about 2.6% and 0.7%, respectively. It is obvious from
ROC analysis also that the all three models have good performance of pain status classification,
but DBN showed the highest AUC value.

Application of the standard bagging model decreased the classification accuracy in the DBN
method in comparison to the application of a single model classifier. This finding may be the result of
the random sampling based on the bootstrap technique. Therefore, when a selective bagging model
was applied by constituting an ensemble model consisting of the selected base classifiers that were
expected to improve the performance, the classification performance improved in comparison with the
individual single model-based classifiers. The highest accuracy (86.79%) was observed when the DBN
was used. We could confirm that the 4-class pain status classification is less accurate than the 2-class
pain status classification. This is due to the fact that there is a difference in the number of training data
points in the classification class because the data points by the NRS for the pain status are uneven.

In the present study, a probabilistic pain status classifier was designed to learn the complicated
nonlinear correlations between the characteristics extracted using photoplethysmography and the
NRS-based pain status. As the DBN is based on the restricted Boltzmann machine (RBM), the problem
of local optimization found in the MLPNN may be reduced. However, the parameters used were
empirically set up in the process of designing the DBN. Further optimization of the parameters may
improve the pain status classification performance. In addition, better results may be obtained through
the learning of the classifiers with more subjects in each of the NRS levels. Finally, owing to the large
differences in the biological signals among individuals, considering not just one type of signal but
the interactions among two or more signals may allow for more accurate evaluation of patients’ pain
status. The results of the present study may assist in development of a pain status evaluation system
based on photoplethysmography signals depending on the pain status of patients undergoing surgery.

5. Conclusions

This study was conducted as a preliminary study to develop a pain assessment system for
patients undergoing surgery. It is difficult to judge the pain status because the sensitivities to the
stimuli are different according to the constitution and tendency of the individual, and the judgment
using the existing clinical signs is a subjective factor. In order to determine the objective pain status,
we designed a pain status classifier applying DBN based on photoplethysmography signal affected
by the autonomic nervous system, and improved classification performance by applying a bagging
ensemble technique. As a result of comparison with MLPNN and the SVM method to evaluate the
DBN-based pain classifier applying the selective bagging model, the highest classification accuracy
was obtained when DBN was used in all of the 2-class and 4-class pain classifications. Compared with
the DBN-based pain status classifier of a single model, the performance was higher when selective
bagging was applied. The results of this study will contribute to the development of a pain assessment
system based on photoplethysmography signal according to the pain status of the operation patients
in the future. In future studies, it is necessary to study the pain status based on the data obtained by
the surgical stimulation for the actual anesthetized patient in order to develop an evaluation system of
the pain condition in the actual operating environment. In addition, The further studies can contribute
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to the determination of health condition if we study the pain that occurs in daily life applied to the
general person rather than the patient.

Author Contributions: Conceptualization, G.J.N. and S.K.Y.; Methodology, S.K.Y.; Software, H.L., B.K. and S.K.Y.;
Validation, G.J.N. and S.K.Y.; Formal Analysis, H.L., B.K. and S.K.Y.; Investigation, H.L., B.K., G.J.N. and S.K.Y.;
Resources, G.J.N. and S.K.Y.; Data Curation, H.L., B.K., G.J.N. and S.K.Y.; Writing-Original Draft Preparation,
H.L., B.K. and S.K.Y.; Writing-Review & Editing, H.L., B.K., G.J.N. and S.K.Y.; Visualization, H.L. and S.K.Y.;
Supervision, S.K.Y.; Project Administration, G.J.N. and S.K.Y.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Raj, P.P. Taxonomy and classification of pain. In The Handbook of Chronic Pain; Nova Publishers: Hauppauge,
NY, USA, 2007; pp. 41–56.

2. Chapman, C.R.; Tuckett, R.P.; Song, C.W. Pain and stress in a systems perspective: Reciprocal neural,
endocrine, and immune interactions. J. Pain 2008, 9, 122–145. [CrossRef] [PubMed]

3. Desborough, J. The stress response to trauma and surgery. Br. J. Anaesth. 2000, 85, 109–117. [CrossRef]
[PubMed]

4. Holte, K.; Kehlet, H. Epidural anaesthesia and analgesia–effects on surgical stress responses and implications
for postoperative nutrition. Clin. Nutr. 2002, 21, 199–206. [CrossRef] [PubMed]

5. Gruenewald, M.; Ilies, C. Monitoring the nociception–anti-nociception balance. Best Pract. Res. Clin. Anaesthesiol.
2013, 27, 235–247. [CrossRef]

6. Hartrick, C.T.; Kovan, J.P.; Shapiro, S. The numeric rating scale for clinical pain measurement: A ratio
measure? Pain Pract. 2003, 3, 310–316. [CrossRef] [PubMed]

7. Kaul, H.; Bharti, N. Monitoring depth of anaesthesia. Indian J. Anaesth. 2002, 46, 323–332.
8. Asada, H.H.; Shaltis, P.; Reisner, A.; Rhee, S.; Hutchinson, R.C. Mobile monitoring with wearable

photoplethysmographic biosensors. IEEE Eng. Med. Biol. Mag. 2003, 22, 28–40. [CrossRef]
9. Ferreira-Valente, M.A.; Pais-Ribeiro, J.L.; Jensen, M.P. Validity of four pain intensity rating scales. Pain 2011,

152, 2399–2404. [CrossRef] [PubMed]
10. Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas.

2007, 28, R1–R39. [CrossRef]
11. Elgendi, M.; Norton, I.; Brearley, M.; Abbott, D.; Schuurmans, D. Systolic peak detection in acceleration

photoplethysmograms measured from emergency responders in tropical conditions. PLoS ONE 2013,
8, e76585. [CrossRef]

12. Cowan, M.J. Measurement of heart rate variability. West. J. Nurs. Res. 1995, 17, 32–48. [CrossRef]
13. Logier, R.; De Jonckheere, J.; Dassonneville, A. An efficient algorithm for RR intervals series filtering.

Conf. Proc. IEEE Eng. Med. Biol. Soc. 2004, 6, 3937–3940. [PubMed]
14. Variability, H.R. Standards of measurement, physiological interpretation, and clinical use. Task Force of the

European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation
1996, 93, 1043–1065.

15. Kim, K.-S.; Shin, S.-W.; Lee, J.-W.; Choi, H.-J. The assessment of dynamic mental stress with wearable heart
activity monitoring system. Trans. Korean Inst. Electr. Eng. 2008, 57, 1109–1115.

16. Leys, C.; Ley, C.; Klein, O.; Bernard, P.; Licata, L. Detecting outliers: Do not use standard deviation around
the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 2013, 49, 764–766. [CrossRef]

17. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators.
Neural Netw. 1989, 2, 359–366. [CrossRef]

18. Trafalis, T.B. Neural Networks: Algorithms, Applications and Programming Techniques; INFOR: New York, NY,
USA, 1995; Volume 33, p. 279.

19. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
20. Burges, C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998,

2, 121–167. [CrossRef]
21. Dietterich, T.G. Machine-learning research. AI Mag. 1997, 18, 97–136.
22. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]

http://dx.doi.org/10.1016/j.jpain.2007.09.006
http://www.ncbi.nlm.nih.gov/pubmed/18088561
http://dx.doi.org/10.1093/bja/85.1.109
http://www.ncbi.nlm.nih.gov/pubmed/10927999
http://dx.doi.org/10.1054/clnu.2001.0514
http://www.ncbi.nlm.nih.gov/pubmed/12127927
http://dx.doi.org/10.1016/j.bpa.2013.06.007
http://dx.doi.org/10.1111/j.1530-7085.2003.03034.x
http://www.ncbi.nlm.nih.gov/pubmed/17166126
http://dx.doi.org/10.1109/MEMB.2003.1213624
http://dx.doi.org/10.1016/j.pain.2011.07.005
http://www.ncbi.nlm.nih.gov/pubmed/21856077
http://dx.doi.org/10.1088/0967-3334/28/3/R01
http://dx.doi.org/10.1371/journal.pone.0076585
http://dx.doi.org/10.1177/019394599501700104
http://www.ncbi.nlm.nih.gov/pubmed/17271158
http://dx.doi.org/10.1016/j.jesp.2013.03.013
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1023/A:1009715923555
http://dx.doi.org/10.1007/BF00058655


Sensors 2019, 19, 384 16 of 16

23. Li, K.; Liu, Z.; Han, Y. Study of selective ensemble learning methods based on support vector machine.
Phys. Procedia 2012, 33, 1518–1525. [CrossRef]

24. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.phpro.2012.05.247
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Results 
	Assessment of 2-Class Pain Status Classification Using Pattern Classification Algorithms 
	Assessment of 4-Class Pain Status Classification Using Pattern Classification Algorithms 

	Discussion 
	Conclusions 
	References

