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Abstract: A binocular vision system is a common perception component of an intelligent vehicle.
Benefiting from the biomimetic structure, the system is simple and effective. Which are extremely
snesitive on external factors, especially missing vision signals . In this paper, a virtual view-generation
algorithm based on generative adversarial networks (GAN) is proposed to enhance the robustness
of binocular vision systems. The proposed model consists of two parts: generative network and
discriminator network. To improve the quality of a virtual view, a generative network structure based
on 3D convolutional neural networks (3D-CNN) and attentive mechanisms is introduced to extract
the time-series features from image sequences. To avoid gradient vanish during training, the dense
block structure is utilized to improve the discriminator network. Meanwhile, three kinds of image
features, including image edge, depth map and optical flow are extracted to constrain the supervised
training of model. The final results on KITTI and Cityscapes datasets demonstrate that our algorithm
outperforms conventional methods, and the missing vision signal can be replaced by a generated
virtual view.

Keywords: image regeneration; stereo image processing; generative adversarial networks;
vehicle safety

1. Introduction

Composed of left and right cameras, a binocular vision system is a popular form of
multi-perspectives computer vision systems [1]. Different from monocular vision system, it can
apperceive the spatial information by 2D image data through two cameras, just like a human
vision system [2], and it shows a great performance in conducting the localization and mapping
of autonomous vehicles. Most binocular systems have protection mechanisms, including anti-seismic
design and anti-electromagnetic interference design. These mechanisms ensure the reliability of data
transmission at the hardware level. However, it is difficult to deal with the missing data when
the image has been blurred due to external interferences, such as if the lens has been polluted by
flying insects or mud, or the car body vibration. In this paper, we turn to a virtual view-generation
algorithm to enhance the fault tolerance of binocular systems at the software level. It is the task of
inferring the different angle of sight based on existing camera vision which plays an important role in
image restoration, image enhancement, target recognition and object tracking. In addition, it has been
also applied in data augmentation to enhance the performance of models. The difficulty is that the
projection from a two-dimensional (2D) plane to three-dimensional (3D) space is an ill-posed problem.
Generally, we can find a unique mapping relationship from 3D space onto 2D surfaces according to
the projection theory. On the contrary, there is more than one mapping relationship between 2D plane
and 3D space due to the lack of depth information. So it is hard to determine a proper one.
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Many researches focus on reconstructing a 3D model, because when the geometric models
have been reconstructed, the 2D image can be obtained easily by projection theory. This is called
a model-based rendering algorithm [3] (MBR). However, the quality of rendering results largely
depend on the accuracy of the geometric model and the illumination model. Magnor M. et al. [4]
reconstructed 3D static scene geometry, and view-dependent texture maps are generated from all
images. Nishino K. et al. [5] proposed a method to sample appearances of a real object with various
illumination and viewing conditions, and compress them into the 2D coordinate system which is
defined on the 3D model surface generated from a sequence of images. Due to the high cost of model
processing and lack of flexibility, it is unsuitable for dynamic scenes.

An image-based rendering algorithm [6] (IBR) generates the virtual view through multi-view
images and discards model processing completely. Fehn C. et al. [7] proposed a depth image-based
rendering algorithm (DIBR) which is used to generate a virtual view by warping one color image
and depth-image in 3D television (3DTV) systems. Sharma M. [8] supported virtual pan-tilt-zoom
(PTZ) functionalities during 3D view-generation. In order to deal with the missing area of a virtual
view-generation algorithm, fast marching method [9] (FMM) is proposed. It repairs the boundary of
holes firstly, and then steps into the centres of holes. Although FMM is capable to handle the missing
area, the regeneration processing cost much more time in the dynamic scene. Ce Zhu et al. [10] tried to
utilize the occluded information to identify and locate the relevant background pixels around a hole.
However, missing area problems and time-consuming problems still exist.

In recent years, deep learning algorithms have achieved great progresses in many image
processing fields [11,12], e.g., image segmentation, object detection, super-resolution. John F. et al. [13]
is the pioneer of deep learning in virtual view-generation. They take five images as input data to train
a view synthesis model which contains two sub networks. One is the selection tower network which
is applied to produce a depth probability map, and the other is color tower network producing the
best color for each depth. Tingh Zhou et al. [14] presented a framework that re-parametrizes image
synthesis to predict the appearance flow field between the inputs and the outputs. However, both of
those two methods need much time to process one frame.

In order to enhance the safety of a vehicle and improve the reliability of binocular vision system
in the self-driving scene, a virtual view-generation algorithm based on GAN is proposed in this paper.
It improves the IBR method by simplifying the generation processing and reducing the dependence on
the camera matrices. The main contributions of this work are as follow:

1. A novel GAN structure based on 3D-Dense-Attentive (3DDA) structure is proposed to extract
time-series features and to generate the missing area.

2. A composite global loss function based on L1 and SSIM is proposed to improve the overall quality
of reconstruction results.

3. The attentive network is designed to obtain a local mask from a depth map and edge map. Then,
the mask is used to locate the essential detail which the model should consider.

The outline of the paper is presented as follows: Section 2 introduces feature extraction methods
which are applied in preprocessing. Section 3 is our main work. Section 4 shows the experimental
results and discussion of models, which are tested, respectively, on two self-driving datasets KITTI [15]
and Cityscapes [16], and the results are estimated by the general image quality assessment criteria.
Finally, combined with the ORB-SLAM2 system [17] , the virtual view can be used to trace object
trajectory successfully. In Section 5, a conclusion is given.

2. Feature Extraction

The raw data will introduce much noise during training. To reduce the negative effect, three
image features, optical flow, depth map and edge map, are extracted to represent key information.
The extraction methods are shown as follows.
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2.1. Optical Flow

Although the sparse optical flow [18] is mainly used in the object tracking task, it is too sparse
to complete the reconstruction mission at pixel level. Therefore, dense optical flow is introduced to
replace the sparse optical flow. With the Farneback method [19], the dense optical flow feature is
extracted within two continuous frames. With the GPU acceleration of CUDA operation, the processing
speed is raised to 25 frames per second. Thus the Farneback method could meet real-time requirements,
and the result is shown in Figure 1.

Figure 1. Optical flow from Farneback algorithm.

2.2. Depth Map

Depth map indicates the distance information between the object and the camera. There are many
methods to get depth maps. In a dynamic environment, a depth camera can provide an accurate
results, but the range of depth camera is narrowed. The binocular vision system can obtain the
depth map by left and right disparity [20]. The disadvantage is obvious that it requires binocular
calibration and lacks redundancy. Recently, depth map estimated by monocular vision has shown
great potential to overcome the disadvantage of the above methods. In order to solve the lacking of the
ground truth depth map, an unsupervised monocular depth estimation model has been proposed by
Godard [21]. Constrained by the left–right disparity consistency Equation (1), an approximate depth
map is obtained.

Cl
lr =

1
N ∑

i,j

∣∣∣∣dl
ij − dr

ij+dl
ij

∣∣∣∣ (1)

where dl
ij is the estimated disparity value of left camera and dr

ij+dl
ij

is the estimated disparity value of

left camera based on the right estimated disparity. Although the estimated results are not equal to
the ground truth, it is still regarded as one kind of useful features to reconstruct virtual view without
RGB-D camera. The depth map is shown in Figure 2.

(a) Original image (b) Depth map

Figure 2. Depth map from mono-depth method.
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2.3. Edge Map

Edges are the junction of different attribute regions in the same image. These locations are always
ambiguous in image restoration task. According to computer graphics, there exists discontinuity on
the edge of an object in gray scale images, and image gradient can be regarded as a source of the
edge information. Therefore, an edge map can be obtained by edge extraction of the original image.
The extraction steps are shown in Equations (2)–(4):

∇ f =

[
gx

gy

]
=

[
∂ f
∂x
∂ f
∂y

]
(2)

θ = arctan
[

gy

gx

]
(3)

M =
√

g2
x + g2

y (4)

where gx is the gradient on x and gx is the gradient on y. θ is the direction angle of gradient, and M
is the magnitude of gradient. Roberts, Prewitt, Sobel [22] and Laplacian operators [23] are the most
commonly used methods to extract an image edge. The results are shown in Figure 3.

(a) Roberts (b) Prewitt

(c) Sobel (d) Laplacian

Figure 3. Image edge map with four operators.

3. Proposed Methods

The generation models based on deep learning has potential in image generation. Varitional
auto-encoder algorithm (VAE), proposed by Kingma DP [24], adds constraint on the encoding network
and requires the generated latent vector to follow a Gaussian distribution, but the result of VAE
is too vague to meet the accuracy requirement of an image. Generative adversarial networks [25]
(GAN) proposed by Goodfellow are widely accepted as milestones of deep learning. After that, many
approaches based on GAN networks are applied in the image processing. Pathak [26] presented
an unsupervised inpainting algorithm to fill the missing areas by introducing an encoder–decoder
structure into GAN. The encoder module is used to learn the context and texture details of the raw
data, and the decoder module is devoted to predict the missing hole of the image. Isola [27] proposed a
pix2pix network based on conditional generative adversarial networks (CGAN). The algorithm learns
a relative mapping between different image style pairs. Junyan Zhu et al. [28] presented an approach
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for learning a general relation map to translate an image in the absence of paired examples. In this
paper, the proposed networks are also based on GAN networks, and restricted by global and local loss
of functions.

3.1. Model Structure

At present, virtual view-generation algorithms use multiple cameras such as an image cue to
estimate depth information. However, there exsit joint calibration problems and fault tolerance
problems in multi-camera schemes. With the assumption that most objects we encounter every second
do not vary drastically in shape, we can make it possible to infer virtual view from a single image. In the
field of self-driving, the perceptual error caused by the dynamic scene brings great challenges to vision
perception. Different kinds of intrinsic and extrinsic matrices further influence the image processing.

The capability of virtual view-generation based on GAN is improved by a novel structure which
can extract the time-series features properly, which is shown in Figure 4. The structure of generative
model, discriminator model and attentive model are shown as follows:

Figure 4. 3DDA-GAN networks composed by three sub-networks. G is generative network, D is
discriminator network, A is attentive network.

3.1.1. Generative Network

The generative network is designed to generate data which should be consistent with the ground
truth. Compared with the DIBR algorithm, the generative network can avoid the problem of image
distortion caused by change of camera parameters. Moreover, data generation is faster since it has no
iterative step of FMM operation.

However, there are two problems in the virtual view-generation task. One is how to learn a
translation relationship between different viewpoint angles, and the other is how to fill the missing area.
Integrating image style transfer learning and image segmentation algorithms [28] into the generative
model is supposed to be an ideal solution for the first problem under the static situation. The generative
model shall pay more attention to the essential position of the target due to the image segmentation,
but under the driving scene, taking the motion evaluation of vehicle states into image reconstruction
makes this problem more complicated [29].

Although a 2D-CNN [30] network can deal with the second problem under the static scene,
the quality of generated virtual view is always unsatisfactory. To overcome this defect, time-series
information is used by our method. As shown in Figure 4, three successive frames are concatenated to
a cube as input data according to channel axis. Instead of the 2D kernels, the 3D kernels extract the
time-series features from the cube. This idea is inspired from 3D-CNN [31] which introduces a network
for human action recognition. A 2D convolution layer of U-net is replaced by a 3D convolution layer
with convolution filters of 3 × 3 each [32]. In Figure 5, the model contains eight encoder layers and
eight decoder layers which are connected by eight skip layers. Combined with high level features
through skip connection, the decoder layer maintains the variety of features. This operation neither
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increases the number of network parameters nor computational complexity, but the performance of
a generative model is improved. To the best of our knowledge, this structure is first applied in the
virtual view-generation problem.

Figure 5. Generative Network.

Compared with DIBR, the generative model integrates the learning of mapping relationships and
inpainting processing, greatly shortening the running time. Due to the 3D-Unet structure, the model
can regenerate three continuous frames simultaneously and reduce the sampling frequency. After
training, the model can be transplanted into any binocular vision system.

3.1.2. Discriminator Network

The discriminator is another essential part of GAN networks. It will be trained firstly to rectify
hyper parameters of the generative network forward to the targets. In GAN networks, the discriminator
model changes the adversarial problem to a supervised binary classification problem. It produces a
true or false signal about similarity statistics between the input data and target data, and the structure
of discriminator is a simple multi-layer neural network. If the discriminator has a deeper and more
complex structure like the Residual Networks (ResNet) shown in Equation (5), the regression capacity
will be improved [33], but back propagation of the gradient will be prevented when the discriminator
sends back the same signal. The structure of the discriminator shall be designed more exquisitely so
that a generative model can be obtained.

xi = Hi(xi) + xi−1 (5)

xi = Hi([x0, x1, ..., xi−1]) (6)

where H operation represents the cascading of all the previous layers outputs (0, 1, ..., i− 1).
The discriminator is composed of two sub networks, an attentive network and a dense network,

which are shown in Figure 6. The former network produces attentive matrix. The architecture will be
introduced in the next section. A conventional CNN structure has been used to extract features and get
the probability of image similarity. However, the discriminator lacks effective discriminatory ability
with simple structure. Inspired by Dense Networks [34] (DenseNet), the Dense Block is introduced into
the network. The idea of DenseNet is to shorten the connection between the front and the next layers,
as shown in Equation (6), which is first proposed by Huang and mainly refers to ResNet, which has a
deeper structure and better classification ability, and this function will maintain the variety feature
maps during the convolution operation. Therefore, a dense block structure has several advantages.
It solves the problem of gradient vanish and improves feature maps propagation in networks.

The CNN structure of a discriminator network is improved by Dense Block as shown in Figure 6,
which is composed of five convolution layers and four dense blocks. In the early stage of training,
the depth of discriminator model will be limited, because gradient vanish frequently occurs in the
discriminator network with a deeper structure, and the dense block structure is helpful to make
features more available in each layer.
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Figure 6. Discriminator Network.

3.1.3. Attentive Network

When most human beings are observing an object, the first step is to obtain the profile of the
object. Then, eyes will take in more attention regarding the detail of targets, such as shadow, color,
and texture. This processing is called an attentive mechanism [35]. For improving recognition of local
details, the attentive model is introduced into a generative network to produce an attentive matrix
(AM). This matrix represents a weight of each pixel and it can be used to extract the essential details
simulating the human vision behavior. The attentive model is composed of recurrent neural network
and auto-encoder structure, shown in Figure 7, whose weights are shared with the attentive model of
discriminator networks.

Figure 7. Attentive Network.
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The attentive network is composed of three standard LSTM layers. LSTM is an extensive form of
RNN [36], first proposed by Juergen Schmidhuber [37]. Compared with the results of ordinary neural
networks, the results of each hidden layer of RNN are related to the current input and the last hidden
layer. In this way, the results of RNN have the characteristics of several previous memories. The LSTM
operation can be described as follows in Equations (7)–(12):

ft = σ(W f [ht−1, xt] + b f ) (7)

it = σ(Wi[ht−1, xt] + bi) (8)

C̃t = tanh(WC[ht−1, xt] + bC) (9)

Ct = ftCt−1 + itC̃t (10)

ot = σ(Wo[ht−1, xt] + bo) (11)

ht = ot tanh(Ct) (12)

where xt is the input of current cell, ht−1 is the output of previous cell, σ is sigmoid function. it is the
output of input gate layer, which limits information to pour into a cell. C̃t is an alternative vector for
updating. Ct is updated by state of previous layer and C̃t. ot is output of current cell. ht is state of
current cell. After four deconvolution operations, AM will be obtained.

3.2. Loss Function

Virtual view reconstruction is the goal of the model. In our research, a more sophisticated loss
function composed of global loss and local loss is proposed. The global loss leads the network to
generate rough information, and the local loss is capable of refining the detail.

3.2.1. Global Loss Function

The pixels represent the properties of object by RGB value and the value scope is (0–255).
In conventional methods, those reconstruction loss functions lead the orientation of gradient descent,
which are shown in Equations (13) and (14)

LossL1=
1
N ∑

x,y∈N

∣∣It arg et(x, y)− Ioutput(x, y)
∣∣ (13)

LossL2=
1
N ∑

x,y∈N

∥∥It arg et(x, y)− Ioutput(x, y)
∥∥2 (14)

where LossL1 is the mean absolute error (MAE) and LossL2 is the mean squared error (MSE). Both of
them are common methodss to measure data error of diverse data sources in text analysis, image
processing and stocking prediction. However, MSE has a poor performance in the image processing
field, especially in image similarity evaluation. Image data is composed of pixel matrix, MSE will ignore
the association attributes such as object structure, luminance space, and colour continuity. If there
are two images with the same objects but generated under different lighting conditions, MSE gives
a lower similarity score, which is supposed to show a high score. Peak signal-to-noise ratio (PSNR)
outperforms MSE, but still has defects leading to contradictions with human visual perception [38].

With the development of image processing, the structural similarity (SSIM) index [39] and feature
similarity (FSIM) index [40] have been proposed to estimate the image quality. SSIM and FSIM are
based on the image degradation model, and could extract structural information instead of calculating
absolute pixel error. A number of experiments show that SSIM and FSIM have better performance
compared to PSNR and MSE. Here, SSIM is chosen as the loss function component of our generative
network, mainly because it is differentiable and more efficient. SSIM contains three comparison
measurements, luminance, contrast, and structure, as shown in Equations (15)–(19).
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SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (15)

l(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1
(16)

c(x, y) =
2σxσy + c2

σ2
x + σ2

y + c2
(17)

s(x, y) =
σxy + c3

σxσy + c3
(18)

where l(x, y) is luminance, c(x, y) is contrast and s(x, y) is structure. According to Ref. [38], the α, β, γ

are generally set to 1 and c3 = c2/2, the specific form of SSIM as follow:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(19)

SSIM is blunt to brightness and color, but it shows better performance in retaining high frequency
information, and L1 can keep color brightness characteristics better. The global loss function is shown
in Equations (20) and (21):

LossSSIM = 1− SSIM(x, y) (20)

Lossglobal = φLossL1 + (1− φ)LossSSIM (21)

In Table 1, we found that when φ = 0.4, the MSE and PSNR are the best. In the SSIM field,
the result of φ = 0.4 is very close to φ = 0.8. Besides, when we take L2 loss function instead of L1,
the quality of reconstruction decreases obviously. The reason is that L2 can inhibit large errors, but
tolerates small errors. Even though L2 can handle Gaussian noise, there are various types of noise in
the reality scene which prevent it from achieving ideal performance. Consequently, L1 loss function
and φ = 0.4 are chosen to be applied in global loss.

Table 1. Parameter of global loss function.

Loss MSE PSNR SSIM

φ = 0.1 L1 58.96 30.45 0.6485
φ = 0.2 L1 58.88 30.38 0.6382
φ = 0.3 L1 62.56 30.20 0.6388
φ = 0.4 L1 55.67 30.70 0.6631
φ = 0.4 L2 62.55 30.19 0.6419
φ = 0.5 L1 55.84 30.69 0.6623
φ = 0.6 L1 55.77 30.69 0.6687
φ = 0.7 L1 57.46 30.57 0.6558
φ = 0.8 L1 55.75 30.69 0.6787
φ = 0.9 L1 58.66 30.47 0.6614

3.2.2. Local Loss Function

The global loss function concentrates on overall evaluation of reconstruction error and ignores
the details of images. To improve the quality of virtual view, a local loss function is proposed to refine
this problem. The biggest challenge is how to locate the local mask.

Firstly, the location mask can be obtained according to the edge map which is calculated by the
image gradient method and attention model. Each value of the attentive matrix is the probability of the
corresponding pixel. When the object is close to the camera, the reconstruction error becomes bigger
according to the perspective theory. So the attentive matrix is still filtered by Tm for focusing more
attention on the edge areas, which is shown in Equation (22):
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Iimg_mask(x, y) =

{
1 AM(x, y) ≥ Tm

0 others
(22)

The smaller the Tm is, the greater the receptive field of Iimg_mask. It brings about more noise into
local loss. On the contrary, when Tm is much larger, the receptive field becomes small and the edge
mask too sparse to make the local loss function converge.

The attention heat map of an edge can been seen in Figure 8. The blue area represents the low
attentive probability and the red area denotes the high attentive probability. Tm = 0.6 is chosen for
Equation (22), because edge attentive matrix can represent a key information mask and decreases the
influence of noise.

Figure 8. Edge attentive heat map with different Tm.

Secondly, the depth map provides another location mask. We know that the depth map contains
semantic information. If there is only a tiny difference between two depth sets in the same map, those
two sets are considered to have the same distance. When those three time-series depth maps are used
as inputs, the depth attentive matrix can be calculated by an attention model. It also needss to be
filtered by Td, as shown in Equation (23):

Idepth_mask(x, y) =

{
1 AM(x, y) ≥ Td
0 others

(23)

Because the low probability mask will mislead the attention onto an unimportant area, it demands
more attention to near-sight obstacles, as Figure 9 shows. The meaning of color is the same as in edge
attentive heat map. When the value of Td is lower, a higher attention area will be filtered. However,
the attention area will focus on the far-sight obstacles when the Td close to 1. Td = 0.7 is chosen for
Equation (23), because a depth attentive matrix focuses on near-sight obstacles. Then, two types of
local masks are added together in Equation (24):

Imask(x, y) = Iimg_mask(x, y)
⊙

Idepth_mask(x, y) (24)

where the operator
⊙

represents the element-wise OR-gate operation.
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Figure 9. Depth attentive heat map with different Td.

Thirdly, the loss function is designed to focus on the detail of a foreground scene. Generally,
far-sighted objects have relatively small values of optical flow, while near-sighted objects have relatively
large values of optical flow, especially moving objects in dynamic scenes. Thus, when optical flow is
is applied in judging dynamic objects, with a bigger difference is, the speed changes rapidly. Finally,
the local mask can be obtained by two successive optical flows as shown in Equation (25), and the
operator × is defined as the element-wise product.

Imask_local(x, y) = Imask(x, y)× Norm(Ioptical_ f low) (25)

Losslocal =
1
N ∑

x,y∈N
{|It(x, y)− Ip(x, y)| × Imask_local(x, y)} (26)

Combined with an image edge mask, a depth map mask and the optical flow, Losslocal are shown
in Equation (26). The local loss can be extracted and applied in the quality measurement when Tm = 0.6
and Td = 0.7.

4. Experiment and Discussion

4.1. Benchmark

To verify the capability of the proposed method, two public self-driving datasets are introduced
in this section. The KITTI [15] dataset is an autonomous driving scene dataset and contains the plenty
of data from multi-sensors in the autonomous driving scene, such as a binocular vision system, lidar,
and GPS. The odometry dataset of KITTI is used to train and test the proposed algorithm, and there are
21 outdoor scenes of stereo cameras with images of resolution of about 375 × 1241, and the sampling
frequency is 10 Hz; 15,000 left images and 15,000 right images are processed to 5000 image pairs for
training and 6000 images for testing. All images have been resized to 256 × 512. The Cityscapes [16]
dataset contains plenty of street scenes in 23 different cities. It collects the data from a stereo vision
system in daytime with good weather conditions in spring, summer, and fall. The resolution of images
is 1024 × 2048 and the sampling frequency is 17 frames in one second. The data preprocessing is
as the same as the KITTI dataset, and all images are down-sampled to 256 × 512. We perform data
augmentation process just following [21].
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4.2. Network Structure

In this section, our algorithm is compared with other models to verify its effectiveness.Those five
models are listed in Table 2.

Table 2. Model list.

Model Structure

DIBR DIBR + FMM
Baseline pix2pix
ModelA pix2pix + Lossglobal
ModelB 3DDA-GAN + Lossglobal
ModelC 3DDA-GAN + Lossglobal + Losslocal

The first model, DIBR, is a conventional algorithm to restore the missing signal without training.
The latter four models are trained on the KITTI dataset and Cityscapes dataset separately. The baseline
is a pix2pix model [27] which is based on CGAN. It directly inputs raw data instead of random noise
into the generating network and achieves better performance. Model A improves the baseline model
by global loss. Model B introduces 3D convolution layers to deal with the time-series data. The dense
block structure is introduced to improve the discriminator network, and the attentive model is applied
in mask generation. Therefore, model B is called 3DDA-GAN. The local loss is utilized in model C.
In this section, a Sobel operator is used to extract image gradient features, and 5000 pairs of left–right
images are taken to train our models and 1000 pairs of images to test them. The image evaluation
indices refer to the previous section. K represents the KITTI dataset, C denotes the Cityscapes dataset.

Table 3 shows that model A, B, and C all outperform DIBR and the baseline according to MSE,
PSNR, and SSIM in two datasets. Comprehensively comparing baseline with three modified models,
it is obvious that introducing global loss to the baseline (model A) helps improve its performance,
utilizing 3DDA-GAN (model B) and further improving the accuracy of the model, and taking local
loss into consideration allows model C to obtain the best performance.

Table 3. Quantitative comparisons on KITTI and Cityscapes datasets.

K-MSE K-PSNR K-SSIM C-MSE C-PSNR C-SSIM

DIBR 87.08 28.75 0.2778 77.98 29.23 0.3967
Baseline 83.83 28.91 0.3371 46.54 31.55 0.6948
Model-A 66.24 29.94 0.5845 44.49 31.75 0.7401
Model-B 58.96 30.46 0.6317 39.84 32.26 0.7661
Model-C 55.13 30.76 0.6699 39.02 32.35 0.7746

With training processing, we obtain a model learning the mapping function between left and right
features. When the left image is missing, the right image can be used as input in virtual view-generation.
The comparison result is shown in Figure 10. According to the theory of binocular vision, the different
regions always occur in the left-side or right-side. Thus, two regions of every image are selected for
comparison in this experiment. The blue box focuses on the right area and the red box focuses on the
left area. Although the left virtual view reconstruction of model C is not the same as the ground truth,
it approaches the ground truth and shows the best performance in comparison of texture regeneration
and left–right consistency with other models.

Our virtual view-generation algorithm is applied in automatic driving systems. Therefore,
efficiency is an essential measurement of the algorithm. According to practical requirements,
the reconstruction time shall be shorter than the sampling period. The sampling period of the KITTI
dataset is 1/10 s, and that of Cityscapes is 1/17 s. In this experiment, there are two indexes measuring
inference time of five models. PRT represents the inference time (in seconds) of the reconstruction
process for each model, and FRT denotes the inference time (in seconds) needed for every frame
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reconstruction process. It should be emphasized that, with model B and C, there are three frames
which are regenerated in each process. The others generate one frame.

Figure 10. Compared with detail of left vision reconstruction, the blue box tfocuses on the right area
and the red box on the left area.

According to Table 4, the FRT of models B and C are all smaller in terms of the sampling period.
Therefore, our model meets the real-time requirement, which mainly benefits from the 3DDA-GAN
structure. There displays a more intuitive contrast in Figure 11. Considering the quality and inference
time of image regeneration, we believe that although the new model has a complex structure, its
performance is much better than that of traditional algorithms and baselines.

Table 4. Inference time of five models (unit: second).

K-PRT K-FRT C-PRT C-FRT

DIBR 1.219 1.219 1.055 1.055
Baseline 0.0315 0.0315 0.0313 0.0313
Model-A 0.0359 0.0359 0.0442 0.0442
Model-B 0.0791 0.0264 0.0881 0.0294
Model-C 0.0926 0.0309 0.0903 0.0301

4.3. Multi-Feature Selection

The Sobel operator is utilized to extract image edge information in our algorithm. To verify the
reasonability of choosing a Sobel operator, an addition experiment is conducted by comparing Sobel
with other three commonly used operators, namely Roberts, Prewitt and Laplacian, and the test model
is the baseline model.

In Table 5, the results show that the Sobel operator outperforms other operators upon all
above-mentioned image evaluation indices on the Cityscapes dataset. Although it does not outperform
other operators on the KITTI dataset, it still ranks the second on MSE, the third on PSNR, and the
second on SSIM. In addition, the Sobel operator has a simple structure. By comprehensive comparison,
Sobel operator is considered an appropriate choice.

Table 5. Baseline model with four operators.

K-MSE K-PSNR K-SSIM C-MSE C-PSNR C-SSIM

Roberts 68.87 29.81 0.4865 45.81 31.62 0.7191
Prewitt 69.86 29.78 0.4931 44.68 31.73 0.7308
Sobel 68.84 29.79 0.4923 43.20 31.89 0.7416

Laplacain 68.41 29.82 0.4918 46.58 31.54 0.7046
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Figure 11. Right vision reconstruction. Left image is the input. Right image is the ground truth. In the
experiment, the outputs of five methods are compared in KITTI dataset and Cityscapes dataset.

The inputs of conventional GAN networks are those of random noise. With training, the result
of generative network can theoretically approach the real data . However, there are not plenty of
constraints enhancing the generative ability of the model. For larger size images, random noise is not a
proper input. CGAN is an extension of GAN. Additional information is added into both generator and
discriminator as a condition, which makes up for the weaker ability of generation. To further improve
the quality of generation and accelerate the training speed, a multi-feature fusion method is proposed
in this paper, which inputs raw data with the image shape features and spatial features as additional
information in the generation model. The shape feature of the image is edge information, and the
spatial feature is depth information and optical flow information. It makes the model learn prior data
distribution in training, and the results with different feature information are compared in Figure 12.

The result shows that the shape feature is much better than the spatial feature when using a
single type of feature to restore the virtual view, but they all have poorer quality of images and slower
convergence rate than raw data. Using multi-feature fusion in training, we find that the initial value of
loss is much lower and the model can converge more quickly. The reason is that the model has learnt
the prior data distribution according to the multi-feature early in the training. However, the more
information available as input, the longer inference time the model has. To reduce the inference time of
a generative network, edge map, depth map, and optical flow are selected as additional information.
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Figure 12. Comparison of L1 with different inputs.

4.4. Blurred Image Regeneration

During driving, the body of a car inevitably vibrates , which will cause blurred data collected by
the camera. To validate the regeneration ability of the 3DDA-GAN model based on blurred images, the
training dataset and testing dataset are redesigned. We use a motion blur operator to process one of
the views. That operation makes the task of virtual view regeneration more difficult. The performance
of 3DDA-GAN model in blurred image regeneration task is shown in Figure 13.

According to Table 6, the MSE statistics show that the blurred images indeed influence the quality
of virtual view, but the proposed model still has the best performance in quantitative comparisons.
Moreover, it approaches the result when the input is not blurred. So, the 3DDA-GAN model is robust
in unsteady environment.

Table 6. Quantitative comparisons on blurred image regeneration.

K-MSE K-PSNR K-SSIM C-MSE C-PSNR C-SSIM

Baseline 85.07 26.87 0.4956 73.33 21.51 0.6424
Model-A 73.43 29.72 0.5538 65.09 23.17 0.6913
Model-B 62.94 30.29 0.5894 62.24 26.34 0.7052
Model-C 60.79 30.31 0.6006 59.47 26.92 0.7102

Figure 13. Virtual view reconstruction based on blurred images. The top two rows are based on blurred
left image sand the bottom two rows are based on blurred right images.
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4.5. Polluted Image Regeneration

Besides the blurred data, the lens of the visual sensor is often polluted by flying insects or mud,
leading to the problem of missing data. In this condition, conventional algorithms are no longer
competent to generate a virtual view. To verify the model-generation capability in this circumstance,
the training and testing datasets are reprocessed by polluted operation. Due to the location of the lens
contamination being relatively fixed, a 40 × 40 block of pixels is set to zero in one of the perspectives
to simulate the flying insects and mud.

As shown in Figure 14, the black square in the left image is used for simulating flying insects
or mud. Based on this polluted left image, regenerating the right virtual view is a great challenge to
algorithms. Comparing these missing areas of right virtual view reconstructions in Table 7, model C
shows the best performance.

Figure 14. Virtual view reconstruction based on polluted images. The black area in the left image
simulates flying insects or mud. The bottom row shows the detail of regeneration.

Table 7. Quantitative comparisons on polluted image regeneration.

K-MSE K-PSNR K-SSIM C-MSE C-PSNR C-SSIM

Baseline 68.89 25.04 0.5162 53.79 23.22 0.6972
Model-A 66.49 29.88 0.5856 52.14 24.65 0.7113
Model-B 64.93 30.03 0.6166 46.20 25.34 0.7228
Model-C 55.33 30.72 0.6741 45.88 25.89 0.7247

4.6. ORB-SLAM

ORB-SLAM2 was proposed by Taylor Guo, which has better performance over ORB-SLAM [41],
especially in binocular cameras and RGB-D cameras. It introduced a visual SLAM technology in
real-time robotic route planning and map reconstruction, which contains four parts: tracking, local
mapping, loop closing, and local bundle adjustment. This method needs left and right camera images
as inputs and extracts several key points using an ORB feature detector with rotation invariance.

There are two outputs of ORB-SALM2. The one is feature points matching on left and right
vision images. The green points in Figure 15a are key points which are matched by ORB features.
The other is an estimation of vehicle trajectory in world coordinate, which is shown in Figure 15b.
In this experiment, left images and restored by baseline, model A, model B, and model C are fed into
the ORB-SLAM2 system to estimate trajectory. To estimate the accuracy of generated virtual view,
the relative error rate is introduced, which measures the difference between estimation trajectory and
the ground truth. Sequence 11 of the KITTI odometry dataset is used as test data.
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(a) Feature points matching (b) Vehicle trajectory

Figure 15. 3DDA-GAN applied in ORB-SLAM2.

As Figure 16 shows, the x-axis represents frame number and the y-axis corresponds to the relative
errors of different models. The baseline model (blue line) has the highest relative error. With the
modification of model A, model B, and model C, the results improve continuously. Model C (red
line) outperforms the others in the KITTI dataset. According to the statistics of trajectory relative
error, as shown in the Table 8, model C is optimal in all the indicators. That means this algorithm has
stable performance.

Figure 16. Trajectory relative error of Sequence 11.

Table 8. Statistics of camera trajectory relative error.

Max Min Mean Var.

Baseline 60.83% 11.53% 40.30% 0.0201
Model A 37.69% 5.52% 19.77% 0.0129
Model B 24.27% 5.95% 16.87% 0.0019
Model C 17.88% 4.98% 9.97% 0.0008

ORB-SLAM2 also supports the monocular mode. When one vision of stereo system is corrupted,
monocular mode and binocular mode are two choices. These two ways are compared in the following
experiment, respectively. In monocular mode, real left data points (as inputs) are fed into the system,
and in the binocular mode, both real left data and generated right data are fed. The test data is still from
sequence 11. The right vision data is generated by model A, model B, and model C. In this experiment,
Nreset means the number of reseta, Ntraj means the number of tracking frames, Nlost means the lost
frames, and Rtraj is calculated by Equation (27). The higher the tracking rate, the better performance
the ORB-SLAM2 system has.

Rtraj =
Ntraj

Ntraj + Nlost
(27)
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In the experiment, the reset time measures the reliability of the two methods. When the reset
operation occurs, it will cost 3–4 s. As Table 9 shows, the monocular model needs to reset twice during
sequence 11. Thus, it is difficult to extract an ORB feature when scenes of continuous frames change a
lot. On the contrary, binocular modes have less risks. With the sequence stereo data, the ORB feature
points are extracted by a matching algorithm. Although the generated data is not completely equal
to the ground truth, the key points are enough to run the SLAM program. According to this result,
model B and model C achieve satisfied performance. Finally, model C combined with global loss, local
loss, and 3DDA-GAN structure is the best method to generate a virtual view.

Table 9. The result of monocular mode and binocular mode in ORB-SLAM2.

Nreset Ntraj Nlost Rtraj

Monocular 2 574 326 63.78%
Model A 1 779 121 86.56%
Model B 0 900 0 100%
Model C 0 900 0 100%

4.7. Training Details

The 3DDA-GAN network is composed of three sub-networks, generative network, discriminator
network, and attentive network. Since the attentive network is one part of a discriminator network,
those two networks can be trained synchronously. So we separate training into two steps. The first
step is to train a discriminator network, and the second is to train a generative network. Within the
alternative training between discriminator network and generative network, the loss function plays an
essential role in updating the weights. In Section 3.2, parameter selection improves the capability of
loss function. In the global loss function, φ is 0.4. In the local loss function, the edge attentive threshold
Tm is 0.6 and the depth attentive threshold Td is 0.7. During training, we use a mini-batch size of
eight to accelerate the convergence, and the optimization operation follows the training of CGAN [26].
In terms of the discriminator optimization, we select an Adam solver with an initialization learning
rate of 0.0002 and a momentum term of 0.5. The optimization of the generative network is similar to
the discriminator network. The parameters of the network are updated by a moving average method
with a decay factor 0.99.

5. Conclusions

It is difficult to improve the redundancy of a binocular visual system, but in this paper, a virtual
view-generation algorithm is proposed, which can rapidly restore the corrupted vision based on
another vision signal. The model contains three key improvements which are local loss, global loss,
and 3DDA-GAN structure, respectively. With this novel structure, our model can learn the spatial
information from time-series inputs, and the composite loss function improves the quality of image
generation. Moreover, experimental results show that our model achieves the best performance of
regeneration quality and inference time using data from the KITTI and Cityscapes datasets. In addition,
the proposed model is efficient and robust in blurred view regeneration and polluted view regeneration.
Meanwhile, it can also be applied in the classical ORB-SLAM system for tracing trajectory. However,
some thresholds of the proposed algorithm are selected experimentally which influences generalization.
We aim that in the future, a more robust virtual view-generation algorithm will be studied with
adaptive thresholds. In addition, other sensors, like laser radars and millimetre wave radars, will
probably improve the visual system, and reinforcement learning will be combined with LSTM to
improve the attention mechanism. Finally, safety of autonomous vehicles will be consolidated by
virtual view-generation based on 3D-Dense-Attentive GAN networks.
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