
sensors

Article

Genetic Optimization of Energy- and Failure-Aware
Continuous Production Scheduling
in Pasta Manufacturing

Ke Shen 1,* , Toon De Pessemier 1, Xu Gong 2 , Luc Martens 1 and Wout Joseph 1

1 Department of Information Technology, Ghent University/IMEC, Technologiepark 126, 9052 Ghent, Belgium;
Toon.DePessemier@UGent.be (T.D.P.); Luc1.Martens@ugent.be (L.M.); Wout.Joseph@UGent.be (W.J.)

2 Huawei Technologies, Songshan Lake Technology Park, Dongguan 523808, China; xu.gong@outlook.com
* Correspondence: Ke.Shen@UGent.be

Received: 29 November 2018; Accepted: 8 January 2019; Published: 13 January 2019
����������
�������

Abstract: Energy and failure are separately managed in scheduling problems despite the commonalities
between these optimization problems. In this paper, an energy- and failure-aware continuous
production scheduling problem (EFACPS) at the unit process level is investigated, starting from the
construction of a centralized combinatorial optimization model combining energy saving and failure
reduction. Traditional deterministic scheduling methods are difficult to rapidly acquire an optimal
or near-optimal schedule in the face of frequent machine failures. An improved genetic algorithm
(IGA) using a customized microbial genetic evolution strategy is proposed to solve the EFACPS
problem. The IGA is integrated with three features: Memory search, problem-based randomization,
and result evaluation. Based on real production cases from Soubry N.V., a large pasta manufacturer
in Belgium, Monte Carlo simulations (MCS) are carried out to compare the performance of IGA with
a conventional genetic algorithm (CGA) and a baseline random choice algorithm (RCA). Simulation
results demonstrate a good performance of IGA and the feasibility to apply it to EFACPS problems.
Large-scale experiments are further conducted to validate the effectiveness of IGA.

Keywords: genetic algorithm; continuous production scheduling; energy and failure management;
pasta manufacturing

1. Introduction

Energy modeling for fabrication processes and energy-aware production scheduling are fundamental
issues for energy management in manufacturing systems. The former is in the scope of energy efficiency
(EE) [1], investigating opportunities for energy saving in a production process. The latter is in the
field of demand response (DR) [2], taking into account volatile energy prices and the power profiles
of machines. In literature, energy consumption is regularly tackled as one objective of scheduling,
engaged in the optimization model with other objectives, including makespan [3], reliability [4],
tardiness [5], or labor cost [6]. Especially in continuous manufacturing systems, such as steel-making [7]
and textile dyeing [8], although these processes are extremely energy-sensitive, energy saving has a
limited contribution to the optimization compared to other objectives.

Certainly, energy management cannot be ignored for energy-sensitive continuous production
scheduling. Among other objectives, reliability is one of the most difficult to achieve. A provided
schedule is often faced with uncertainties in actual production, preventing it from being executed
as planned, where failure uncertainty is considered the most significant uncertainty in production
scheduling [9]. However, uncertainties are usually not taken into consideration during the execution
of schedules [10], since the reliability of the environment is hard to measure. Stochastic modeling

Sensors 2019, 19, 297; doi:10.3390/s19020297 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/https://orcid.org/0000-0002-2502-7088
https://orcid.org/https://orcid.org/0000-0002-7568-9645
https://orcid.org/https://orcid.org/0000-0002-8807-0673
http://www.mdpi.com/1424-8220/19/2/297?type=check_update&version=1
http://dx.doi.org/10.3390/s19020297
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 297 2 of 24

is frequently used in literature to define and reflect reliability [11], of which the accurate prediction
is difficult because of the massively multivariate production environment. Additionally, stochastic
methods are highly dependent on historical records, but the root cause (needed to effectively prevent
uncertainties) are not easily found by only looking at statistics [12]. In literature, failure uncertainty
is considered a constraint in most cases because of the aforementioned difficulties in quantitatively
handling it as an objective. Although failure reduction appears to be more difficult than the broadly
studied energy saving, this paper presents an example where modeling techniques for the latter can be
tailored to assist with the former.

The investigated problem in the research is an energy- and failure-aware continuous production
scheduling problem (EFACPS). Although the continuous scheduling problem at the factory level is
often considered a flexible flow shop (FFS) scheduling problem [13], this paper focuses on EFACPS on
a single machine at the unit process level. After reviewing current research of energy-aware scheduling
and failure-related scheduling (see Section 2), the investigated problem was formulated as a centralized
combinatorial optimization model. Since energy saving and failure reduction are always separately
studied in literature, this model is an early effort to combine both energy and failure modeling in
production scheduling.

The studied EFACPS problem is deduced as NP-hard. This paper also provides an improved
genetic algorithm (IGA) using a customized microbial genetic evolution strategy [14] to solve it.
The IGA is introduced with three integrated features: Memory search, problem-based randomization,
and result evaluation. These features enhance its convergence speed without trapping into local
optima. Compared with a conventional genetic algorithm (CGA) and a baseline random choice
algorithm (RCA), whose pseudo codes are available in this study, the proposed IGA can obtain a
near-optimal schedule for real EFACPS problems in a shorter time. Monte Carlo simulations (MCS)
using actual industrial data evaluated the performances of the algorithms, indicating that IGA has the
best performance.

The main contributions of this paper are as follows: (1) The energy- and failure-aware production
scheduling model introduced in this paper puts forward an exceptional perspective combining energy
and failure modeling; (2) failure reduction is demonstrated as a possible objective of production
scheduling, which was normally considered as a criterion in literature; (3) an IGA using a customized
microbial evolution strategy is proposed to solve the EFACPS problem, integrated with new features;
(4) the performances of IGA, CGA and RCA were investigated using MCS based on actual production
data from a large pasta manufacturer; (5) discussions on parameter resolution for the model and for
the algorithms are provided.

The remainder of this paper is organized as follows. Section 2 provides a literature review revealing
the problem. In Section 3, the primary notation, mathematical formulation, and the optimization
model of the problem are introduced. In Section 4, IGA, CGA, and RCA are presented to solve the
NP-hard problem. Section 5 investigates different cases derived from empirical records of the company.
The performance of the provided IGA is evaluated from the perspectives of convergence speed and
complexity. Discussions on parameter preferences in solving the real EFACPS are also held in this
section. Section 6 finally draws the related conclusions.

2. Literature Review

The studied issues in this paper involve specific production scheduling problems with energy- or
failure-related objectives. Methodologies for detecting and handling failures in corresponding fields
are also inspected.

2.1. Energy-Aware Scheduling

Energy-aware scheduling was broadly studied in recent research. Multiobjective optimization
models were proposed in literature, which were often deduced or proved as NP-hard. Heuristics were
frequently used to search for near-optimal solutions.

Sensors 2019, 19, 297 3 of 24

Gong et al. [15] formulated a mixed-integer linear programming (MILP) mathematical model for
energy-aware production scheduling on a single machine, where a finite state machine (FSM) was used
for energy modeling of different machine states. A conventional genetic algorithm was implemented
to give an energy-efficient solution even at the presence of stochasticity, verified by empirical data
from a grinding machine. For 35 jobs in 7 days, the GA took 2593 s to search for a near-optimal
schedule. The performance of the algorithm was intended to improve. Jaclason et al. [16] presented a
multiobjective nonlinear programming model solved with the nondominated sorted genetic algorithm
(NSGA-II), aiming to schedule the use of home appliances based on the price of electricity in real-time
(RTP). Statistical analysis indicated that NSGA-II has a better performance than a random GA. Details
of the adaptation of the algorithm to the actual problem were not mentioned. István et al. [17]
investigated the design of robust production scheduling proactively guaranteeing the energy
consumption limit with uncertainty scenarios. Two exact (branch-and-bound and logic-based benders
decomposition) and one heuristic algorithm (tabu search) were used to find an optimal permutation
of given operations. Afterwards, a pseudo-polynomial algorithm was proposed to find the optimal
robust schedule for that permutation. The master problem as a MILP model was solved by an existing
optimizer, Gurobi. Guo et al. [5] addressed a flow shop scheduling problem minimizing energy
consumption and tardiness penalties with the constraints of machine-state-dependent setup time.
Fuzzy numbers were used to determine the impact of uncertainty. A GA with better performance
than random GA was introduced, but the genetic operations were problem-specified and hard to
adapt to other scenarios. Guillaume et al. [3] studied energy-aware scheduling of task execution on
multiprocessors. The NP-hardness of the problem was proven; afterwards, possible solutions were
discussed. Multiple heuristics were examined to get a near-optimal schedule, where the best heuristic
was defined as the one with the minimum value of the objective function. If the scenario changes,
the proposed heuristic might not remain efficient.

Research on energy-aware scheduling has provided multiple modeling techniques and algorithms
for relatively efficient solutions. Further reviews of failure-related scheduling attempts to discover
commonalities in problem modeling and algorithm design are needed.

2.2. Failure-Related Scheduling

Stochastic modeling is used in many studies by assuming or estimating a probability distribution
of uncertainty during production periods [18]. These methods highly depend on historical records to fit
the distribution. Robust scheduling does not have these kinds of limits, since no probability distribution
of uncertainty is needed [19]. Instead of modeling uncertainties using stochastic approaches, it is
designed to “absorb” uncertainty [20].

Li et al. [21] investigated a workload scheduling problem in cloud data centers. Reliability indexes
were defined and labeled using worst-fit and best-fit strategies; afterwards, algorithms were designed
to make the best use of the most reliable and powerful servers in data centers. The proposed method
benefited from logs of data centers, while in other scenarios, detailed records of failure are limited.
Jiang et al. [22] studied production scheduling with uncertain processing times for the steel-making
continuous casing problem. An estimation distribution algorithm (EDA) using variate processing
time as the uncertainty factor was proposed, also firmly driven by records of processing times.
Wang et al. [23] worked on production scheduling of precast components in the face of uncertain
workflow. The discrete event simulation (DES) was used to evaluate the feasible options using
genetic algorithms. Uncertain processing time and complex resource constraints were taken into
account in simulations. A trade-off was achieved between on-time delivery and minimum production
cost. The proposed approach was implemented in the simulation software ARENA on a commercial
optimization engine. Lu et al. [24] assumed a machine breakdown following the Weibull failure
function in a maintenance planning production scheduling problem. A bi-objective genetic algorithm
was used for saving energy and meeting deadlines, with preventive maintenance integrated into
production orders. However, Weibull distribution is not always an ideal model for failures in other

Sensors 2019, 19, 297 4 of 24

scenarios. Guo et al. [25] dealt with a multiobjective production scheduling problem at the factory level,
where uncertainties were described as continuous or discrete random variables. Factors including
completion time and start time of production processes were derived using probability theory. A linear
model based on the concept of satisfactory level was used to represent the impact of uncertainty. Stochastic
optimization with such a basic model is not sufficient for complex systems. Drwal et al. [26] provided a
polynomial time optimization algorithm for the problem of scheduling jobs with uncertain completion
due-dates on a single machine. Jobs were supposed to have equal weights and uncertain due-date
intervals were randomly generated. For more general problems with different weights of jobs, the
research conjectured the problem to be NP-hard and presented heuristics algorithms as possible
approaches. Shown in experimental results, computational complexity increased significantly in some
cases. Ghezail et al. [27] introduced graphical representations of scheduling solutions to model the
robustness of the schedule and the impacts of unexpected disruptions. This method avoided restrictive
quantitative approaches used for robust scheduling, based on an assumption that the initial order of
jobs was always respected.

In literature, there were many differences between energy and failure modeling. Simulation
methods were frequently used to evaluate customized representations of failure uncertainty. Similar to
energy-aware scheduling, failure-related scheduling problems were regularly deduced as NP-hard,
where heuristics were habitually applied.

To sum up, the scheduling problem has always been formulated in the abstract as ‘find from a Set S
of candidate schedules a subset T that satisfies some criterion C and minimizes an objective function f ’.
Heuristic methods are commonly applied to solve this combinatorial optimization problem [28].

3. Problem Formulation

The EFACPS problem studied in this paper was formulated by investigating three subproblems,
including ordinary production scheduling, energy-aware scheduling, and failure-aware scheduling.
Afterwards, a centralized combinatorial optimization model is proposed.

3.1. Notation

The description of parameters used in this section is shown in Table 1.

Table 1. Parameters used for problem formulation.

Parameter Description

J set of waiting jobs with ID {1, 2, . . . , N}
ji job with index i
N number of waiting jobs
P set of product types
M number of possible product types
pi product type of ji
qi objective quantity of ji
vp unit production speed of product type p, where p ∈ P
vpi unit production speed of ji, whose product type is pi
ti production duration of ji

Tsti start time of ji
Tedi

end time of ji
Si set of processing stages of ji
TSi set of durations of stages of ji
tSki duration of kth stage of ji
Ps power consumption of stage s
Ei energy consumption of processing ji

CEi energy cost of processing ji
Di vector of energy price

Sensors 2019, 19, 297 5 of 24

Table 1. Cont.

Parameter Description

NDi size of Di
H set of machine health states
hk kth state ranked with failure rate

MRr real-time response maintenance (maintenance type)
MRe replacement maintenance (maintenance type)

π a schedule
r(t) machine failure rate changing over time t
Tpm time stamp of a particular maintenance

B vector of failure rate after maintenance
bk failure rate of kth hour after maintenance
Ri vector of failure rate after raw material charged on the machine
PFi probability of failure occurrence during production of ji
upi unit raw material cost of product type pi
CFi failure cost of ji

3.1.1. Production Scheduling

Continuous production scheduling on a single machine is defined with the following constraints:

• The machine is kept busy if there are remaining jobs to finish.
• The machine has a product-type-dependent production speed.
• The process of a job starts when it is charged on the machine and ends when it is unloaded.
• A new job is charged to the machine immediately after the end of the previous job.
• Each job has a specific product type and a target quantity.
• Preemption is not allowed, since changeover of jobs causes excessive waste.

The scheduling model is constructed from the fundamental objects of the problem. Waiting jobs
are denoted using set J = {j1, j2, . . . , ji, . . . , jN}, where N is the total number. A job ji has two
attributes: Product type pi and objective quantity qi. P = {p1, p2, . . . , pM} is the set of possible
product types. The production speed of a product with type pi is defined as vpi , where pi ∈ P.
Before planning a schedule, all aforementioned parameters (J, P, and pi, vpi , qi of each job ji) are
available and remain constant during production. Such a problem is classified as an offline scheduling
problem [29].

The production duration of job ji is denoted as ti and calculated using Equation (1). The start
timestamp and end timestamp of ji are defined using Tsti and Tedi

, respectively.

ti = qi/vpi (1)

The following time constraints make sure that preemption is prohibited and jobs are executed
respecting the scheduled sequence:

Tsti < Tedi
, i ∈ [1, 2, ..., N] (2)

Tedi
≤ Tsti+1 , i ∈ [1, 2, ..., N] (3)

3.1.2. Energy-Aware Scheduling

Either energy or failure management in actual production is extremely complicated due to
machine and product characteristics [9]. The energy charging policy used in this study is real-time
pricing (RTP) with hourly changed electricity price [6].

A job ji is processed on the machine with four stages: Preparing, Preprocessing, Working and
Discharging, denoted as S = {s1, s2, s3, s4}. The durations of each stage of job ji are represented using
the set Tsi = {ts1i , ts2i , ts3i , ts4i} with a constraint in Equation (4). The machine energy consumption Ei

Sensors 2019, 19, 297 6 of 24

during the production of ji is calculated using Equation (5), where Ps is the power consumption of
stage s.

∀t ∈ Tsi , t > 0, i ∈ [1, 2, ..., N] (4)

Ei = ∑
s∈Si

∑
t∈Tsi

Ps · t (5)

With RTP, the energy cost CEi to process the job ji can be derived. First, we designed a column
vector Di of size NDi to restore useful price information during the production period. Afterwards, Ei
was discretized into a line vector of size NDi . Each element eij represents energy consumption in the
time period between Ti and Tj. This process is illustrated in Figure 1 and Equations (6)–(9).

NDi = bTedi
c − bTstic+ 1 (6)

Di =
[
dbTsti c

, ..., dbTedi
c
]T

(7)

Ei =
[
eTsti bTsti c+1, ebTsti c+1bTsti c+2, ..., ebTedi

cTedi

]
(8)

CEi = Ei · Di (9)

Figure 1. Calculation of energy cost for processing job ji.

In Figure 1, the head of ji has the energy cost of dbTsti c
, starting from Tsti , ending at bTstic + 1.

The tail of ji has the energy cost of dbTedi
c, starting from bTedi

c, ending at Tedi
. The body of ji has costs

[dbTsti c+1, . . . , dbTedi
c−1], starting from bTstic+ 1, ending at bTedi

c.

3.1.3. Failure-Aware Scheduling

The taxonomy of failure awareness in this paper was inspired by Reference [30], which classifies
maintenances by their influences on health states of the machine. The set H = {h1, h2, . . . , hF}
describes machine health states in ascending order of failure rate: h0 is the initial health state and hF is
the failure state. There are two kinds of possible maintenance actions in the system. MRr represents
real-time response maintenances performed by workshop operators. These actions are carried out
during the processing of a job ji, making the machine quickly recover from the blockage but slowly
fall into a worse health state. MRe represents replacement maintenance actions, such as replacing
vulnerable parts or repairing machine components, after which the machine health state will be
restored to a better health state. MRe are immediately performed after machine failure or are planned
on fixed days.

Before modeling the failure uncertainty, background information of the EFACPS problem needs
to be clarified: (1) Raw materials of a job will be lost if machine failure happens after the job charged
on the machine; (2) maintenances are organized on fixed days on the production line; (3) compared to
the cost of wasted raw materials, the cost of maintenances is negligible.

A schedule π is denoted as π = {W1, M1, W2, M2, . . . , ML, WL+1}, where Mi is a maintenance
action of type MRe on a fixed date, Wi is a batch of jobs between two maintenances, and L is the
number of maintenances. If a maintenance of type MRe is planned to the time when the machine is

Sensors 2019, 19, 297 7 of 24

processing job ji, it is considered to finish before Tedi
, without postponing the next job. The duration of

MRe is neglected under the aforementioned assumptions. MRr is indirectly used for the problem to
distinguish maintenance types.

From the sequence of maintenance actions, the probability of machine failure at a given time is
derived. Failure rate r(t) is considered a random variable changing over time t, influenced by the
effect of maintenance and wear in the machine, satisfying the memoryless property that it is based solely
on adjacent maintenances [31]. r(t) is presented in Equation (10), where Tpmi and Tpmj are the time for
two adjacent maintenances Mi and Mj. f1(t) is the average failure rate of time t after maintenance,
whereas f2(t) is the average failure rate of time t before maintenance.

r(t) = r(t, Tpmi , Tpmj) = max[f1(t− Tpmi), f2(Tpmj − t)] (10)

Suppose there are k hours between two adjacent maintenances. A vector I of size k is provided to
estimate the influence of a maintenance, shown in Equation (11), where bj represents machine failure
rate of the jth hour after the first maintenance.

B =
[
b1, ..., bk

]
(11)

The aforementioned failure model reduces both energy and failure modeling to a similar
optimization model. Knowing the hourly dependent failure rate, the failure cost (wasted raw material
cost) CFi to process a job ji can be estimated using a close way of calculating CEi . A vector Ri of size
NRi is defined in Equation (12) to represent the failure rate of each hour after raw material is charged
on the machine. The calculation of B and retrieval of Ri from B is explained in Section 5.1. If machine
failure occurs in the stage Preparing, no failure cost is charged before the stage Preprocessing starts.

Ri =
[
r(bTsti + tSi1c), ..., r(bTedi

c)
]

(12)

The probability of machine failure occurrence during the production of ji is defined as PFi,
calculated using Equation (13), where ri is the ith element of Ri. CFi is calculated using Equation (14),
where upi is the unit raw material cost of ji with product type pi.

PFi = 1−
NRi

∏
i=1

(1− ri) (13)

CFi = PFi · qi · upi (14)

3.2. Optimization Model

The objective of EFACPS is to minimize the overall cost, including failure cost and energy
cost. The multiobjective function is presented in Equation (15) where ϕq is an objective and ωq is the
corresponding weight. The scheduler could set ωq to 0 in case the related objective ϕq needs to be ignored.

F = ∑
q

ωq ϕq (15)

We define the optimization model for the problem in Equation (16), subject to Equations (1)–(14).

min{ω1

N

∑
i=1

CEi + ω2

N

∑
i=1

CFi} (16)

Sensors 2019, 19, 297 8 of 24

4. Method Description

The proposed model has the NP-hardness property according to the following inference: Given
a candidate schedule π, no polynomial time verification algorithm is found to accept or reject π

as a solution. For the problem of size N, its solution domain has the size of N!, since any random
permutation of a waiting job sequence leads to a reachable cost. Although the overall cost of π can be
calculated in polynomial time using the method introduced in this paper, we could not determine its
position in the solution domain. Therefore, the model is not in the class NP and is inherently NP-hard.

A genetic algorithm (GA) is suitable for searching for a solution of an NP-hard problem because
of its adaptive global optimization ability [32]. Conventional GA adopts artificial evolution to
a population of individuals. Properties are inherited from parents but also altered and mutated.
Individuals are selected for a new generation by the desired goal. The provided IGA in this paper
extends CGA with the following features, which accelerate the convergence speed and provide an
easier ascent towards a global optimum: (1) Memory [33] is introduced to prevent duplicate searches;
(2) a customized revolution strategy presented in the microbial genetic algorithm (MGA) [14] is
adopted; (3) problem-related random techniques are applied to prevent the algorithm being trapped
in local optima; (4) new individuals are evaluated to ensure a significant difference from their parents.

The procedure of the algorithm is presented in Figure 2 and discussed below.

Figure 2. Flowchart of the proposed improved genetic algorithm (IGA).

4.1. Initialization

Initial values are starting points in the search space and are highly engaged in influencing the
performance of GA. These values also need to meet the constraints of the model. The population
size ng is another important problem-based tuning parameter, since there is a threshold between the
requirement of computational resources (time and space) in each iteration and the global convergence
speed of the algorithm. For EFACPS of N waiting jobs, an individual is a candidate schedule encoded
with indexes of jobs. A randomly generated vector I of size N is provided to represent an individual,
whose elements are indexes of jobs, implying their execution order.

Sensors 2019, 19, 297 9 of 24

Randomness tests and resampling techniques could also be performed to ensure the randomness
of initial values, which is not the topic of this paper.

4.2. Elitism Selection

The CGA stochastically selects more fitted individuals from the current generation. Afterwards,
genetic operations (crossover and mutation) are evaluated on these individuals to obtain a new
generation. The fitness value is used as a condition for individual selection. The elitism of the current
generation is altered by genetic operations.

For EFACPS, the fitness value of an individual is the overall cost of such a candidate schedule,
calculated using Equation (16). Since elitism is not reserved in each iteration, the application of CGA
(see Algorithm 1) to the problem can lead to no converged evolutions in some iteration. One possible
solution is using a buffer to trace the elitism of each iteration as a candidate for global optima.
This approach is also used in the RCA (see Algorithm 2). Compared to the provided IGA (see Algorithm 3),
such an operation keeps the global convergence but cannot guarantee the local convergence in
each iteration.

Algorithm 1: Conventional genetic algorithm (CGA).
input :waiting job set J, population size α, crossover rate p1, mutation rate p2, number of

iterations n2

output :candidate schedule C, cost P

\\ Initialization ;
pop← randomly generate α candidate schedule;
for i← 1 to n2 do
\\ Selection;
pop← select α individuals, each individual has the selection rate of fitness / total_fitness;
for j← 1 to pop_size do
\\ Crossover;
p = rand(0, 1);
if p < p1 ;
then

c← randomly select another individual from pop;
cross_points← randomly select crossover points;
pop[j]← crossover pop[j] with c according to cross_points;

end
\\Mutation;
p = rand(0, 1);
if p < p2;
then

point, swap_point← randomly choose two points of pop[j];
pop[j]← swap pop[j] with point and swap_point;

end
end
cost_space← calculate cost for each individual in pop;
P← find best cost in cost_space;
best_index← index of P in cost_space;
C← pop[best_index];

end

Sensors 2019, 19, 297 10 of 24

The selection strategy used in the IGA is based on the notation of winner and loser. Two individuals
are randomly chosen from the current generation and sorted by their fitness values, where the winner
has a smaller total cost. Afterwards, the winner is chosen as the elitism and kept identical in the next
generation, while the loser is modified with the following genetic operations. This process is repeated
several times, and each time two children are generated: one is the elitism (same as the winner) and the
other is the altered loser.

Algorithm 2: Random choice algorithm (RCA).
input :waiting job set J, number of iterations n
output :candidate schedule C, cost P

\\ Initialization ;
C← [];
P← positive infinity;
for i← 1 to n do

s← randomly generate a permutation of J;
if get_cost(s) < P;
then

P← get_cost(s);
C← s;

end
end

4.3. Genetic Operators

The crossover and mutation processes are explained in Figure 3. With a randomly generated
mask, the two selected chromosomes (winner and loser) generate a new child. Afterwards, a swap is
performed on two randomly chosen points of the generated child.

Figure 3. Individual crossover and mutation.

Figure 3 presents crossover and mutation in one iteration on an example of six jobs with indexes
{1, 2, . . . , 6}. After elitism selection, the Winner is [1, 5, 2, 3, 4, 6] and the Loser is [1, 2, 3, 4, 5, 6].
A Mask is generated as [T, F, T, F, F, F]. For the parents {Winner, Loser}, winner is kept as the elitism
in the next iteration. Child is generated according to the mask: Positions of loser marked with f alse in
yellow color inherit values of winner. Positions marked with true in green color remain unchanged.
Two points of child are selected and marked in blue color, on which a swap is performed. The mask is
randomly generated and the swap points are randomly chosen.

The hamming distance between the loser and the generated child is calculated, which is the
number of positions at which the corresponding symbols are different [34]. The aforementioned
genetic operations will re-execute if the distance is small, ensuring considerable difference between the
loser and the child.

Sensors 2019, 19, 297 11 of 24

Algorithm 3: Improved genetic algorithm (IGA).
input :waiting job set J of size n1, population size α, crossover rate p1, mutation rate p2,

number of iterations n2, distance indicator λ
output :candidate schedule C, cost P

\\ Initialization ;
pop← randomly generate α candidate schedule;
for i← 1 to n2 do
\\ Elitism selection;
sub_pop← randomly select 2 individuals from pop of size α;
winner, loser← sort sub_pop by fitness value;
origin← loser;
\\ Crossover;
p = rand(0, 1);
if p < p1 ;
then

keep_positions← randomly choose positions of loser;
keep_jobs← loser[keep_positions];
new_jobs← choose non-repeat jobs from winner;
loser← combine keep_jobs and new_jobs;

end
\\Mutation;
p = rand(0, 1);
if p < p2;
then

point, swap_point← randomly choose two points of loser;
loser[point], loser[swap_point]← loser[swap_point], loser[point];

end
\\ Distance evaluation;
if hamming_distance(origin, loser) > n1

λ then
child← loser;
\\Memory search;
if child not in memory then

if memory f ull then
remove oldest item from memory;

end
put child in memory;
sub_pop← winner, loser;
pop← pop with sub_pop updated;

end
else

Restart from crossover;
end

end
else

Restart from crossover;
end
cost_space← calculate cost for each individual in pop;
P← find best cost in cost_space;
best_index← index of P in cost_space;
C← pop[best_index];

end

Sensors 2019, 19, 297 12 of 24

The algorithm also examines the existence of the generated child in the memory space. If the
answer is positive, the child will be dropped and generated again to avoid a repeated search. At the
end of each iteration, individuals of the current generation, represented using vectors, are saved to
a memory space of fixed size. These items are inserted and removed according to the first-in, first-out
(FIFO) principle.

5. Case Study

Pasta is the 331st most traded and the 1069th most complex merchandise according to the product
complexity index (PCI) [35]. In 2014, 14.3 million tons of pasta were produced and traded worldwide,
worth 8.4 billion US dollars [36]. Pasta production is both energy-sensitive and quality-focused [37],
including four major stages: (1) In the mixing stage, wheat semolina or flour is mixed with water and
optional ingredients (egg, salt, vegetable juice, etc.). The mixture is then put through a vacuum dough
mixer to produce a homogeneous mass without air bubbles; (2) in the extrusion stage, the extruder
pushes the dough through dies to form the shape. Blades of trimmers cut the dough in desired length;
(3) in the drying stage, pasta is dried to a desired moisture, giving it a firm shape and a long storage
life; (4) in the packaging stage, pasta is packaged into bags or boxes which are ready to transport.

Disruptions in the aforementioned stages cost huge loss of semifinished products. For instance,
blockage in the extrusion stage for a relatively long time makes the dough hard to shape or even
spoiled. The studied cases in this paper are derived from Soubry N.V., a large pasta manufacturer in
Belgium. With the constantly upgrading IoT (Internet of Things) systems, such disturbances in the
continuous production process can be better measured and supervised. Empirical data concerning
energy consumption and failure measurement are provided by intervention of wireless sensors.

5.1. Parameter Resolution

This section presents how to retrieve parameters of the EFACPS model from empirical data saved
by the manufacturing execution system (MES) used in the company. MES provides information that
helps decision makers to understand the current situation of the shop floor [38]. After preprocessing
for intended uses in production scheduling, the following records were examined:

• Order information records (OIR) contain general attributes of orders processed in the job shop,
including planning time, objective quantity, product type, and raw material cost.

• Order production records (OPR) contain processing details of orders, including effective time and
production speed.

• Machine state records (MSR) contain runtime and downtime periods of the machine in the
processing window of each order.

• Maintenance event records (MER) contain dates of maintenance events.

In addition, RTP data were used as the energy price in the experiment, taken from Belpex, the
electricity spot market in Belgium [39]. Most of the parameters used in the problem formulation can
be found in the aforementioned records, see Table 2. Other parameters which cannot be directly
retrieved in those records were divided into two groups: Parameters (Si, Sik, TSi , tSik , Ps) about
processing stages and parameters (B, bk, Ri) about machine failure rates. The rest of the parameters
(Ei, CEi , PFi, CFi) are objective variables.

Table 2. Parameters in data records.

Record Parameters

OIR J, ji, N, P, M, pi, qi, upi

OPR vp, ti, Tsti , Tedi

MSR H, hk
MER Tpm

BELPEX Di, NDi

Sensors 2019, 19, 297 13 of 24

MES has no records of stage information, making it difficult to know stage-related parameters.
In the case study, according to the experience of job shop operators, we made an assumption that
the average duration of the preparing stage tSi1 is 1 h, after which raw materials are charged to the
machine. The energy consumption profile of the investigated machine is estimated by machine power
parameters and by consumed energy measured by a power meter. Each type of product has a specific
power profile. Until now, all required parameters for Equations (6)–(9) to calculate energy cost CEi

are available.
The function of the failure rate between two adjacent maintenances r(t) is calculated using the

average effect of maintenances, where the influences of maintenances f (t) are accumulated and
normalized. B is a discretized representation of r(t). The procedure of retrieving Ri is explained
as follows:

Figure 4. Retrieval of failure rate vector Ri from the failure rate function.

In Figure 4, r(t) is the function of failure rate over time, bk = r(Tpm + k). Knowing Tsti , Tedi
, tSi1

(by our assumption tSi1 = 1) and the time of the previous maintenance Tpm, Ri can be detected.
With all the required parameters known from the abovementioned procedure, Equations (12)–(14)

are used for calculating failure cost. For the objective function in Equation (16), both ω1 and ω2 are set
to 1.

5.2. Simulation Settings

Empirical MES records are also used as test cases of EFACPS. Before performing the proposed
IGA, various settings of the experiment were made:

1. The concerned waiting job set in the experiment is a subset of all finished jobs in MES records.
Derived from a fixed date range (from 2016-11-03 06:00:00 to 2016-11-07 17:00:00), 8 jobs were
investigated in the case study. Details are provided in Table 3.

2. Corresponding Belpex RTP data have the same date range as the concerned waiting jobs.
3. The time step in the schedule is one second.
4. Maintenances are fixed on Saturdays.
5. Randomly generated data are used instead of real production data for some job characteristics

(raw material cost and power profile) according to the confidentiality agreement.

Table 3. Waiting jobs for scheduling.

ID Product Type Objectif Quantity Start Time End Time Unit Material Cost Power

510 FF011501 40,000 2016-11-03 09:30:51 2016-11-03 14:05:29 0.055 0.13
511 FF082005 45,000 2016-11-03 14:05:33 2016-11-03 22:47:09 0.081 0.09
512 FF025201 30,000 2016-11-03 22:47:15 2016-11-04 04:32:20 0.062 0.09
513 FF027216 35,000 2016-11-04 04:32:23 2016-11-04 17:29:46 0.085 0.10
514 FF049361 30,000 2016-11-04 17:29:50 2016-11-05 05:27:33 0.088 0.14
515 FF049390 50,000 2016-11-05 05:27:41 2016-11-05 21:23:04 0.060 0.09
516 FF174906 40,000 2016-11-05 21:23:07 2016-11-07 08:46:27 0.057 0.13
517 FF044101 35,000 2016-11-07 08:46:35 2016-11-07 14:49:42 0.051 0.15

Sensors 2019, 19, 297 14 of 24

In Table 3, job ji with product type pi has unit raw material cost upi following the distribution
U(0.05, 0.10) BC/kg (from data source [35,36]) and power profile gpi following the distribution
U(0.08, 0.15) MW (from data source [40]).

We used the procedures presented in Section 5.1 to calculate the average effect of maintenance
f (t). The result in reality is shown in Figure 5, based on 90 maintenance records during 1 year.

Figure 5. Failure rate as a function of time before and after maintenance (0d = maintenance day, −x
d = x days before maintenance, +xd = x days after maintenance).

In Figure 5, the failure rate f (t) consists of technical failures and small breakdowns solved by
operators (MRr). Replacement maintenance (MRe) is performed on day 0. As mentioned in Section 3.1.3,
MRr can not prevent the machine slowly falling into a worse health state; instead, MRe can restore the
machine to a better health state. Therefore f (t) slowly increases during the days before maintenance
(negative days) and sharply decreases on the day after maintenance (1 d), then keeps growing in the
following days (other positive days).

With the average effect of maintenance f (t), we can calculate the failure rate of each day.
For instance, 2016-11-04 is Thursday, which is 5 days after and 2 days before a maintenance day
(Saturday); therefore, its failure rate r = max[f1(5), f2(2)].

Parameters for IGA are tuned as follows: The population size α is set as 8; each generation
has 8 candidate solutions. The maximal generation size n2 is 200; therefore, the IGA will iterate the
evolution for 200 generations. In each iteration, two chromosomes are selected and sorted by their
fitness. The winner is retained to the next generation as the elitism, the loser is modified by genetic
operations. The crossover rate (p1 = 60%) and mutation rate (p2 = 80%) are fixed. These high rates
indicate that search points spread out among the solution space [41].

5.3. Results and Discussions

The near-optimal schedule found by IGA was compared with the original schedule and other
candidate schedules: The single objective schedule and shortest job first (SJF) schedule. Figure 6
visualizes the original schedule and the candidate schedules with energy price and failure rate in the
selected date range. Schedules are presented in continuous bar plots with different colors. Real-time
electricity price changes hourly but remains the same within one hour, marked in blue. The failure rate
is derived from previous sections, marked in green. The detailed comparison results of investigated
schedules are provided in Table 4.

All candidate schedules start at 2016-11-03 09:30:51, which is the start time of job 510 in the
original schedule C1. The near-optimal schedule C2 found by the IGA decreases both the energy cost
and failure cost, saving 23.24% of total cost. The near-optimal schedule is further compared with
other schedules using different policies. The candidate schedule C3 uses a classical policy, shortest
job first (SJF), increasing 4.66% of the total cost than C1. Schedules considering a single objective are

Sensors 2019, 19, 297 15 of 24

also inspected: The candidate schedule C4 minimizes the energy cost, saving 5.09% of energy cost and
5.77% of total cost. The candidate schedule C5 minimizes failure cost, saving 24.90% of failure cost and
23.21% of total cost. Among all candidate schedules, C2 has the lowest total cost.

A benefit of our proposed model is the flexibility to apply the schedules in actual production.
Occurrences of short spare time (<1 h) on the machine do not conflict with our assumption that the
machine is kept busy when there are remaining jobs. A slight left or right shift of a job will not
affect the cost of a schedule. For instance, in C1, job 511 is scheduled to start at 2016-11-03 14:05:33
and to finish at 2016-11-03 22:47:09. The maximum left shift of job 511 is 2016-11-03 14:00:00 (start
time). The maximum right shift is 2016-11-03 22:59:59 (end time). Candidate schedules also have
such characteristics to accept shifts. For instance, the investigated schedules in this section have the
maximum left shift to 2016-11-03 09:00:00 and the maximum right shift to 2016-11-07 14:59:59.

Figure 6. Visualization of the original schedule and candidate schedules with real-time (RTP) electricity
price from Belpex and hourly dependent failure rate.

Table 4. Comparison between the original schedule and the candidate schedules.

ID Case Sequence

C1 Original schedule from historical record [510, 511, 512, 513, 514, 515, 516, 517]
C2 Near-optimal schedule using IGA (ω1 = 1, ω2 = 1) [515, 517, 512, 516, 514, 510, 513, 511]
C3 Schedule using shortest job first policy [510, 512, 517, 511, 514, 513, 515, 516]
C4 Schedule minimizing energy cost [515, 510, 512, 513, 514, 516, 517, 511]
C5 Schedule minimizing failure cost [515, 512, 516, 517, 514, 513, 511, 510]

ID Energy Cost Failure Cost Overall Cost Energy Saving Material Saving Total Saving

C1 655.69 8580.17 9235.86 0% 0% 0%
C2 641.17 6448.29 7089.46 2.21% 24.85% 23.24%
C3 666.53 8999.98 9666.51 −1.65% −4.89% −4.66%
C4 622.30 8080.37 8702.67 5.09% 5.83% 5.77%
C5 648.42 6444.06 7092.48 1.11% 24.90% 23.21%

The scheduler can decide the weight of each objective in case there are special requirements
or constraints. Huge consumers of electricity always sign contracts with providers, negotiating
an agreement of low price for a certain amount of electricity [42]. Suppose the company has to
pay extra fees for overuse of electricity: The scheduler adjusts ω1 to 15 without changing other
parameters. The comparison results of candidate schedules after such a modification are provided
in Table 5.

Sensors 2019, 19, 297 16 of 24

The provided IGA obtains the best result (saving 13.14% of total cost) among all candidate
schedules. Experimental results also indicate that the studied EFACPS case of 8 jobs in this section has
fewer opportunities for energy saving than for failure reduction. The failure model contributes more
to the optimization than the energy model for this specific case. Before applying the IGA to actual
EFACPS problems, the performance of the algorithm was investigated.

Table 5. Comparison between the original schedule and the candidate schedules.

ID Case Sequence

C6 Original schedule from historical record [510, 511, 512, 513, 514, 515, 516, 517]
C7 Near-optimal schedule using IGA (ω1 = 15, ω2 = 1) [515, 517, 512, 516, 514, 510, 513, 511]
C8 Schedule using shortest job first policy [510, 512, 517, 511, 514, 513, 515, 516]
C9 Schedule minimizing energy cost [515, 510, 512, 513, 514, 516, 517, 511]

C10 Schedule minimizing failure cost [515, 512, 516, 517, 514, 513, 511, 510]

ID Energy Cost Failure Cost Overall Cost Energy Saving Material Saving Total Saving

C6 9835.40 8580.17 18,415.57 0% 0% 0%
C7 9527.27 6467.66 15,994.93 3.13% 24.62% 13.14%
C8 9997.90 8999.99 18,997.89 −1.65% −4.89% −3.16%
C9 9334.48 8080.37 17,414.86 5.09% 5.83% 5.43%

C10 9726.34 6444.06 16,170.40 1.11% 24.90% 12.19%

5.3.1. Convergence Analysis

Since random sampling is used in the initialization step (see Section 4.1) of IGA, CGA, and
RCA, a Monte Carlo simulation (MCS) is suitable to analyze the result and the performance of
algorithms [43]. The studied case is an EFACPS of size 8 (n1 = 8), having 8! = 40,320 possible candidate
schedules. The MCS is set to run 50 times. Each simulation evaluates 207 candidate schedules,
with 10,350 schedules in total. For a reasonable comparison, the search space of CGA and RCA
should have the same size. Therefore, CGA has same paremeters (n1, n2, α, p1, p2) as IGA. Each
simulation of RCA runs 207 iterations for random choice.

Figure 7 depicts the IGA search trend of MCS. Figure 7a contains 50 curves; each curve corresponds
to one simulation. Despite the consensus that GA produces a near-optimal solution [44], MCS with
sufficient trails can provide an optimal solution. Shown in Figure 7b, the algorithm quickly converges
to relatively good solutions in the early (<25) generations, with the cost decreasing from 9235.86 BC
to fewer than 7250 BC. From 25 to 175 generations, the algorithm steadily converges to the optimal
(or near-optimal) solutions. After 175 generations, the algorithm remains stable.

(a) Original plot for all generations. (b) Zoomed in plot for every 25 generations.

Figure 7. Total cost as a function of IGA generations (50 curves of 50 simulations).

Due to the introduced features of memory, distance evaluation, and random technique, coupled with
the conspicuously applied evolution strategy, IGA converges significantly faster than CGA, whose search
trend is presented below.

Sensors 2019, 19, 297 17 of 24

In Figure 8, CGA needs at least 50 generations to obtain a relatively good solution (fewer than 7250BC),
which is 25 generations slower than IGA. Throughout some simulations, CGA does not even converge in
200 generations. Duplicate search and trapping into local optima decline the convergence speed.

The search trend of RCA is also provided in Figure 9. To get a relatively good solution (fewer than
7250 BC), CGA needs at least 75 iterations. Therefore, it has the lowest convergence speed among the
three algorithms. Nonconvergence exists in some simulations as well.

(a) Original plot for all generations. (b) Zoomed in plot for every 25 generations.

Figure 8. Total cost as a function of conventional genetic algorithm (CGA) generations (50 curves of
50 simulations).

(a) Original plot for all iterations. (b) Zoomed in plot for every 25 iterations.

Figure 9. Total cost as a function of random choice algorithm (RCA) iterations (50 curves of 50 simulations).

An important discussion point is the configuration of parameters when applying IGA. Different
settings of parameters lead to distinct search trends, but a good parameter setting can make the
algorithm converge faster. Because of random initialization, the same settings can also result in
different search trends. In our experiment, this was avoided by giving a fixed random seed.

Regardless of other parameters, a larger generation (iteration) size always provides a better result.
However, the scheduler is encouraged to view the search trend and apply other parameter tuning
techniques. For instance, if the algorithm remains stable for more than 50 generations, it is considered
already converged.

5.3.2. Performance Evaluation

The provided algorithms (IGA, CGA, and RCA) are randomized optimization algorithms with
arbitrary input, output, and performance. The graphical representations of 50 simulations in the
previous section facilitate the understanding of how the algorithms behave when applied to the
studied case of 8 jobs. The convergence speed of IGA (25 generations) is 3 times faster than that of
RCA (75 generations) and 2 times faster than that of CGA (50 generations). In this section, statistical
analysis was performed for further comparison.

Sensors 2019, 19, 297 18 of 24

Figure 10 visualizes statistical indicators (minimum, maximum, average) of total cost during
evolutions of IGA, CGA, and RCA.

In Figure 10, algorithms and statistical indicators are compared and distinguished using different
colors and shapes. The averages are marked using triangles. In each iteration, RCA has the highest
average cost, followed by CGA, while IGA has the lowest average cost. Therefore, IGA has the best
average performance in the three algorithms. Both CGA and RCA have a decreasing average cost
with the growth of iteration numbers, indicating the feasibility of these algorithms. The maxima are
marked using circles, reflecting the worst performance of algorithms. All algorithms have a decreasing
maximum cost when the iteration number increases. In each iteration, RCA has the highest maximum
cost, whereas CGA and IGA have a relatively low maximum cost. The minima are marked using
squares, representing the best performance of algorithms. All algorithms have the same minimum
cost after 50 iterations. Numbers of simulations converged to the maximum cost, the minimum cost,
and other cost values at iteration 200 are also provided in Table 6: For IGA, 17 in 50 simulations
converge to the minimum. For CGA, this number reduces to 4. For RCA, only 1 simulation converges
to the minimum.

Figure 10. Minimum, maximum, and average of total cost as a function of generations of IGA, CGA,
and RCA.

The standard deviations (SD) of costs are calculated in Figure 11. All algorithms have decreasing
SDs as the iteration number increases. In each iteration, RCA has the largest SD, followed by CGA.
IGA has a relatively small SD, indicating that the simulation results of IGA do not have a large variation
or dispersion. The SD of CGA decreases in early generations (<100) and remains steady afterwards.

The convergence summary and the statistical indicators from Table 6 support our inference that
IGA has the best performance among the three provided algorithms: In 50 experimental results of
MCS, IGA has the lowest average cost and a relatively small SD. Furthermore, IGA are more easily to
converge to the minimum than the other two algorithms.

Sensors 2019, 19, 297 19 of 24

Figure 11. Standard deviation of total cost as a function of generations of IGA, CGA, and RCA.

Table 6. Convergence summary and statistical indicators for 50 Monte Carlo simulations (MCS) of IGA,
CGA, and RCA at iteration 200.

Algorithm Converge to Maximum Converge to Minimum Converge to Others

IGA 1 17 32
CGA 1 4 45
RCA 1 1 48

Algorithm Maximum Cost Minimum Cost Average Cost Standard Deviation

IGA 7228.25 7089.46 7106.10 23.84
CGA 7186.35 7089.46 7116.11 22.23
RCA 7275.73 7089.69 7173.80 41.42

The coverage ratio [45] for the simulation results of RCA, CGA, and the IGA was also examined.
Defined in Equation (17), the coverage ratio C(A, B) represents the number of points in set B dominated
by set A over the total number of points.

C(A, B) =
|{x ∈ B | ∃y ∈ A : y dominates x}|

|B| (17)

In our case, y dominates x is defined if point y has lower or equal cost than point x. The summary
of the coverage ratio between simulation results is presented in Table 7; a higher ratio of C(A, B)
implies a better performance of A over B in the perspective of result coverage. C(IGA, CGA) and
C(IGA, RCA) remains 1 in all iterations, indicating that IGA can always find an equal or better
result than the other two algorithms. C(CGA, IGA) and C(RCA, IGA) vary in different generations.
C(CGA, RCA) and C(RCA, CGA) change with the growth of iteration numbers, but in the end,
C(CGA, RCA) converges to 1. Therefore, CGA can find an equal or better result than RCA when the
iteration number increases.

Sensors 2019, 19, 297 20 of 24

Table 7. Coverage ratio analysis for IGA, CGA, and RCA.

Generation C(IGA, CGA) C(CGA, IGA) C(IGA, RCA) C(RCA, IGA) C(CGA, RCA) C(RCA, CGA)

25 1 0.62 1 0.68 0.98 1
50 1 0.68 1 0.68 1 1
75 1 0.68 1 0.68 1 1

100 1 0.66 1 0.66 1 1
125 1 1 1 0.66 1 0.96
150 1 1 1 0.66 1 0.96
175 1 1 1 0.66 1 0.92
200 1 1 1 0.66 1 0.92

5.3.3. Complexity Analysis

The detailed procedure of the provided IGA is explained in Algorithm 3, where complexity
analysis is conducted on each stage. We investigated the algorithm in the worst case, where each stage
requires the longest time and largest space. Afterwards, the asymptotic upper bound [46] of time and
space complexity of the algorithm was given.

The provided IGA was implemented in Python using specially designed data structures to
improve the efficiency as possible. In the initialization stage, the time consumption for random
generation is O(1), and the corresponding space consumption is O(α ∗ n1). In the elitism selection
stage, the time for creating sub_pop is O(1), for fitness value sorting is O(2), and the corresponding
extra space requirement is O(2 ∗ n1). In the crossover stage, the loser is replaced with DNAs from
the original chromosome and the winner, where the time requirement is O(n1) with no more space
requirement. In the mutation stage, random choice and swap of positions demand O(1) time and no
extra space. Distance evaluation has the time complexity of O(n1) and space complexity of O(2 ∗ n1).
In the memory search stage, the time and space requirement is O(β ∗ α), where β is the size indicator
of memory, a self-defined constant depending on the workstation running the algorithm. Finally,
retrieving the best cost P and candidate schedule C requires O(n1) time with no extra space.

To sum up, the time complexity of IGA is O(n1 ∗ n2) because of the outer loop of n2 iterations.
Therefore, the corresponding asymptotic upper bound of time complexity of IGA is O(n2). The space
complexity is O(n).

5.4. Stress Test

The efficiency of the provided IGA is further investigated in this section on a larger problem.
On a normal PC (i7 CPU, 16G RAM) released in 2017, for n1 = 1122 (number of jobs from 2016-01-19
14:00:00 to 2017-11-15 00:00:00, records of 2 years), n2 = 200, and β = 5, the algorithm requires 77.48 s
to obtain a near-optimal schedule with the corresponding cost; each iteration takes 0.39s. The original
schedule has the energy cost of 59,956.10 BC and the failure cost of 1,228,990.41 BC, in total 1,288,946.51 BC.

The performance of IGA, CGA, and RCA on such large problem scale was also analyzed using
MCS. The number of simulations was set as 50; therefore, each algorithm was executed for about one
hour to search for a near-optimal solution. Certainly for large-scale problems, the limited number of
simulations cannot ensure that the IGA finds an optimal solution. Schedulers are encouraged to run
more simulations for a potentially better result. Same as in Section 5.3.2, the convergence summary
and the statistical indicators are presented in Figure 12 and Table 8.

Experimental results showed that after one hour’s execution, IGA can provide a near-optimal
candidate schedule with 3.03% total cost saving in average compared to the original schedule, which
is the lowest in the three provided algorithms (CGA 2.97%, RCA2.56%). Considering both Figure 12
and Table 8, IGA has a rapid convergence speed (fewer than 25 generations) to near-optimal schedules
with the lowest average cost and is also more likely to converge to the schedule with the minimum
cost (saving 3.17%).

Sensors 2019, 19, 297 21 of 24

Figure 12. Average of total cost as a function of generations for IGA, CGA, and RCA on 1122 waiting jobs.

Table 8. Convergence summary and statistical indicators for 50 MCS of IGA, CGA, and RCA on
1122 waiting jobs at iteration 200.

Algorithm Converge to Maximum Converge to Minimum Converge to Others

IGA 1 6 43
CGA 1 1 48
RCA 1 1 48

Algorithm Maximum Cost Minimum Cost Average Cost Standard Deviation

IGA 1,258,670.98 1,248,039.40 1,249,926.71 2419.96
CGA 1,255,047.27 1,241,847.12 1,250,612.83 2698.97
RCA 1,261,961.80 1,251,042.40 1,255,922.92 2692.98

6. Conclusions

In this paper, the energy- and failure-aware continuous production scheduling problem at the
unit process level was investigated. The research put forward a coupled model of energy and failure
cost and provides an improved genetic algorithm to solve it. The IGA was implemented in Python
with the time complexity of O(n2) and the space complexity of O(n). The algorithm was efficient to
search for a near-optimal schedule with volatile energy prices and maintenance-dependent machine
failure rates. Real industrial cases from a large pasta manufacturer were studied using the provided
algorithms. Compared to an original schedule from empirical records (8 jobs in 5 days), the IGA
provided a near-optimal schedule saving 23.24% of total cost. For another larger case (1122 jobs in
2 years), the IGA also found a near optimal solution, saving 3.17% of total cost. The results of Monto
Carlo simulations indicate that IGA converges 2 times faster than CGA and 3 times faster than RCA
and can always obtain better solutions within limited time and iterations.

Future research could further improve in several directions. Similar to other continuous production
systems, like textile dyeing [8], steel-making [22], and construction [23], pasta manufacturing is both
time-sensitive and quality-sensitive, with strict constraints of the food industry. The actual industrial
environment is much more complicated than the background of the investigated EFACPS problem
in this study, with special requirements of suppliers, customers, operators, machine configurations,
and product status. The current study has limitations caused by the adopted assumptions in the
modeling stage as a consequence of the multivariate production environment. For instance, the cost of
maintenances is neglected in this study, but in reality, they are expensive. Additionally, the machine
is not obliged to keep busy in continuous manufacturing, since idle periods are allowed between
working periods in the face of small breaks, like the shortage of raw materials or the shift of operators.

Sensors 2019, 19, 297 22 of 24

The proposed method should be further extended to multiobjective problems and more complicated
machine environments. Modeling and algorithm design should also take into consideration the
availability of data sources or actively make use of sensors and controllers.

In conclusion, this paper puts forward a new perspective of energy and failure management in
continuous production scheduling and provides an improved genetic algorithm as an efficient solution
with better performance than conventional genetic algorithms.

Author Contributions: K.S.: Research design, simulator implementation, literature retrieval, manuscript writing;
T.D.P.: Data acquisition, experiment design, research guidance; X.G.: Simulator design, research guidance;
L.M.: Project guidance, direction guidance, financial support; W.J.: Project analysis, research guidance, direction
guidance. All the authors have contributed to the scientific part of this work and to the writing of this article.

Funding: This research was supported by the IMEC/ELITE (Efficiency-optimized production Lines using
industrial Internet of Things Enhancements) project. More information is available at the web page of ELITE.

Acknowledgments: Special thanks are given to Soubry N.V. for providing production data and to other partners
of the ELITE project for the research cooperation.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hadera, H.; Harjunkoski, I.; Sand, G.; Grossmann, I.E.; Engell, S. Optimization of steel production
scheduling with complex time-sensitive electricity cost. Comput. Chem. Eng. 2015, 76, 117–136,
doi:10.1016/J.COMPCHEMENG.2015.02.004.

2. Cardenas, J.A.; Gemoets, L.; Ablanedo Rosas, J.H.; Sarfi, R. A literature survey on Smart Grid distribution:
An analytical approach. J. Clean. Prod. 2014, 65, 202–216, doi:10.1016/J.JCLEPRO.2013.09.019.

3. Aupy, G.; Benoit, A.; Robert, Y.T. Energy-aware scheduling under reliability and makespan constraints.
In Proceedings of the 19th International Conference on High Performance Computing, Pune, India,
18–22 December 2012; doi:10.1109/HiPC.2012.6507482.

4. Chen, G.; Zhang, L.; Arinez, J.; Biller, S. Energy-efficient production systems through schedule-based
operations. IEEE Trans. Autom. Sci. Eng. 2013, 10, 27–37, doi:10.1109/TASE.2012.2202226.

5. Liu, G.S.; Zhou, Y.; Yang, H.D.T. Minimizing energy consumption and tardiness penalty for fuzzy flow shop
scheduling with state-dependent setup time. J. Clean. Prod. 2017, 147, 470–484, doi:10.1016/j.jclepro.2016.12.044.

6. Gong, X.; Van der Wee, M.; De Pessemier, T.; Verbrugge, S.; Colle, D.; Martens, L.; Joseph, W. Integrating
labor awareness to energy-efficient production scheduling under real-time electricity pricing: An empirical
study. J. Clean. Prod. 2017, 168, 239–253, doi:10.1016/J.JCLEPRO.2017.08.223.

7. Ye, Y.; Li, J.; Li, Z.; Tang, Q.; Xiao, X.; Floudas, C.A. Robust optimization and stochastic programming
approaches for medium-term production scheduling of a large-scale steelmaking continuous casting process
under demand uncertainty. Comput. Chem. Eng. 2014, 66, 165–185, doi:10.1016/j.compchemeng.2014.02.028.

8. Zhou, L.; Xu, K.; Cheng, X.; Xu, Y.; Jia, Q. Study on optimizing production scheduling for water-saving in
textile dyeing industry. J. Clean. Prod. 2017, 141, 721–727, doi:10.1016/j.jclepro.2016.09.047.

9. Aytug, H.; Lawley, M.A.; McKay, K.; Mohan, S.; Uzsoy, R. Executing production schedules in the
face of uncertainties: A review and some future directions. Eur. J. Oper. Res. 2005, 161, 86–110,
doi:10.1016/j.ejor.2003.08.027.

10. Francis, R.; Bekera, B. A metric and frameworks for resilience analysis of engineered and infrastructure
systems. Reliab. Eng. Syst. Saf. 2014, 121, 90–103, doi:10.1016/j.ress.2013.07.004.

11. Gong, X.; De Pessemier, T.; Joseph, W.; Martens, L. A Stochasticity Handling Heuristic in Energy-cost-aware
Scheduling for Sustainable Production. Procedia CIRP 2016, 48, 108–113, doi:10.1016/J.PROCIR.2016.03.028.

12. O’Connor, P.; Kleyner, A. Practical Reliability Engineering, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA,
2002; ISBN 978-0-4708-4462-5.

13. Pinedo, M.L. Chapter 2.1 Framework and Notation. In Scheduling: Theory, Algorithms, and Systems;
Pinedo, M.L., Ed.; Springer: Berlin, Germany, 2016; pp. 13–19, ISBN 978-3-319-26580-3.

14. Harvey, I. The microbial genetic algorithm. In Proceedings of the European Conference on Artificial Life,
Budapest, Hungary, 13–16 September 2009; pp. 126–133.

https://www.imec-int.com/en/what-we-offer/research-portfolio/elite

Sensors 2019, 19, 297 23 of 24

15. Gong, X.; De Pessemier, T.; Joseph, W.; Martens, L. A generic method for energy-efficient and
energy-cost-effective production at the unit process level. J. Clean. Prod. 2016, 113, 508–522,
doi:10.1016/j.jclepro.2015.09.020.

16. Veras, J.; Silva, I.; Pinheiro, P.; Rabêlo, R.; Veloso, A.; Borges, F.; Rodrigues, J. A Multi-Objective Demand
Response Optimization Model for Scheduling Loads in a Home Energy Management System. Sensors 2018,
10, 3207, doi:10.3390/s18103207.

17. Módos, I.; Šůcha, P.; Hanzálek, Z. Algorithms for robust production scheduling with energy consumption
limits. Comput. Ind. Eng. 2017, 112, 391–408, doi:10.1016/j.cie.2017.08.011.

18. Ouyang, M. Review on modeling and simulation of interdependent critical infrastructure systems. Reliab. Eng.
Syst. Saf. 2014, 121, 43–60, doi:10.1016/j.ress.2013.06.040.

19. Siedlak, D.J.L.; Pinon, O.J.; Robertson, B.E.; Mavris, D.N. Robust simulation-based scheduling methodology
to reduce the impact of manual installation tasks on low-volume aerospace production flows. J. Manuf. Syst.
2018, 46, 193–207, doi:10.1016/j.jmsy.2017.12.006.

20. Li, Z.; Ierapetritou, M.T. Process scheduling under uncertainty: Review and challenges. Comput. Chem. Eng.
2008, 32, 715–727, doi:10.1016/j.compchemeng.2007.03.001.

21. Li, X.; Jiang, X.; Garraghan, P.; Wu, Z. Holistic energy and failure aware workload scheduling in Cloud
datacenters. Future Gener. Comput. Syst. 2018, 78, 887–900, doi:10.1016/j.future.2017.07.044.

22. Jiang, S.; Liu, M.; Hao, J. A two-phase soft optimization method for the uncertain scheduling problem in the
steelmaking industry. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 416–431, doi:10.1109/TSMC.2015.2503388.

23. Wang, Z.; Hu, H.; Gong, J. Framework for modeling operational uncertainty to optimize offsite production
scheduling of precast components. Autom. Constr. 2018, 86, 69–80, doi:10.1016/j.autcon.2017.10.026.

24. Lu, Z.; Cui, W.; Han, X. Integrated production and preventive maintenance scheduling for a single machine
with failure uncertainty. Comput. Ind. Eng. 2015, 80, 236–244, doi:10.1016/j.cie.2014.12.017.

25. Guo, Z.X.; Wong, W.K.; Leung, S.Y.S.; Fan, J.T.; Chan, S.F. Genetic optimization of order scheduling with
multiple uncertainties. Expert Syst. Appl. 2008, 35, 1788–1801, doi:10.1016/j.eswa.2007.08.058.

26. Drwal, M. Robust scheduling to minimize the weighted number of late jobs with interval due-date
uncertainty. Comput. Oper. Res. 2018, 91, 13–20, doi:10.1016/J.COR.2017.10.010.

27. Ghezail, F.; Pierreval, H.; Hajri-Gabouj, S. Analysis of robustness in proactive scheduling: A graphical
approach. Comput. Ind. Eng. 2010, 58, 193–198, doi:10.1016/j.cie.2009.03.004.

28. Lin, S.; Kernighan, B.W. An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 1973,
21, 498–516, doi:10.1287/opre.21.2.498.

29. Abedinnia, H.; Glock, C.H.; Grosse, E.H.; Schneider, M. Machine scheduling problems in production:
A tertiary study. Comput. Ind. Eng. 2017, 111, 403–416, doi:10.1016/j.cie.2017.06.026.

30. Liu, Q.; Dong, M.; Chen, F.F. Single-machine-based joint optimization of predictive maintenance planning
and production scheduling. Robot. Comput.-Integr. Manuf. 2018, 51, 238–247, doi:10.1016/J.RCIM.2018.01.002.

31. Zhou, S. Bayesian Modelling and Analysis of Utility-Based Maintenance for Repairable Systems. Ph.D. Thesis,
Trinity College, Dublin, Ireland, 2017. Available online: http://hdl.handle.net/2262/83469 (accessed on
9 November 2018).

32. Jiang, J.; Zhang, J.; Zhang, L.; Ran, X.; Tang, Y. Passive Location Resource Scheduling Based on an Improved
Genetic Algorithm. Sensors 2018, 18, 2093, doi:10.3390/s18072093.

33. Yang, S. Memory-based immigrants for genetic algorithms in dynamic environments. In Proceedings of the
7th Annual Conference on Genetic and Evolutionary Computation, Washington, DC, USA, 25–29 June 2005;
ACM: New York, NY, USA, 2005; pp. 1115–1122, doi:10.1145/1068009.1068196.

34. Hamming, R.W. Error Detecting and Error Correcting Codes. Bell Syst. Tech. J. 1950, 29, 147–160,
doi:10.1002/j.1538-7305.1950.tb00463.x.

35. Atlas.media.mit.edu. Pasta Product Trade, Exports and Importers. Available online: https://atlas.media.mit.
edu/en/profile/hs92/1902/ (accessed on 14 September 2018)

36. Internationalpasta.org. Pasta Statistics. Available online: http://www.internationalpasta.org/index.aspx?
id=7 (accessed on 14 September 2018)

37. Ruini, L.; Marino, M.; Pignatelli, S.; Laio, F.; Ridolfi, L. Water footprint of a large-sized food company:
The case of Barilla pasta production. Water Resour. Ind. 2013, 1–2, 7–24, doi:10.1016/j.wri.2013.04.002.

http://hdl.handle.net/2262/83469
https://atlas.media.mit.edu/en/profile/hs92/1902/
https://atlas.media.mit.edu/en/profile/hs92/1902/
http://www.internationalpasta.org/index.aspx?id=7
http://www.internationalpasta.org/index.aspx?id=7

Sensors 2019, 19, 297 24 of 24

38. Bruzzone, A.A.G.; Anghinolfi, D.; Paolucci, M.; Tonelli, F. Energy-aware scheduling for improving
manufacturing process sustainability: A mathematical model for flexible flow shops. CIRP Ann.
Manuf. Technol. 2012, 61, 459–462, doi:10.1016/j.cirp.2012.03.084.

39. My.elexys.be. Markt Informatie. Available online: https://my.elexys.be/MarketInformation.aspx
(accessed on 9 November 2018)

40. Ukertechnofoods. Automatic Short-Cut Pasta Line with Capacity 750 kg/h. Available online: https:
//utf-group.com/pasta-equipment/pasta-line-750/ (accessed on 9 November 2018)

41. Jacobson, L; Kanber, B. Genetic Algorithms in Java Basics; Apress: New York, NY, USA, 2009;
ISBN 978-1-4842-0328-6.

42. Merkert, L.; Harjunkoski, I.; Isaksson, A.; Säynevirta, S.; Saarela, A.; Sand, G. Scheduling and
energy—Industrial challenges and opportunities. Comput. Chem. Eng. 2015, 72, 183–198,
doi:10.1016/J.COMPCHEMENG.2014.05.024.

43. Janssen, H. Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence.
Reliab. Eng. Syst. Saf. 2013, 109, 123–132, doi:10.1016/j.ress.2012.08.003.

44. Feng, Y.; Wang, Y.; Zheng, H.; Mi, S.; Tan, J. A framework of joint energy provisioning and
manufacturing scheduling in smart industrial wireless rechargeable sensor networks. Sensors 2018, 18, 2591,
doi:10.3390/s18082591.

45. Zitzler, E.; Thiele, L. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength
Pareto Approach. IEEE Trans. Evol. Comput. 1999, 3, 257–271, doi:10.1109/4235.797969.

46. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 3rd ed.; MIT Press: Cambridge,
MA, USA, 2009; ISBN 978-0-2620-3384-8.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://my.elexys.be/MarketInformation.aspx
https://utf-group.com/pasta-equipment/pasta-line-750/
https://utf-group.com/pasta-equipment/pasta-line-750/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Energy-Aware Scheduling
	Failure-Related Scheduling

	Problem Formulation
	Notation
	Production Scheduling
	Energy-Aware Scheduling
	Failure-Aware Scheduling

	Optimization Model

	Method Description
	Initialization
	Elitism Selection
	Genetic Operators

	Case Study
	Parameter Resolution
	Simulation Settings
	Results and Discussions
	Convergence Analysis
	Performance Evaluation
	Complexity Analysis

	Stress Test

	Conclusions
	References

