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Abstract: Database-referenced navigation (DBRN) using geophysical information is often implemented
on autonomous underwater vehicles (AUVs) to correct the positional errors of the inertial navigation
system (INS). The matching algorithm is a pivotal technique in DBRN. However, it is impossible to
completely eliminate mismatches in practical application. Therefore, it is necessary to perform
a mismatch detection method on the outputs of DBRN. In this paper, we propose a real-time
triple constraint mismatch detection method. The proposed detection method is divided into three
modules: the model fitting detection module, the spatial structure detection module, and the distance
ratio detection module. In the model fitting detection module, the navigation characteristics of
AUVs are used to select the fitting model. In the spatial structure detection module, the proposed
method performs the mismatch detection based on the affine transformation relationship between
the INS-indicated trajectory and the corresponding matched trajectory. In the distance ratio detection
module, we derive the distance ratio constraint between the INS-indicated trajectory and the
corresponding matched trajectory. Simulations based on an actual geomagnetic anomaly base
map have been performed for the validation of the proposed method.

Keywords: database-referenced navigation; mismatch detection; underwater navigation; inertial
navigation system; autonomous underwater vehicles

1. Introduction

Autonomous underwater vehicles (AUVs) are widely used in a variety of tasks, including
oceanographic surveys, bathymetric data collection in marine and riverine environments, patrol
and reconnaissance missions in the military field, and rescue duties [1]. The availability of a precise
and robust navigation system is the foundational prerequisite for the vehicle to successfully execute
missions [2,3]. The quality of the navigation system not only influences the position errors between
the desired path and the executed path, but also affects the outcome of the georeferencing process of
the data acquired by the onboard sensors (e.g., the acquisition of terrain and geomagnetic data) [4].

In general, an AUV uses an inertial navigation system (INS) as the primary navigation system [5].
INS is a navigation aid that uses accelerometers and gyroscopes to continuously calculate by dead
reckoning the position, the orientation, and the velocity (direction and speed of movement) of a moving
object without the need for external references. Nevertheless, INSs have positional errors growth that
is unbounded. This effect can be reduced by using accurate acceleration, heading, and velocity sensors,
but these sensors cannot be made arbitrarily accurate. During long endurance underwater missions,
these inaccuracies become significant [6]. Therefore, other navigation and positioning technologies
are adopted by AUVs as auxiliary navigation systems. Above water, the global navigation satellite
system (GNSS) is the most commonly used method to compensate for INS-accumulated errors [7].
However, due to the rapid attenuation of higher frequency signals and the unstructured nature of

Sensors 2019, 19, 307; doi:10.3390/s19020307 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-1576-4201
https://orcid.org/0000-0002-0178-8472
http://dx.doi.org/10.3390/s19020307
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/19/2/307?type=check_update&version=2


Sensors 2019, 19, 307 2 of 17

the undersea environment, GNSS signals can only propagate within short distance under water [1].
Database-referenced navigation (DBRN) systems, which use geophysical information such as gravity,
magnetic, and terrain data for navigation, hold strong potential as underwater auxiliary navigation
systems [8,9]. Take the terrain-referenced navigation (TRN) system (one of the most popular DBRN
systems) as an example. TRN obtains a range measurements by using sonar sensors installed on a
vehicle. These measurements are matched with a priori digital map of the terrain elevation, to estimate
the vehicle position. The principle of gravity-referenced navigation (GRN) and magnetic-referenced
navigation (MRN) is the same as TRN, except for the priori digital maps and sensors used. GRN uses
gravity anomaly maps and gravimeters as a priori digital maps and sensors. MRN uses geomagnetic
anomaly maps and magnetometers as a priori digital maps and sensors. DBRN systems are completely
passive and difficult to interfere with; these advantages totally meet the requirements of underwater
vehicles [10].

A DBRN system consists of a priori geophysical information database (terrain elevation
maps, gravity anomaly maps, etc.), a measurement unit (sonar, gravimeter, etc.), and a navigation
algorithm [11,12]. The navigation algorithm is one of the key factors in DBRN [13,14]. There are
two types of navigation algorithms in DBRN systems: filtering algorithms and matching algorithms.
Filtering algorithms make use of the INS model and the measurement model to construct filters.
In DBRN systems, commonly used filtering algorithms are the extended Kalman filter (EKF), the
particle filter (PF) and the Rao-Blackwellized particle filter (RBPF) [15–18]. EKF is more effective for
low nonlinear estimation problems. A PF can effectively handle highly nonlinear or non-Gaussian
estimation problems. RBPF is a hybrid filter combining EKF and PF. Terrain contour matching
(TERCOM) algorithm and iterated closest contour point (ICCP) algorithm are two conventional
matching algorithms in DBRN systems [12,19]. TERCOM algorithm, realized via group correlation
analysis, possesses better robustness. The ICCP algorithm, which uses rigid transformation to match
the multilateral arc, has a high matching accuracy when the initial INS error is small. It should be
noted that matching algorithms-based DBRN systems can operate effectively on the premise that the
matching area has obvious features. Features can be discrete landmark objects, numerical changes, or
texture variations in the digital map. If the features are smooth, the above matching algorithms have a
high probability of mismatching [19,20]. Since it is impossible to completely eliminate mismatches, a
mismatch detection method after the matching algorithm deserves to be studied.

Mismatch detection methods are widely used in the field of feature points-based image
registration. In DBRN systems, the actual trajectory and the DBRN output trajectory are denoted as the
original image and the transformed image, respectively, then mismatch detection algorithms in image
registration can be used to solve the mismatch detection problem in DBRN systems. Random sample
consensus (RANSAC)-based algorithms [21–23] and graph transformation matching (GTM)-based
algorithms [24,25] are two types of commonly used mismatch detection methods in the field of
feature points based image registration. RANSAC is an iterative method to estimate parameters of a
mathematical model from a set of observed data that contains outliers, when outliers are to be accorded
no influence on the values of the estimates. Therefore, it can be interpreted as an outlier detection
method. GTM uses the distribution of matching points and the neighborhood relationship in the
local area to detect mismatched points. RANSAC based algorithms and GTM based algorithms can
be directly used for detecting mismatched points in DBRN systems. In addition to the above two
commonly used types of algorithms, the restricted spatial order constraints (RSOC) algorithm [26] is
also a simple and robust outlier detection algorithm. In RSOC, the two-way spatial order constraints
are used to determine the candidate outliers, whereas the two decision criteria restrictions are used
to confirm which dubious match pairs should be removed. Han et al. [9] proposed an RSOC-based
mismatch diagnostic method specifically for an underwater navigation system. The spatial structure
constraints and transformation error restrictions are utilized to select outliers in a matched sequence.
However, there exists several disadvantages of using these algorithms in DBRN systems. On one hand,
these approaches can only detect a certain type of mismatch, RANSAC-based algorithms cannot detect
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the mismatched point that fits the model, GTM based algorithms and RSOC based algorithms cannot
detect the mismatched point with the same structure. On the other hand, applying these approaches
requires sampling enough points, which leads to poor real-time performance.

In order to solve the problem of a single detection mode and poor real-time performance, we
suggest a real-time triple constraint mismatch detection method. The proposed method, considering
the model fitting constraint, spatial structure constraint, and distance ratio constraint, is specifically
presented to deal with mismatched point detection problem in matching algorithms-based DBRN
systems for AUVs. In model-fitting detection module, the proposed method eliminates points that
deviate significantly from the matched trajectory. In the spatial structure detection module, the
K-nearest neighbor (KNN) graph of the INS-indicated trajectory and the matched trajectory are
established. The affine transformation relationship between the INS-indicated trajectory and the
corresponding matched trajectory is used to determine whether the current matched point is an
abnormal point. In the distance ratio detection module, the underwater INS error propagation model is
established to calculate the distance ratio constraint between the actual trajectory and the INS-indicated
trajectory. The matched points beyond the constraint range are regarded as outliers. It should be
noticed that the above three detection processes perform mismatch detection point-by-point instead of
detecting all mismatched points at one time. These are some important contributions for our work.

The rest of the paper is organized as follows. The second part briefly describes M-estimator
sample consequence (MSAC) and weighted graph transformation matching (WGTM). The INS error
propagation model employed in this paper is described in the third part. The fourth part presents the
procedure of the proposed method. A comprehensive discussion on the experimental settings and
simulation results are provided in the fifth part. Conclusions are given in the last part.

2. MSAC and WGTM

2.1. RANSAC and MSAC

RANSAC is a robust approach that is used in many applications for extracting shapes and for
estimating the model parameters from data that contains outliers. RANSAC classifies data into inliers
(data that can be described by the model) and outliers (data that deviate from the normal range of the
model or fail to meet the model). It looks for a minimal subset with maximal support (the number of
data points that match with the model). RANSAC operates in two steps iteratively to remove outliers:
hypothesize and test. First, a minimal subset is randomly selected from the data and the required
model parameters are estimated based on the subset. Next, it tests the model against all other data to
find inliers. The iteration stops when the probability of obtaining a model with better support than the
current best model is below a given threshold. RANSAC can be expressed as calculating the minimum
cost function:

C = ∑
i

ρ(ei) (1)

where ei is the error for the ith observation relative to the model, ρ(e) represents the loss function, and:

ρ(e) =

{
0 |e| < T

constant |e| ≥ T
(2)

T is the correct error threshold. If T is set too high, then the robust estimate can be very poor.
MSAC [27] extends the boundaries of the loss function in RANSAC; a robust loss function is

defined as below:

ρ2(e) =

{
e2 e2 < T2

T2 e2 ≥ T2 (3)
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The advantage of using MSAC in point cloud data analysis has been demonstrated [28].
Choi et al. [29] evaluated the RANSAC family and showed that MSAC is one of the most
accurate methods.

2.2. GTM and WGTM

GTM assumes two sets of match correspondences between two images: P = {pi} and Q = {qi}
of size N where pi matches qi. The median KNN graph of the two images are Gp =

{
Vp, Ep

}
and

Gq =
{

Vq, Eq
}

, respectively. Gp =
{

Vp, Ep
}

is created by the following steps: first, define vertex vi for
each match correspondence pi, such that Vp = {v1, v2, . . . , vN}; second, a non-directed edge between
vi and vj exists when pj is one of the K-nearest neighbors of pi, and also, ‖pi − pj‖ ≤ η. Here, η is
defined by the following expression:

η = median
(l,m)∈VP×VP

‖pl − pm‖ (4)

The adjacency matrix corresponding to Gp is denoted with Ap:

Ap(i, j) =

{
1 (i, j) ∈ Ep

0 (i, j) /∈ Ep
(5)

Similarly, the graph Gq and the adjacency matrix Aq are generated in the same way. If all
correspondences were correct, the two graphs would be isomorphic. The residual adjacency matrix
R =

∣∣Ap −Aq
∣∣ is used to calculate the similarity of two graphs.

GTM completes the detection of mismatched points through iteration. Firstly, an outlier is selected
from the matching set by the following expression:

jout = argmax
j=1,2,...,N

N

∑
i=1

R(i, j) (6)

Secondly, the outlier and its correspondences are removed, and N is decreased by one; thirdly,
both KNN graphs are regenerated, and the next iteration is continued. The algorithm stops when

R(i, j) = 0, ∀i, j .
Instead of relying only on the relationship between adjacent features, WGTM utilizes angular

distances between the neighboring features. WGTM can be described by following steps [26].

(1) Like GTM, WGTM also generates two median KNN graphs Gp =
{

Vp, Ep
}

(with adjacency
matrix Ap) and Gq =

{
Vq, Eq

}
(with adjacency matrix Aq) for the sets P = {pi} and Q = {qi}.

The difference is that the two graphs of Gp and Gq are directed graphs. A directed edge (i, j)
exists when pj is one of the K-nearest neighbors of pi, and also, ‖pi − pj‖ ≤ η, η is defined by (4).
The adjacency matrix is defined by (5).

(2) Find all vertices of Gp with at most one edge with other vertices, and remove them and their
correspondences from Gp and Gq. Regenerate Gp and Gq. Repeat this process until all vertices of
Gp have a minimum of two edges.

(3) For the edge that connects vi to vm compute a weight value using the following equation:

W(i, m) =

∣∣∣∣arccos
(
(pm − pi) · (Rot(θ(kmin, i))(qm − qi))

‖pm − pi‖‖qm − qi‖

)∣∣∣∣ (7)

where:

Rot(θ(kmin, i)) =

[
cos(θ(kmin, i)) − sin(θ(kmin, i))
sin(θ(kmin, i)) cos(θ(kmin, i))

]
(8)
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Here, kmin represents the optimal rotation angle between each pair of matches. pi and pm are the
2D vectors of the image coordinates for vertices vi and vm.

(4) For each vertex vi in Vp, find the percentage of edges that are connected to vi with their
correspondences connected to v′i in Vq. The weight value is set to be π if the percentage is
smaller than 50%.

(5) For each vertex vi in Vp, compute the mean of all weights by (9). Remove the vertex corresponding
to the maximum value of w and all of its corresponding vertices from P and Q:

w(i) = mean
∀j,(i,j)∈Ep

(W(i, j)) (9)

(6) If the maximum value of w is less than π, and the change in the mean value of w(i) is less than
the threshold, the iteration is terminated; otherwise, it goes to the next iteration.

3. The INS Error Propagation Model

An INS is available in this paper; hence, an INS error propagation model [30] is employed in
this paper. The INS error propagation model in [30] is modified in this paper, since the n-reference
frame adopted in underwater vehicles (north, east and down reference frames) is different from the
n-reference frame adopted in [30] (east, north, and up reference frames).

Let αz, αy, αx be the three rotational angles from n-reference frame (ideal mathematics platform)

to the n′-reference frame (actual mathematics platform), α =
[

αx αy αz

]
; the rotation matrixes

can be expressed as:

Cαz =

 cos αz − sin αz 0
sin αz cos αz 0

0 0 1


Cαy =

 cos αy 0 − sin αy

0 1 0
sin αy 0 cos αy


Cαx =

 1 0 0
0 cos αx sin αx

0 − sin αx cos αx


(10)

Then, the coordinate transformation matrix from the n-reference frame to the n′-reference frame
is derived:

1Cn′
n = Cαx Cαy Cαz (11)

Denoting with ωn′
nn′ the relative angular velocity of the n′-reference frame in the n-reference frame:

ωn′
nn′ = Cαx Cαy

 0
0
.
αz

+ Cαx

 0
.
αy

0

+


.
αx

0
0

 = Cω


.
αx
.
αy
.
αz

 (12)

Hence, the differential equation of Euler platform error angles can be expressed as follows:

.
α = C−1

ω ωn′
nn′ (13)

Cω =

 1 0 − sin αy

0 cos αx sin αx cos αy

0 − sin αx cos αx cos αy


C−1

ω = 1
cos αy

 cos αy sin αx sin αy cos αx sin αy

0 cos αx cos αy − sin αx cos αy

0 sin αx cos αx


(14)
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Denoting with ωn
ie the rotational angular velocity of the earth, L and h are the latitude and depth,

respectively. RM is the local radius of the curvature in the meridian, and RN is the local radius of the
curvature in the prime vertical. L̂ = L + δL, ĥ = h + δh. δL and δh are both slight errors. The following
equations have been derived:

ωn
ie =

[
ωie cos L 0 −ωie sin L

]T
(15)

ωn
en =

[
vn

E
RN−h − vn

N
RM−h − vn

E
RN−h tan L

]T
(16)

δωn
ie =

 −ωie sin L̂δL
0

−ωie cos L̂δL

 (17)

δωn
en =


δvn

E/
(

R̂N − ĥ
)

−δvn
N/
(

R̂M − ĥ
)

−
(
tan L̂δvn

E + v̂n
E sec2 L̂δL

)
/
(

R̂N − ĥ
)
 (18)

On the basis of formulas above, the INS error propagation model that is used in the underwater
environment have been derived [30]:

δ
.
L =

δvn
N

RM−h + δh vn
N

(RM−h)2

δ
.
λ =

δvn
E

RN−h sec L + δL vn
E

RN−h tan L sec L + δh vn
E sec L

(RN−h)2

δ
.
h = δVD

α = C−1
ω

[(
I− Cn′

n
)
ω̂n

in + Cn′
n δωn

in − Cn′
b εb]− C−1

ω Cn′
b wb

g

δvn =
[
I−

(
Cn′

n
)T
]
Cn′

b f̂b
sf +

(
Cn′

n
)TCn′

b ∇b −
(
2δωn

ie + δωn
en
)
× (v̂n − δvn)

−
(
2ω̂n

ie + ω̂n
en
)
× δvn +

(
Cn′

n
)TCn′

b wb
a

.
ε

b
= 0

.
∇

b
= 0

(19)

where εb and wb
g are the constant bias and zero mean Gaussian white noise of the gyroscope,

respectively, and ∇b and wb
a are the constant bias and zero mean Gaussian white noise of the

accelerometer, respectively.

4. The Real-Time Triple Constraint Mismatch Detection Method

In DBRN, the matching process involves a digital base map. The resolution of the base map
and the matching features greatly affect the matching accuracy. In the case of a base map with a
large resolution, or in the case of the smooth matching features, mismatch has a high probability
of occurrence. Therefore, it is necessary to develop a mismatch detection method for matching
algorithms-based DBRN systems.

As the primary navigation system of AUV, INS has the characteristics of short-term high precision.
INS can give continuous accurate positions to begin with, but the accumulated position errors are
unacceptable after a long period underway. The position error of INS increases slowly with time, but it
does not increase suddenly and rapidly in a short period, which means that in a period of time, the
relative positions between the INS-indicated positions and the corresponding actual positions can be
regarded as being accurate and reliable. The shape of the INS-indicated trajectory is supposed to be
similar to the corresponding actual vehicle trajectory [31,32]. Therefore, an INS-indicated trajectory
and the corresponding matched trajectory can be used as inputs for WGTM to perform mismatch
detection. In addition, considering that AUVs are able to maintain a direct (linear) trajectory during
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navigation underwater [5], the matched points can be fitted by using a linear model. It is thus possible
to detect mismatched points using MSAC. However, the direct use of WGTM and MSAC on AUV for
mismatch detection has the following drawbacks:

(1) MSAC and WGTM have poor real-time performance. These two algorithms eliminate all of the
outliers by iteration. Conversely, in a navigation system, the most important thing is to judge
whether the current position is mismatched.

(2) MSAC cannot detect the mismatched point that fits the model, and WGTM cannot detect the
mismatched point with the same structure.

(3) Both MSAC and WGTM do not take into account the distance constraint between the
sampling points.

In view of the limitations of MSAC and WGTM applied on AUV, this paper proposes a
real-time triple constraint mismatch detection method. The real-time triple constraint mismatch
detection method is divided into three modules: the model fitting detection module, the spatial
structure detection module, and the distance ratio detection module. The proposed method changes
multi-point simultaneous detection into real-time detection of the current point. Due to the short-term
high-precision of INS, the INS-indicated trajectory can be approximated as the actual trajectory during
the initial period of time (assuming that the constant drift and random drift of gyro are both 0.02 ◦/hr,
the accelerometer’s constant bias and random bias are both100 µg, and then the position error of
INS after 10 min of navigation is about 0.2′, which is a resolution that most of the digital base map
cannot reach). This feature will be used to select the input trajectory. In this paper, MSAC and WGTM
are simplified to make it suitable for AUV real-time mismatch detection. In addition, the distance
ratio constraint between the INS-indicated trajectory and the corresponding matched trajectory is
established according to the INS error propagation model. The flow of the proposed method is shown
in Figure 1.
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4.1. Model Fitting Detection

Based on MSAC, the proposed detection method detects the fitting degree of the current
matching result with the optimal linear model. In the model fitting detection module, Xmatch ={

xmatch
1 , xmatch

2 , . . . , xmatch
N

}
are the input point sets. Here xmatch

N is the current point (the output of
matching algorithm at the current moment), and xmatch

i (i = {1, 2, . . . , N − 1}) are N − 1 correct
matched points closest to xmatch

N . If there are fewer than N − 1 points successfully matched before
xmatch

N , the remaining points are supplemented by the INS-indicated position that can be considered the
actual position. As mentioned before, considering the short-term high-precision characteristics of INS,
as long as the accumulated position error calculated by (19) is smaller than one grid, the INS-indicated
position can be regarded as the actual position. Define exmatch

i
as the Euclidean distance between xmatch

i
and the current linear model M. Functions (1) and (3) are used to generate the value of cost function
CM. M with the largest number of inliers, and the smallest value of CM is the best linear model Mbest.
In practical experiments, the correct error threshold T is set to three grids (found empirically). Finally,
the error exmatch

i
is calculated for each point in Xmatch relative to Mbest. If xmatch

N is an outlier and exmatch
N

is the largest error among all points in Xmatch, then xmatch
N is a mismatched point. The pseudo-code of

model fitting detection is shown in Algorithm 1.

Algorithm 1. Model fitting detection

Begin
1. select input point set Xmatch

2. initialize Ninliers
Mbest

= 0
3. for I = 1 to N − 1
4. for j = 2 to N

calculate the parameters of the linear model M according to xmatch
i and xmatch

j
compute Ninliers

M (the number of inliers) in Xmatch based on M and ρ2

calculate the cost function CM

if Ninliers
M > Ninliers

Mbest
or (Ninliers

M = Ninliers
Mbest

and CM < CMbest )
Mbest = M

end if
end for j

end for i
5. if xmatch

N is an outlier and emax
xmatch

i
= exmatch

N
, i = {1, 2, . . . , N}, xmatch

N is a mismatched point

End

4.2. Spatial Structure Detection

The shape of the INS-indicated trajectory is supposed to be similar to the actual vehicle trajectory.
In other words, the INS-indicated trajectory has a similar spatial structure to the corresponding actual
trajectory. In the spatial structure detection module, the WGTM algorithm is simplified to make it more
suitable for handling mismatch detection problems in matching algorithms-based DBRN systems.

In image processing, some of the points go through dramatic changes, and they therefore do not
retain the invariance property with respect to rotation or scale under large perspective transformation.
This problem does not exist in the mismatch detection problem in navigation systems, because
the rotation angle between the INS-indicated trajectory and the corresponding actual trajectory
is small. Therefore, the second step in WGTM is removed. In addition, the proposed method
simplifies the computation by using the rotation angle between the INS-indicated trajectory and
the corresponding matched trajectory as the optimal rotation angle. Let XINS =

{
xINS

1 , xINS
2 , . . . , xINS

N
}
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be the INS-indicated trajectory, and let Xmatch =
{

xmatch
1 , xmatch

2 , . . . , xmatch
N

}
be the corresponding

matched trajectory. Denoting with Q the covariance matrix:

Q =

[
Q11 Q12

Q21 Q22

]
=

N

∑
k=1

(
xINS

k − x̃INS
)(

xmatch
k − x̃match

)T
(20)

where
~
x

INS
and

~
x

match
are, respectively, the average values of all position vectors in XINS and Xmatch.

The eigenvalues of Q and the rotation angle from XINS to Xmatch are calculated through a quaternion
algorithm [33]:

λ1,2 = ±
[
(Q11 + Q22)

2 + (Q21 −Q12)
2
]1/2

λ3,4 = ±
[
(Q11 −Q22)

2 + (Q21 + Q12)
2
]1/2 (21)

tg(
τ

2
) = (S11 + S22 − λm)/(S12 − S21) (22)

where λµ(µ = {1, 2, 3, 4}) are four eigenvalues of Q, and λm is the maximum eigenvalue. τ is the
rotation angle from XINS to Xmatch. The spatial structure detection module can be described by the
following steps.

(1) Two median KNN graphs GINS =
{

VINS, EINS} (with the adjacency matrix AINS) and Gmatch ={
Vmatch, Ematch

}
(with adjacency matrix Amatch) are generated for the trajectories XINS ={

xINS
1 , xINS

2 , . . . , xINS
N
}

and Xmatch =
{

xmatch
1 , xmatch

2 , . . . , xmatch
N

}
. A directed edge (i, j) exists when

xj is one of the K-nearest neighbors of xi and also ‖xi − xj‖ ≤ η, η is defined by (4). The adjacency
matrix is defined by (5).

(2) For the edge that connects vmatch
i to vmatch

m compute a weight value using the following equation:

W(i, m) =

∣∣∣∣∣arccos

(
(xINS

m − xINS
i ) ·

(
Rτ(xmatch

m − xmatch
i )

)
‖xINS

m − xINS
i ‖‖x

match
m − xmatch

i ‖

)∣∣∣∣∣ (23)

where:

Rτ =

[
cos τ − sin τ

sin τ cos τ

]
(24)

Here, τ represents the optimal rotation angle calculated by (22). Rτ is the corresponding
rotation matrix.

(3) For vertex vmatch
N , find the percentage of edges that are connected to vmatch

N , with their
correspondences connected to vINS

N . If the percentage is smaller than 50%, the weight value
of all different edges should be replaced by π.

(4) For each vertex vmatch
i , compute the mean of all weights by the following expression:

w(i) = mean
∀j,(i,j)∈Ematch

(W(i, j)) (25)

(5) If the maximum value of w is not w(N), xN pass the spatial structure detection; otherwise, set:

µold = mean
∀i

(w(i)) (26)

and let XINS =
{

xINS
1 , xINS

2 , . . . , xINS
N−1

}
and Xmatch =

{
xmatch

1 , xmatch
2 , . . . , xmatch

N−1
}

. Repeat step (1)
to step (4), and µnew is calculated by (26). If |µnew − µold| < ε, xN passes the spatial structure
detection; otherwise, xN is a mismatched point. The value of ε is set to 0.01 (found empirically)
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for all of the results presented in this work. The pseudo-code of the spatial structure detection is
shown in Algorithm 2.

Algorithm 2. Spatial Structure Detection

Begin:
1. select input point sets XINS =

{
xINS

i
}

and Xmatch =
{

xmatch
i

}
, i = {1, 2, . . . , N}

2. create GINS, Gmatch, AINS, Amatch

3. compute W
4. ∀(i, j) ∈ Ematch, compute w(i) = mean(W(i, j))

5. if max(w(i)) 6= w(N)

xN pass the spatial structure detection
else

µold = mean
∀i

(w(i))

delete xN and regenerate XINS =
{

xINS
i
}

, Xmatch =
{

xmatch
i

}
, i = {1, 2, . . . , N − 1}

repeat steps 1 to 4, calculate µnew

if |µnew − µold| < ε

xN pass the spatial structure detection
else

xN is a mismatched point
end if

end if
End

4.3. Distance Ratio Detection

There is a scaling error between the INS-indicated trajectory and the corresponding actual
trajectory [34]. To better describe the scaling error, let XINS =

{
xINS

1 , xINS
2 , . . . , xINS

N
}

be the
INS-indicated trajectory and let Xactual =

{
xactual

1 , xactual
2 , . . . , xactual

N
}

be the corresponding actual
trajectory. The INS-indicated distance and the actual distance in a short period are expressed by the
following equations:

dINS
k−1,k =

‖vINS
k−1 + vINS

k ‖
2

· ∆tk−1,k (27)

dactual
k−1,k ≈

‖vactual
k−1 + vactual

k ‖
2

· ∆tk−1,k (28)

dINS
k−1,k and dactual

k−1,k are, respectively, the INS-indicated distance and the actual distance between xk−1

and xk, respectively; k ∈ {2, 3, . . . , N}. vINS
k and vactual

k are the INS-indicated linear velocity and the
actual linear velocity, respectively, of xk. ∆tk−1,k is the time interval between xk−1 and xk. Then, the
relationship between dINS

k−1,k and dactual
k−1,k is derived:

dactual
k−1,k

dINS
k−1,k

=
‖vactual

k−1 + vactual
k ‖

‖vINS
k−1 + vINS

k ‖
(29)

where vINS
k is described by an equation in the form:

vINS
k = vactual

k + δvk (30)

Here δvk is the INS-accumulated velocity error of xk. Accordingly, (29) is developed into the following
form:

dactual
k−1,k

dINS
k−1,k

=
‖vINS

k−1 + vINS
k − δvk−1 − δvk‖

‖vINS
k−1 + vINS

k ‖
(31)
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Through (19) and (31), the range of
dactual

k−1,k
dINS

k−1,k
during the entire sailing period can be estimated. Define

Smin as the lower bound of the range and Smax as the upper bound of the range. The range can be
expressed by the following expression:

dactual
k−1,k

dINS
k−1,k

∈ (Smin, Smax) (32)

Based on the premise described above, for a matched trajectory Xmatch, if Xmatch is a correctly

matched trajectory,
dmatch

k−1,k
dINS

k−1,k
should meet the range described in (32), k = {1, 2, . . . , N}. Here dmatch

k−1,k is

the distance between xmatch
k−1 and xmatch

k . The pseudo-code of the distance ratio detection is shown in
Algorithm 3.

Algorithm 3. Distance ratio detection

Begin:
1. select input point sets XINS =

{
xINS

i
}

and Xmatch =
{

xmatch
i

}
, i = {1, 2, . . . , N}

2. compute
dmatch

N−1,N

dINS
N−1,N

3. if Smin ≤
dmatch

N−1,N

dINS
N−1,N

≤ Smax

xN passes the distance ratio detection
else

xN is a mismatched point
end if

End

5. Simulation and Analysis

In order to test the feasibility of our approach, numerous simulation experiments have been
performed. Firstly, an INS-indicated trajectory was generated. Secondly, the vector iterated closest
contour point (VICCP) algorithm [34] was conducted to obtain a matched trajectory. Thirdly, the
proposed mismatch detection method was performed. Fourthly, we used the RSOC-based mismatch
diagnostic [9] algorithm as a reference, comparing the results of the RSOC-based mismatch diagnostic
algorithm with the proposed algorithm. Finally, we analyzed the impact of thresholds on the
proposed method.

5.1. Simulation of INS

An INS-indicated trajectory starting from (156.4◦E, 19.7◦N) was generated, and the INS-relevant
parameters are listed in Table 1. The INS position error is shown in Figure 2. As seen from Figure 2,
the position error of the generated trajectory exhibited a Schuler oscillation of 84.4 min.

Table 1. Simulation conditions of the inertial navigation system (INS).

Parameters Quantity Unit

Gyro constant drift 0.02 ◦/hr
Gyro random drift (1σ) 0.02 ◦/hr

Accelerometer constant bias 100 µg
Accelerometer random bias (1σ) 100 µg

Velocity 7.71 m/s
Acceleration 0 m/s

Initial angle error 0 ◦

Azimuth angle 60 ◦

Initial longitude error 0.1 ′

Initial latitude error 0.1 ′

Simulation time 10 hr
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5.2. Simulation of the Proposed Algorithm

To perform the mismatch detection method presented in this work, in addition to the
INS-indicated trajectory, a matched trajectory is required. In the simulation experiment, we used
the VICCP algorithm as the matching algorithm. The EMAG2 model [35] was used to calculate the
geomagnetic anomaly in the area from (152.4◦E, 19.5◦N) to (156.6◦E, 23.7◦N). After interpolation, the
grid step was converted to 0.3′. The 3D maps of the geomagnetic anomaly data are shown in Figure 3.
The geomagnetic anomaly-relevant parameters are shown in Table 2.
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Table 2. Parameters of the geomagnetic base map.

Parameters Quantity Unit

Number of grid points 840 × 840 points
Grid step 0.3 ′

Minimum value −719.21 nT
Maximum value 253.44 nT

Mean −2.46 nT

Table 3 shows the configuration of the VICCP algorithm. After the INS-indicated trajectory and
the corresponding matched trajectory calculated by VICCP are gained, their position information
is delivered to the proposed method. T and ε in the proposed method are set to 3 grid and 0.01,
respectively. Figure 4 shows the INS-indicated trajectory, the matched trajectory calculated by VICCP,
and the trajectory after performing the proposed mismatch detection method within nine hours. In
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Figure 4, the red cycle in VICCP trajectory represents the mismatched point, which is defined as
the point where the position error is greater than five grids. The black arrow in Figure 4 indicates
the direction of navigation. Obviously, compared to the VICCP trajectory in Figure 4, the matched
trajectory obtained by the proposed method was significantly closer to the actual trajectory. Figure 5
indicates the longitude error and latitude error of each matching point. At the beginning, the VICCP
algorithm could hold a highly successful matching rate. However, with the initial position error
increase, the successful matching rate decreased significantly.

Table 3. Configuration of the vector iterated closest contour point (VICCP) algorithm.

Parameters Parameter Values

Maximum number of iterations 500
Number of sampling points per sequence 13

Sampling interval 5 min
The variance of the magnetic anomaly measurement noise 1 nTSensors 2019, 19, x FOR PEER REVIEW  15 of 19 
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5.3. Comparison between the RSOC-Based Mismatch Diagnostic Algorithm and the Proposed Method

In the comparative experiment of the RSOC-based mismatch diagnostic algorithm and the
proposed method, we used the RSOC-based mismatch diagnostic algorithm and the proposed method
to detect the same trajectory. a and b in the RSOC based mismatch diagnostic algorithm were set to 1
grid and 0.5 grid, respectively. Figure 6 shows the results of the two detection methods, the green circles
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represent the detected results obtained by the RSOC-based mismatch diagnostic algorithm, and the red
circles represent the detected results obtained by the proposed method. In Figure 6, the pink dotted
line is the boundary between the correct match and the mismatch, the mismatched points are above
the dotted line, and correct matched points are below the dotted line. In order to better evaluate the
proposed method, the statistical results of the two methods are given in Table 4. In Table 4, a matching
result is considered to be a successful match if the position error is within 5 grids (1.5′). The results of
the two mismatch detection methods include correct detection (points with a position error of greater
than 5 grids) and error detection (points with a position error of less than 5 grids). The proportion of
the correct detection in the detection results can measure the performance of a mismatch detection
algorithm. In addition, the detection results do not necessarily include all of the mismatched points on
the trajectory. The proportion of the correct detection results in all mismatched points was also used to
measure the performance of the algorithm. Column CD (Correct Detection) represents the number of
points in the detection results where the position error is greater than five grids. The column TN (total
number) stands for the total number of points obtained by the corresponding detection algorithm.
TN’ is defined as the total number of the points with position errors of greater than five grids on the
trajectory. CR (correctness rate) and DR (detection rate) are defined by the following expressions:

CR =
CD
TN

(33)

DR =
CD
TN′

(34)
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Table 4. Statistic results of the RSOC-based mismatch diagnostic algorithm and the proposed method.

Detection Method CD TN CR DR

RSOC-based mismatch
diagnostic algorithm 30 34 88.24% 46.88%

Proposed algorithm 45 54 83.33% 70.31%

It can be concluded from Figure 6 and Table 4 that the proposed method can detect more
mismatched points than the RSOC-based mismatch diagnostic algorithm. Moreover, since the proposed
method can perform mismatch detection point-by-point, the proposed method can perform a mismatch
detection every time the current location is updated. However, the RSOC-based mismatch diagnostic
algorithm performs a mismatch detection sequence by sequence, and it cannot perform mismatch
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detection immediately when the location is updated. Therefore, the proposed method can detect the
matching result in real time.

5.4. Influence of the Threshold Value

In the proposed method, T and ε are two threshold values that need to be set. The impact on the
detection results of the threshold value is discussed in this part. The statistic results obtained by the
different thresholds are shown in Table 5.

Table 5. Threshold value settings and results.

Threshold Value
CD TN CR DR

T ε

3 grid 0.001 59 86 68.60% 92.19%
3 grid 0.1 41 47 87.23% 64.06%

0.5 grid 0.01 62 97 63.92% 96.88%
7 grid 0.01 36 41 87.90% 56.25%

It was determined that the smaller the values of T and ε, the more mismatched points are detected,
and the greater the probability of false detection. The larger the values of T and ε, the smaller the
role of the model-fitting detection module and the spatial structure detection module in the proposed
mismatch detection method.

The settings of the threshold values depended on the resolution of the base map and the accuracy
of the INS. Under the simulation conditions of this paper, when T was set to 3 grid~5 grid and ε was
set to 0.01~0.05, the detection results varied slightly.

6. Conclusions

In this paper, a real-time mismatch detection method for DBRN is proposed. The proposed
method consists of model-fitting detection module, spatial structure detection module, and a distance
ratio detection module. In the model-fitting detection module, we used the navigation characteristics
of AUV to select the model for fitting. In the spatial structure detection module and the distance
ratio detection module, we used the short-time high-precision characteristics of INS and the error
propagation model of INS to perform mismatch detection. Simulation tests are performed on a
geomagnetic map with resolution of 0.3′×0.3′. The simulation results show that the proposed method
can detect the mismatched points accurately in real time. The matched trajectory gains better reliability
after eliminating the mismatched points.

The proposed method can correct the output of DBRN, but it does not improve DBRN itself.
The method of performing closed-loop correction on the position error of INS should be discussed in
the next step.
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