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Abstract: Sparse signal processing has already been introduced to synthetic aperture radar (SAR),
which shows potential in improving imaging performance based on raw data or a complex image.
In this paper, the relationship between a raw data-based sparse SAR imaging method (RD-SIM)
and a complex image-based sparse SAR imaging method (CI-SIM) is compared and analyzed in
detail, which is important to select appropriate algorithms in different cases. It is found that they
are equivalent when the raw data is fully sampled. Both of them can effectively suppress noise and
sidelobes, and hence improve the image performance compared with a matched filtering (MF) method.
In addition, the target-to-background ratio (TBR) or azimuth ambiguity-to-signal ratio (AASR)
performance indicators of RD-SIM are superior to those of CI-SIM in down-sampling data-based
imaging, nonuniform displace phase center sampling, and sparse SAR imaging model-based azimuth
ambiguity suppression.

Keywords: SAR imaging; Lq regularization; azimuth-range decouple; down-sampling; displaced
phase center antenna (DPCA); azimuth ambiguity

1. Introduction

Synthetic aperture radar (SAR) is a significant remote sensing technology, which has been widely
used in various fields, such as marine monitoring, topography mapping and target detection [1,2].
In recent years, sparse signal processing theory has been introduced to SAR imaging, which shows
that the sparse observed scene can be reconstructed with less sampled data [3–5]. Compared with
a matched filtering (MF)-based method, a sparse signal processing-based SAR imaging method can
reduce the system complexity and improve the image quality efficiently, addressing noise, sidelobes
and azimuth ambiguity suppression [4,6].

Compressive sensing (CS), the recent main achievement of sparse signal processing theory,
was firstly introduced to radar imaging by Baraniuk [7]. In 2010, Patel et al. proposed a more
general CS-based SAR imaging model to recover observed scenes, and analyzed different azimuth
sampling strategies with spotlight SAR data [8]. Cetin et al. explored the principle of autofocusing and
moving target imaging based on CS [9]. Zhang et al. achieved resolution enhancement for inversed
synthetic aperture radar (ISAR) imaging via CS [10]. Ender analyzed the reconstruction performance of
CS-based wavenumber domain imaging algorithms via the ISAR echo data [11]. Chen et al. proposed
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a parametric sparse representation (PSR) method for motion compensation and refocusing of moving
targets [12,13].

Because raw data is coupled in the azimuth and range directions, the sparse reconstruction method
based on an observation matrix has huge computational cost, which makes it impossible for large-scale
observed scene reconstruction. To solve the above problem, the azimuth-range decouple-based sparse
SAR imaging method was proposed in [14]. The method can reduce imaging time efficiently and
improve image performance based on the fully sampled or down-sampled echo data for the sparse
region [14,15]. The method has been widely applied to ScanSAR [16], TOPSAR [17], Sliding Spotlight
SAR [18] and so on. Quan et al. applied sparse signal processing methods to nonuniform displace
phase center sampling SAR imaging [19]. The new CS-SAR imaging method using the multiple
measurement vectors model was also proposed to reduce the computation cost and enhance the
imaging result [20].

Additionally, a sparse signal processing-based imaging method also can obtain feature-enhanced
radar images [21]. Samadi et al. developed an image formation technique that simultaneously enhances
multiple types of features [22]. In order to further reduce computational complexity, a complex
image-based sparse SAR imaging method was proposed [23]. The method uses an MF-constructed
complex image as the input, and then obtains a feature-enhanced SAR image by solving an lq
regularization problem. It is pointed out that raw data-based and complex image-based sparse
SAR imaging methods are equivalent when the data is fully sampled. When the data is down-sampled,
they are not equivalent.

Although the complex image-based sparse imaging method (CI-SIM) can reduce computational
complexity, the raw data-based sparse imaging method (RD-SIM) can achieve better imaging
performance in some cases. It is important to understand the similarities and differences between
them for the selection of appropriate algorithms. In this paper, we discuss their relationship and
promote the more general conditions of inequality between these two methods. The performance of
RD-SIM is superior to CI-SIM when raw data is under-sampled. Under-sampling includes not only
down-sampled data-based, imaging which is only mentioned in [23], but also nonuniform displace
phase center sampling, sparse SAR imaging model-based azimuth ambiguity suppression and so on.
Furthermore, experiments are carried out in full-sampling and three under-sampling cases to verify
our conclusion.

The rest of this paper is organized as follows: Section 2 introduces sparse SAR imaging models
based on raw data and complex images, respectively. We will analyze their equivalence at full-sampling
and the inequality at under-sampling, which provides a theoretical basis for algorithm selection. Sparse
SAR imaging with full- and under-sampling is introduced in Section 3. In Section 4, we compare the
performance of these two sparse SAR imaging methods under full-sampling and three under-sampling
cases. Finally, conclusions are drawn in Section 5.

2. Materials and Methods

The baseband signal echo of all targets in the observed scene can be represented as:

y(t, τ) =
s

(p,q)∈C
x(p, q)ωa

(
t− p

v
)

exp
{
−j4π fc

R(p,q,t)
c

}
s
(

τ − 2R(p,q,t)
c

)
dpdq

, (1)

where t and τ are the time in azimuth and range, respectively, p and q are the azimuth and range
position of the target, respectively, C is the observed area, x(·) is the backscattered coefficient of target,
ωa(·) is the azimuth antenna pattern weighting, v is the platform speed, c is the speed of light, s(·) is
the transmitted signal with carrier frequency fc, and R(p, q, t) is the slant range.

Let X ∈ CNP×NQ denote the two-dimensional (2D) backscattering coefficients matrix, x =

vec(X) ∈ CN×1(N = NPNQ) is the vector of X reshaped sequentially column by column. The n-th
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element of x is x(pn, qn). The time series is discretized into Tm(m = 1, 2, . . . , M). Let Y ∈ CNt×Nτ

denote the 2D echo data, and y = vec(Y) ∈ CM×1(M = NtNτ). Considering thermal noise n ∈ CM×1,
then the sparse SAR imaging model can be assumed as [4]:

y=Φx+n, (2)

where Φ , {φ(m, n)} ∈ CM×N is the observation matrix, which represents the imaging geometry
relationship between radar and surveillance regions, and can be written as

φ(m, n) ∼=
s

(t,τ)∈Tm

ωa
(
t− pn

v
)

exp
{
−j4π fc

R(pn ,qn ,t)
c

}
s
(

τ − 2R(pn ,qn ,t)
c

)
dτdt

(3)

Considering data down-sampling, Equation (2) can be rewritten as:

y=HΦx+n, (4)

where H is the down-sampling matrix. Specifically, in a sparse SAR azimuth ambiguity suppression
model, the echo data can be regarded as [24]:

y = (Φ−1, Φ0, Φ+1)

 x−1

x0

x+1

+ n = Φx + n, (5)

where x0, x−1 and x1 are the complex images measured by the radar mainlobe and sidelobe beams with
different squint angles, and Φi(i = −1, 0, 1) are their observation matrices. When the observed scene
is sufficiently sparse and the observation matrix satisfies the restricted isometry property (RIP) [25],
Equation (4) can be solved by the lq(0 < q ≤ 1) regularization [26]:

x̂ = argmin
x

{
‖y−HΦx‖2

2 + λ‖x‖q
q

}
, (6)

where λ is the regularization parameter, which is determined by the scene sparsity. Equation (6) can
be solved by convex optimization algorithms [27], nonconvex optimization algorithms [28], greedy
tracking algorithms [29], Bayesian reconstruction algorithms [30] and so on. In our paper, IST is
selected as an example to solve the sparse imaging model. After resolving x̂, we need rearrange it into
a matrix.

2.1. Raw Data-based Sparse SAR Imaging

The azimuth-range decouple imaging method is one of RD-SIM, which introduces the echo
simulation operator G(·) to replace the observation matrix Φ, which is the inverse operation of the
MF imaging operator I(·), i.e., G(·) = I−1(·) ≈ Φ. Then, the 2D sparse SAR imaging model can be
written as [4,14]:

Y = HaG(X)Hr + N, (7)

where Y is raw data, Ha and Hr are the azimuth and range down-sampling matrix, respectively, and N
is the noise matrix. The optimization problem (6) can be rewritten as

X̂ = argmin
X

{
‖Y−HaG(X)Hr‖2

F + λ‖X‖q
q

}
, (8)

where ‖·‖F is the Fibonacci norm of a matrix. By using the iterative soft thresholding (IST)
algorithm [31], Equation (8) can be solved iteratively,



Sensors 2019, 19, 320 4 of 12

X(k+1) = ηλ,µ,q

(
X(k) + µI

(
Y−HaG

(
X(k)

)
Hr

))
, (9)

where µ is the iterative parameter, and ηλ,µ,q(·) is the threshold function. When q = 1, it can be defined as

ηλ,µ,1(x) =
x
|x|max(|x| − µλ

2
, 0). (10)

2.1.1. Complex Image-based Sparse SAR Imaging

Different from RD-SIM, the input of this method is the complex image constructed by MF from
raw data. Then, the feature-enhanced SAR images can be obtained by solving an lq regularization
problem. In the following, CI-SIM is introduced in full- and under-sampling cases, respectively [23].

2.1.2. Fully Sampled Data

For the fully sampled data, Ha and Hr are both identical matrices. After performing the imaging
operator on I(·) for Equation (7), we have [32]

I(Y) = I(HaG(X)Hr) + I(N)

⇔ XMF = X + N′ , (11)

where XMF is the complex image obtained by MF from fully sampled raw data, that is, the algorithm
input, and N′ represents the difference between the real scene X and the complex image, including
noise, clutter and sidelobes. Then, according to the imaging model shown in Equation (11), we can
reconstruct the observed scene by solving the lq(0 < q ≤ 1) optimization problem.

X̂ = argmin
X

{
‖XMF−X‖2

F + λ‖X‖q
q

}
(12)

Similarly, using the IST algorithm, the observed scene can be recovered iteratively as [32]:

X(k+1) = ηλ,µ,q

(
X(k) + µ(XMF − X(k))

)
. (13)

Compared with Equation (9), it is found that CI-SIM and RD-SIM are equivalent when the
full-sampled data are available. Because each step of the iteration is based on the image, the imaging
and inverse imaging operations in the complex image-based method can be omitted. Furthermore,
the computational complexity can be reduced from O(2KM log M + KN) to O(M log M + KN), where
K represents the number of iteration steps, and M and N denote the number of points in the raw data
and discretized scene of interest, respectively.

2.1.3. Under-Sampled Data

Under-sampling can be defined as the condition that the sampling rate is lower than the Nyquist
sampling rate. There are several cases of under-sampled data in sparse SAR imaging: (1) down-sampling,
making the average sampling rate lower than the Nyquist sampling rate; (2) nonuniform displace phase
center sampling; and (3) sparse SAR imaging model-based azimuth ambiguity suppression. Similarly,
taking down-sampled data as an example, the imaging model can be written as:

I(Y) = I(HaG(X)Hr) + I(N)

⇒ XMF−U = I(HaG(X)Hr) + N′ , (14)

where XMF−U is the complex image reconstructed by MF from under-sampled data. In this case,

XMF−U 6= XMF
I(HaG(X)Hr) 6= X

. (15)
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Due to the under-sampling of raw data, a well-performing image cannot be obtained by the
conventional MF algorithm. Besides, after performing down-sampling for the echo simulation operator,
the observed scene cannot be recovered using the imaging operator I(·). Furthermore, the CI-SIM
does not equal the RD-SIM.

3. Sparse SAR Imaging with Full- and Under-Sampling

3.1. Full-Sampling

The sampling rate of fully sampled data is greater than or equal to the Nyquist sampling rate.
The observed scene can be completely reconstructed by the MF method based on fully sampled data.
For the fully sampled data, H is the identity matrix and can be ignored. The sparse SAR imaging
model is shown in Equation (2). We have

Φ ∈ CM×N , M > N. (16)

If we select the chirp scaling algorithm [33] as the imaging method, the MF operator I(·) and
inverse operator of MF G(·) can be respectively expressed as:

I(Y) = F−1
a

(
FaY�ΘscFr �ΘrcF−1

r �Θac

)
, (17)

G(X) = F−1
a

(
FaX�Θ∗acFr �Θ∗rcF−1

r �Θ∗sc

)
, (18)

where Θsc is the differential range cell migration correction (RCMC) matrix, Θrc is the range
compression and bulk RCMC matrix, Θac is the azimuth compression and phase correction matrix, Fa

and Fr are the azimuth and range Fourier-transform operators, respectively, and (·)∗ is the conjugate
operator. In this case, the sparse imaging methods based on raw data and complex images have similar
performance, because G = I−1. They both can effectively suppress the noise and sidelobes, hence
improving the image quality compared with the MF method.

3.2. Down-Sampling

Down-sampling includes uniform down-sampling and random down-sampling in the range
or/and azimuth directions. For different down-sampling modes, the form of matrix H is different,
and no longer the identity matrix.

Considering down-sampling, the sparse SAR imaging model is shown in Equation (4),
and we have

HΦ ∈ CL×N , L << N. (19)

The MF-based method directly based on down-sampling data could result in degraded imaging
performance, such as sidelobe rising and ambiguous targets. As shown in Equation (15), XMF−D is not
equal to XMF, and its performance is worse than XMF. If the poor-performance complex image XMF−D

is taken as the input, CI-SIM obviously cannot obtain a well-performing image [23]. The RD-SIM has
the ability to image with less data when the sparsity of the observed scene and signal-to-noise ratio
(SNR) satisfy certain conditions. Its performance is better than the CI-SIM in this case.

3.3. Nonuniform Displace Phase Center Sampling

The displaced phase center antenna (DPCA) technology was proposed to achieve high-resolution
and wide-swath imaging in single-transmit–multiple-receive multiple-channel SAR mode [34], which
is shown in Figure 1. The sparse imaging model at this point can still be represented by Equation (2),
in which y = [y1, y2, . . . , yI ], yi is the i-th channel data of multichannel SAR, I is the number of channels,
Φ = [Φ1, . . . , ΦI ], and Φi is the i-th channel observation matrix whose elements are
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Φi(m, n) ∼=
s

(t,τ)∈Tm

ωa
(
t− pn

v
)

exp
{
−j2π fc

R(pn ,qn ,t)+Ri(pn ,qn ,t)
c

}
s
(

τ − R(pn ,qn ,t)+Ri(pn ,qn ,t)
c

)
dτdt

, (20)

where Ri(p, q, t) = R(p, q, t− ∆xi
v ) represents the distance from the i-th receiver to the target.
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Figure 1. Single-transmit–multiple-receive multiple-channel synthetic aperture radar mode. Black
circles correspond to transmitter (Tx) and receiver (Rx) positions.

In order to ensure uniform azimuth sampling, pulse repetition frequency (PRF) must satisfy

PRF =
2v

I∆x
, (21)

where ∆x is the phase offset relative to the transmit aperture. The DPCA radar imaging system allows
for an unambiguous recovery of the Doppler spectrum even for a nonuniform sampling of the SAR
signal [35]. The DPCA technology-based single-transmit–multiple-receive multiple-channel SAR
imaging operator I(·) and echo simulation operator G(·) can be respectively expressed as

I(Y) = F−1
a

(
∑

i
(FaYi � Pi)�ΘscFr �ΘrcF−1

r �Θac

)
, (22)

Gi(X) = F−1
a

(
FaX�Θ∗acFr �Θ∗rcF−1

r �Θ∗sc � P∗i
)

, (23)

where Pi is the reconstruction filter matrix. When the degree of nonuniform sampling is serious, there
will still be tiny amounts of azimuth ambiguities in the image after using the matched filter bank to
reconstruct the spectrum. If this complex image is used as input, the imaging performance will be
decreased. A sparse signal processing technique has been applied to nonuniform displace phase center
sampling SAR imaging, which is capable of suppressing ambiguity and is meanwhile insensitive to
additive noise [19].

3.4. Sparse SAR Imaging Model-based Azimuth Ambiguity Suppression

The spectrum of the SAR antenna beam is not band-limited. Since the spectrum repeats at PRF
intervals, the signal components outside this frequency interval fold back into the main part of the
spectrum, which will lead to azimuth ambiguities. Azimuth ambiguities are a critical issue in an SAR
system, especially in spaceborne SAR. Strong ambiguous signals can cause false alarms in the radar
image, which affect SAR image interpretation. To suppress azimuth ambiguities, the echo data can be
regarded as Equation (5). It is worth noting that the PRF at this time is less than the azimuth bandwidth.
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Considering the azimuth direction only, the elements of the k-th ambiguity area observation matrix Φk
are as follows:

φk(m, n) =
∫

t∈Tm

ωa

(
t− pn

v

)
exp

{
−j2π

(vt− pn)
2

λR

}
exp(j · kPRFt)dt. (24)

In the above azimuth ambiguity suppression model, azimuth ambiguities can be suppressed
effectively because the reflectivity of the target is extended as the group sparse signal, and its
components are jointly recovered by an lq regularization method based on raw data [4,24]. However,
the ability of azimuth ambiguity suppression is limited by the CI-SIM.

4. Experiments

To compare imaging performance of the RD-SIM and CI-SIM under full-sampling and three
under-sampling cases, the experiments are carried out with Radarsat-1 data, Gotcha Volumetric SAR
data and C-band airborne data. The RadarSat-1 data was acquired on 16 June 2002. The acquisition
mode is Fine, which covers an area of 50 km × 50 km with a resolution of 10 m. PRF is 1257 Hz. Radar
frequency is 5.3 GHz. The Gotcha Volumetric SAR dataset consists of SAR phase history data collected
at X-band with a 640 MHz bandwidth with full azimuth coverage at eight different elevation angles
and full polarization. The C-band airborne data was acquired by the Institute of Electronics, Chinese
Academy of Sciences, with standard stripmap mode. There are many algorithms for sparse signal
processing. In our experiments, IST is selected as the recovery algorithm for both methods.

4.1. Full-Sampling

The images recovered from the fully sampled Radarsat-1 raw data via MF, the RD-SIM and the CI-SIM
are shown in Figure 2. The observed region is the University of British Columbia. Figure 2 shows that all
three imaging methods can construct the region well with fully sampled echo data. The reconstructed
results of the RD-SIM and CI-SIM are similar and have a better performance compared with the
MF-constructed image because of lower sidelobes and less noise in the observed area.
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Figure 2. Images recovered from fully sampled Radarsat-1 data via different methods. (Red square
indicates one ship. (a) Matched filtering. (b) Raw data-based sparse imaging method. (c) Complex
image-based sparse imaging method.

In order to quantitatively evaluate the effects of different algorithms in suppressing image
background clutter and noise, target-to-background ratio (TBR) is used as an evaluation indicator
whose definition is shown as [36]:

TBR(X) = 20 log10

 max(p,q)∈T

∣∣∣X(p,q)

∣∣∣
1/NB ∑

(p,q)∈B

∣∣∣X(p,q)

∣∣∣
, (25)
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where T is the target region, B is the background region, and NB is the number of pixels in B. One ship
shown in the red frame is selected as a performance test area. The TBRs of the selected areas shown
in Figure 2a–c is 45.13 dB, 52.39 dB and 52.39 dB, respectively. Obviously, the performance of sparse
imaging methods based on raw data and complex images is superior to MF.

As for the X-band Gotcha Volumetric SAR data, the recovered images via MF, the RD-SIM and
the CI-SIM are shown in Figure 3. The imaging scene consists of numerous civilian vehicles and
calibration targets. Figure 4 is the difference between the recovered complex images of RD-SIM and
CI-SIM. We can see that the value of each point in Figure 4 is almost equal to zero, which means that
the RD-SIM and the CI-SIM are equivalent.
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4.2. Down-Sampling

In this part, the English Bay ships’ region is selected as the region of interest (ROI). This region is
a typical sparse scene that is convenient for comparing the performance of the two sparse imaging
methods. The data come from Radarsat-1, and we perform 80% random down-sampling for the fully
sampled Radarsat-1 raw data, which means that only 80% of the data is available. Figure 5 shows the
recovered observed region from down-sampled echo data via MF, the RD-SIM and the CI-SIM. Due to
the data down-sampling, it is obvious that MF could not recover the target successfully because of
apparent energy dispersion in the azimuth and range directions. Similarly, the CI-SIM firstly needed
to use MF to reconstruct a complex image, and then it was hardly able to achieve good performance
based on the poor-performing complex image. However, the RD-SIM recovered the observed region
successfully, and acquired an image with lower sidelobes and less noise. This experimental result shows
that the complex image-based imaging method cannot process sparse imaging based on down-sampled
echo data very well, compared to the raw data-based imaging method.
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Figure 5. Images reconstructed from 80% down-sampled echo data by different methods. (Red squares
indicate three ships.) (a) Matched filtering. (b) Raw data-based sparse imaging method. (c) Complex
image-based sparse imaging method.

Three ships in the red frame are selected as the observed targets, and their TBRs reconstructed by
three algorithms are shown in Table 1. It can be seen from Table 1 that the raw data-based sparse SAR
imaging method performs better than the complex image-based sparse SAR imaging method.

Table 1. Target-to-background ratio (TBR) of target area via different methods with down-sampled data.

Imaging Algorithm Target-to-Background Ratio (TBR/dB)

Ship 1 Ship 2 Ship 3

MF 30.35 33.44 19.62
RD-SIM 49.14 50.59 43.26
CI-SIM 47.46 46.89 33.39

4.3. Nonuniform Displace Phase Center Sampling

The raw data used in the experiment are from the single-transmit three-receive SAR system
simulated by the C-band airborne data of the Institute of Electronics of the Chinese Academy of
Sciences through re-interpolation. The observed scene was a harbor in Tianjin, China. Experimental
parameters are shown in Table 2. Multichannel data with different intersample offsets are resampled
from the real data using the sinc interpolation method. Then, three methods are used to reconstruct the
observation scene based on the multichannel data. The imaging results of each algorithm are shown in
Figure 6. We can see the performance of different imaging algorithms on noise, sidelobes and azimuth
ambiguity suppression.

The ship in the red frame of the dock is selected as the observed area, and its TBRs are
reconstructed by three algorithms, as shown in Table 3. It shows that the RD-SIM can reduce noise
effectively, while the CI-SIM cannot achieve similar performance to the raw data-based sparse SAR
imaging method.

Table 2. Parameters.

Parameters Value

Carrier frequency 5.4 GHz
Velocity 100 m/s

Pulse duration 38 µs
Antenna length (Tx/Rx) 0.9 m

Sampling rate 750 MHz
PRF 768 Hz

Number of subapertures (Rx) 3
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Figure 6. Image reconstructed via different algorithms with single-transmit three-receive SAR data.
(a) Matched filtering. (b) Raw data-based sparse imaging method. (c) Complex image-based sparse
imaging method.

Table 3. Target-to-background ratio (TBR) of target area via different algorithms with multichannel data.

Imaging Algorithm Target-to-Background Ratio (TBR/dB)

MF 29.86
RD-SIM 55.37
CI-SIM 36.72

4.4. Sparse SAR Imaging Model-based Azimuth Ambiguity Suppression

To compare imaging performance of the RD-SIM and CI-SIM in azimuth ambiguity suppression,
another coastal region is selected as the observed scene from the same RadarSat-1 dataset. According
to Section 3, the azimuth spectrum will be aliased in limited PRF conditions due to the azimuth beam
pattern. The recovered scenes are shown in Figure 7.
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The azimuth ambiguity-to-signal ratio (AASR) is selected to measure the ability of different
algorithms to suppress azimuth ambiguities, which is defined as:

AASR = 10 log10


1

Nm
∑

(p,q)∈Ma

∣∣∣X(p,q)

∣∣∣2
1

Na
∑

(p,q)∈A

∣∣∣X(p,q)

∣∣∣2
, (26)

whereMa is the ambiguity area, Nm is the number of pixels inMa, A is the target area and Na is the
number of pixels in A. The AASR of the target via three algorithms is shown in Table 4. Obvious
azimuth ambiguities in the imaging results reconstructed by MF are shown in the red frame of Figure 7a.
Figure 7b and Table 4 show that azimuthal ambiguities are effectively suppressed by the RD-SIM.
The performance of the CI-SIM is better than MF but worse than the RD-SIM.
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Table 4. The azimuth ambiguity-to-signal ratio (AASR) of the target via three algorithms.

Imaging Algorithm Azimuth Ambiguity-to-Signal Ratio (AASR/dB)

MF −22.86
RD-SIM −34.77
CI-SIM −28.72

5. Conclusions

In this paper, we compare the RD-SIM and the CI-SIM, and expound their relationship. It shows
that the two methods are equivalent when the raw data is fully sampled. Meanwhile, the RD-SIM
performs better than the CI-SIM when processing down-sampled data, and performing nonuniform
displace phase center sampling, and sparse SAR imaging model-based azimuth ambiguity suppression.
Obviously, when the data is fully sampled, the CI-SIM is the better choice because the computational
complexity is reduced greatly. When the data is under-sampled, better imaging performance can
be obtained based on the raw data. The conclusions are applicable to datasets with different
polarization modes in different frequency bands, and are well proved via experiments in full- and
under-sampling cases.
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