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1. The device as a mechanical resonator: 

In the beginning, we model a MEMS resonator as a Single-Degree-of-Freedom (SDOF) spring-
mass-damper system with linear stiffness (k) and nonlinear damping (c(x)). The deflection of the 
electrostatically-actuated resonator is  𝑚 𝑥 + 𝑐(𝑥)𝑥 + 𝑘𝑥 = 𝐹 (𝑥)           (S1) 
where x is the deflection of the tip of the cantilever, positive towards the substrate beneath the 
microbeam, and the dot operator represents derivation with respect to time t, k is the linear stiffness 
of the microbeam. For a double cantilever, 𝑘 = 2 × 3𝐸𝐼/𝐿  where E is the Young modulus of 
elasticity, I is the second moment of area of the beams and L is the beam length. meq = 𝑘/𝜔  is the 
equivalent mass of the microbeam, c(x) is the nonlinear squeeze film damping and Fe is the 
electrostatic force acting on the microbeam. The nonlinear squeeze film damping is solved by (S2-S6) 
sequentially [1, 2]: 𝜆 =                         (S2) 

𝐾𝑛 =                (S3) 𝜇 = . .                      (S4) 𝜎(𝑥) = ( )( )                                      (S5) 

𝑐(𝑥) = ( )( )( ) ( ) ( )                       (S6) 

where Pa is the ambient (operation) pressure, λa , λ0 are the mean-free path of gas molecules at the 
operating pressure and atmospheric pressure, respectively, Kn is the Knudsen number, µ is the 
nominal dynamic viscosity constant of air and µeff is the effective viscosity constant of air to account 
for the slip boundary condition, β = b/L is the shape ratio, which is the ratio between the width of the 
microbeam b and length L, fm represents the mechanical resonance frequency of the device, As = b L is 
the area of overlap between the microbeam proof mass and the substrate beneath it, d is the nominal 
separation distance between the microbeam and the substrate, and σ(x) is the squeeze number. We 
demonstrated in a previous work that modeling squeeze film damping as the only source of damping 
yields to adequate results [3]. Thus, other forms of damping are neglected. 

The electrostatic force [3] is given by (S7):  𝐹 = (  ( ∅))( )                       (S7) 

where VDC is the DC voltage and VAC is the AC voltage across the resonator, ϕ is the AC phase shift, 
and ε= ε0 εr is the permittivity of the dielectric separating the electrodes, ε0 is the permittivity of 
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vacuum, and εr is the relative permittivity of the dielectric. As most simulations and experiments are 
taken either in vacuum or relatively dry air, εr is set to unity. 

2. The device as an electrical resonator: 

Resonators are classically modeled electrically as ideal lumped capacitive elements. These 
models are valid for operational frequencies significantly lower than the electrical resonance 
frequency of the circuit. Thus, researchers limit the operational range of frequencies to lower than the 
electrical resonance. 

To extend the range of the electrical model, one must consider the parasitic components of the 
resonator (Inductance – Ls, Resistance – [Rdielectric , Rplate, Rewires (very small)] and Capacitance - Cp) in the 
model. CMEMS is the variable capacitance and is the sensing element of the circuit. We note that the 
series Rplate and R wires are very small and are neglected in a circuit with external series resistance. 
Moreover, the parallel Rdielectric is very large and can be assumed an open circuit if the applied voltage 
is smaller than the breakdown voltage of the material. Therefore, we only consider these parasitic 
components Ls and Cp and the simplified circuit in this study, as shown in Figure S1. This 
consideration results in a series RLC circuit govern by (S8): 𝐿 𝑄(𝑡) + 𝑅 𝑄(𝑡) +  𝑄(𝑡) = 𝑉 (𝑡)                       (S8) 

where L=Ls+Lexternal is the total series inductance, equal to the parasitic series inductance plus any 
external inductance, R=RL+Rexternal is the total external series resistance and equals to the parasitic 
resistance of the inductor plus any external resistance, C is the total series capacitance given by (S9),  

Q(t) is the charge stored in the capacitance and Vin(t) is the input voltage. 

 
Figure S1. MEMS circuit schematics 𝐶 = 𝐶 + 𝐶 = 𝐶 +                          (S9) 

where C0 is the nominal capacitance of the MEMS. By studying the total impedance of the circuit, we 
find that: 𝑍 = 𝑅 + 𝑋 = 𝑅 + ( )( )  =  ( ) ( )( )                  (S10) 

where Zeq is the equivalent impedance of the circuit, X is the equivalent reactance of the circuit, f is 
the AC frequency and j is the imaginary number. Furthermore, by studying the voltage across the 
capacitance, either by solving (S8) or by voltage division yields: 𝑉 = |𝑉 | cos(2πf𝑡 𝜙)                           (S11) 

 
  = (( ) ) (( ) )                            (S12) 

𝜙 = tan ( )( )                         (S13) 

Equation (S12) shows a voltage amplification with a maximum at the electrical resonance 
frequency (fe) of the RLC circuit. 𝑓 = √                                (S14) 
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Finally, as the gap changes because of the electrostatic forcing, the actual capacitance of the 
system varies and is given by: 𝐶 =  𝜀𝐴𝑠𝑑                  (S15) 𝐶(𝑥) = 𝐶 + 𝐶 /(1 𝑥/𝑑)              

 (S16) 
and this value is used to replace C(x) in all previous equations. 
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