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Abstract: The increase of Software Defined Networks (SDN) and Network Function Virtualization
(NFV) technologies is bringing many security management benefits that can be exploited at the
edge of Internet of Things (IoT) networks to deal with cyber-threats. In this sense, this paper
presents and evaluates a novel policy-based and cyber-situational awareness security framework
for continuous and dynamic management of Authentication, Authorization, Accounting (AAA) as
well as Channel Protection virtual security functions in IoT networks enabled with SDN/NFV. The
virtual AAA, including network authenticators, are deployed as VNF (Virtual Network Function)
dynamically at the edge, in order to enable scalable device’s bootstrapping and managing the access
control of IoT devices to the network. In addition, our solution allows distributing dynamically
the necessary crypto-keys for IoT Machine to Machine (M2M) communications and deploy virtual
Channel-protection proxys as VNFs, with the aim of establishing secure tunnels among IoT devices
and services, according to the contextual decisions inferred by the cognitive framework. The solution
has been implemented and evaluated, demonstrating its feasibility to manage dynamically AAA and
channel protection in SDN/NFV-enabled IoT scenarios.
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1. Introduction

Edge and fog technologies [1] shift centralized clouds towards the edge with the aim to
deliver better throughput, enable enhanced context-specific functionality, and support diverse
kinds of communications. They also enable localized functions, such as processing the security
in Machine-to-Machine (M2M) communication required in IoT, by exploiting nearby resources [2].
The Fog includes another infrastructural level between edge and cloud in which security functions for
IoT devices can be offloaded to their vicinity.

Fog computing can drastically improve network connectivity at the edge by leveraging
NFV (Network Function Virtualization) and SDN (Software Defined Networks). NFV presents
remarkable advantages for deliver virtual appliances in the edge and remote cloud data centers [3].
Dynamic provisioning of virtual security functions towards the edge of the network enhance scalability,
necessary to deal with the huge amount of IoT traffic. At this point, the use of SDN becomes essential
in order to reconfigure the network dynamically, providing new networking rules on demand, thereby
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connect the new virtualized services to the existing architecture, as well as enforcing networking
countermeasures, such as firewall rules, to mitigate cyberattacks, e.g., Distributed Denial of Service
attacks (DDoS).

In this context, Authentication, Authorization and Accounting (AAA) as well as
Channel-Protection Network Security Functions (NSF) can be timely and dynamically deployed and
configured at the edge in virtualized and softwarized fog entities, such as cloudlets, and IoT gateways,
in order to facilitate the security management in IoT networks. To this aim, new context-aware holistic
security solutions are needed to allow the orchestration [4] of NFV managers , SDN controllers and IoT
controllers, thereby providing security chaining, as well as dynamic reconfiguration and adaptation of
the virtual security appliances.

Furthermore, there is a strong need to define proper, inter-operable and highly-expressive security
policy languages and models to empower users and administrators to manage, in a high-level fashion,
the overall security and privacy aspects of their Fog and IoT entities across the whole ecosystem. Those
policy models could serve as input for framework orchestrators to organize and choreograph the
aforementioned security services. Some security policy models [5] and frameworks [6,7] had proposed
solutions in the past to manage distributed systems. However, they are not tailored to manage
cybersecurity in IoT networks and Mobile Edge Computing scenarios, as presented in this paper.

On the other hand, AAA and Channel protection NSFs have been already successfully studied
and addressed in IoT networks [8]. However, those NSFs have not yet properly studied and exploited
the advantages IoT networks enabled with NFV/SDN technologies, where cyber-situational awareness
and policy-based security frameworks can dynamically react and mitigate cyber-attacks by deploying
and configuring timely and wisely, in the proper location, suitable virtual NSFs and security/network
configuration rules.

This paper extends our previous conference paper [9] by evaluating a novel policy-aware approach
to manage AAA and channel protection in SDN/NFV-enabled IoT networks. Our virtual AAA (vAAA)
NSF, including network authenticators, are deployed and activated dynamically at the edge, facilitating
the device’s bootstrapping and ruling the access control of IoT devices to the network, by relying
on SDN to enforce the network authorization decisions in the switches. Likewise, the proposed
scalable channel protection management allows dynamic provisioning the necessary crypto-keys for
IoT M2M communications, establishing Datagram Transport Layer Security (DTLS) channels among
IoT devices and services. The process is driven in a centralized way by the Security Orchestrator,
adopting an scalable, softwarized and cyber-situational awareness [10] approach, which enables
key-management and the enforcement of security association in both sides of the protected channel.
Unlike in our previous conference’s paper, this paper has improved the original design, implemented
the solution, and evaluated the feasibility and performance of our proposed SDN-based AAA and
channel-protection solution for IoT.

The rest of the paper is organized as follows. Section 2 analyzes current state-of-the-art about
security solutions for IoT systems based on NFV/SDN. Section 3 overviews the cyber-security and
policy-based framework and its applicability to deal with AAA and Channel protection. Section 4
delves into the proposed vAAA NSF for IoT. Section 5 is devoted to the softwarized IoT Channel
Protection proposal. Section 6 is a promising use case is presented to assess the introduced security
features and performance evaluation is carried out. Finally, conclusions and ongoing research are
drawn in Section 7.

2. Related Work

Large scale IoT deployments [11] are comprised of diverse devices that implement different
protocol stacks. In this context, providing an inter-operable and open bootstrapping solution will ease
the deployment of the different devices of an IoT network. In this sense, to the best of our knowledge,
this work is the first attempt to integrate NFV and SDN management of IoT bootstrapping for large
deployments with AAA federation support, which is compatible with diverse bootstrapping solutions.
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We focus on the use of AAA because, in general, solutions that aim to provide a scalable secure
bootstrapping solution for IoT use Extensible Authentication Protocol (EAP) and AAA [12].

The Zigbee IP [13] standard is one of the first complete solutions for IoT. It uses the Protocol for
Carrying Authentication for Network Access (PANA) and EAP for network access authentication.
However, AAA is not considered in the standard; they use the standalone mode and fix the EAP
method to be used to EAP-TLS which limits the flexibility offered by EAP. Currently, there is work
in standardization organizations such as the Internet Engineering Task Force (IETF) to define new
protocols for channel protection and key exchange and distribution in IoT, such as the OSCORE [14]
and EDHOC [15] protocols; the former is used to secure the communications end-to-end, while the
later generates the necessary key material. Nonetheless, the current standard to protect Constrained
Application Protocol (CoAP) exchanges is DTLS. CoAP documentation defines DTLS as its secure
communications mechanism. Therefore, DTLS is one of the first protocols to be considered in IoT
security associations.

We can distinguish protocols that establish a security association (SAP); protocols that use the
Security Association (SA) to protect the channel; and protocols that bootstrap all of the above. In
small scale deployments, a simple SAP with the key material set up at both ends of the authentication
process normally suffices. For instance, DTLS can be employed to set up the necessary key material
to establish the security association between the IoT device and the Gateway, but when large scale
deployments and multi-domains are considered, it is interesting to rely on more scalable alternatives
such as AAA and EAP to bootstrap the key material in order to establish security associations like
the aforementioned DTLS channel. Therefore, our solution leverages EAP to facilitate scalable key
management in IoT deployments, and then manages the establishment of DTLS channels to protect
IoT communications with such a derived key material.

The SDN has demonstrated to be a flexible and powerful enabler to new network solutions.
The centralized control provides complete network information, therefore enhancing control decisions.
SDN based solutions endow the architecture with desirable features such as flexibility, dynamism,
centralized management and scalability.

Current works like [16] show how the SDN can be addressed in order to mitigate security issues
at different layers. Network softwarization plays a key role providing with the desired scalability level
to the proposal. In this sense, the IETF is working towards managing IPSec Security Associations (SAs)
in SDN networks and enabling end-to-end channel protection [17]. Unlike that interesting initiative,
our work intends to get the benefits of SDN to facilitate channel protection in IoT networks in which
IPSec is not directly supported, or which just require establishment of additional secure channels
using DTLS.

On the other hand, regarding NFV technologies, they avoid the deployment of specific hardware
equipment through the use of virtual machines running specific network functions on commodity
servers. NFV provides among others, flexible provisioning, deployment and centralized management.
The possibility to employ Virtual Network Functions (VNF) to deploy security appliances is an
interesting alternative to enhance an architecture with adaptive and reactive security capabilities. Since
it is possible to deploy security appliances as virtual network functions (VNF) in a Network Function
Virtualization environment, this approach becomes really interesting in order to provide adaptive and
reactive security capabilities to an architecture [18].

In this sense, in [19], the authors highlight different benefits of integrating SDN within the NFV,
coming up with a software-defined NFV architecture, which allows for taking advantage of both
softwarization and virtualization. Similar SDN/NFV approaches are being applied to leverage the
security management of IoT scenarios in 5G IoT networks [20]. Regarding policy-based security
management, in [21], the authors proposed an approach towards the adoption of security policies
management with dynamic network virtualization. In [22], we proposed a preliminary joint use of
security policies, SDN and NFV security appliances, focusing the performance on dynamic network
filtering. Unlike that work, which focuses on dynamic filtering policies enforcement, this paper takes
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advantage of policy-based security framework to deal with AAA and channel protection security
functions, thereby providing performance evaluation for each policy deployment process—all of this
using physical IoT devices.

3. Security Management Framework and Proposal Overview

This section overviews the ANASTACIA architecture (ANASTACIA Project [23]) in order to
present the main building blocks that have been needed to design and implement our solution.

3.1. ANASTACIA Framework Overview

The ANASTACIA framework [24,25] provides a context-aware autonomous security orchestration
in SDN/NFV-enabled IoT networks. The framework orchestrates dynamically the network security
according to the context obtained from agents, whereby mitigating and countering cybersecurity
threats at the edge of the network in IoT scenarios, by deploying and orchestrating Virtual Security
Functions and services even over constrained IoT devices. The security framework is endowed with
monitoring and reaction tools as well as innovative algorithms and techniques for threat analysis,
and correlation from different sources. Thereby, increasing the overall security, including self-repair,
self-healing and self-protection capabilities, not only at the core, but also at the edge of the network.

Through the use of networking technologies such as SDN-NFV and intelligent and dynamic
security policy enforcement and monitoring methodologies, different virtual security appliances such
as vFirewall, vIDS, vAAA, vSwitch/Router, vHoneynet, vVPN are orchestrated dynamically at the
network edge.

A high level view of the framework is depicted in Figure 1. The User Plane includes interfaces,
services, and tools to end-users for policy definition, system monitoring and service management.
Its policy editor provides an intuitive and user-friendly tool to configure security policies governing
the configuration of the system and network, such as authentication, authorization, filtering, channel
protection, and forwarding. More detailed information on the framework can be found in its web page
and in particular motivation and security analysis regarding ANASTACIA can be found in Public
Deliverables 1.2 [26], 2.2 [27] and 2.3 [28], respectively.

Figure 1. ANASTACIA Framework Architecture overview.



Sensors 2019, 19, 295 5 of 24

The Security Orchestration plane enforces policy-based security mechanisms and provides
run-time reconfiguration and adaptation of security enablers, thereby providing the framework
with intelligent and dynamic behavior. It is an innovative layer of our architecture and provides
self-protection and self-healing capabilities for softwarized networks through novel modules.
The Policy Interpreter module receives as input the policies and identifies the capabilities needed
to enforce such policies (capability matching). Then, the Interpreter interacts with the Security Enablers
Provider to identify the SDN/NFV-based/IoT specific enablers that are able to enforce the desired
capabilities. The Security Orchestrator selects the enablers to be effectively deployed, accounting for
the security requirements, the available resources in the underlying infrastructure, and optimization
criteria. The Monitoring component collects security-focused real-time information related to the system
behavior from physical/virtual appliances. Its main objective is to provide alerts for the reaction
module in case something is misbehaving. Security probes are deployed in the infrastructure domain
to support the monitoring services. Then, the Reaction component is in charge of providing appropriate
countermeasures, by dynamically defining reconfiguration of the security enablers according to the
circumstances. The reaction outcomes are then analyzed by the Security Orchestrator, which enforce
the corresponding enablers’ countermeasures.

The Control and management domain modules supervise the usage of resources and run-time
operations of security enablers deployed over software-based and IoT networks. A set of distributed
SDN controllers takes charge of communicating with the SDN-based network elements to manage
connectivity in the underneath virtual and physical infrastructure. ETSI’s NFV-MANO (Management
and Network Orchestration)-compliant modules supports secure placement and management of
virtual security functions over the virtualized infrastructure. The IoT Controller is intended to manage
IoT devices and networks, such as LoWPANs (Low-Power Wireless Personal Area Networks) and
LPWAN (Low-power Wide-Area Network).

Infrastructure and Virtualization domain This domain comprises all the physical machines
capable of providing computing, storage, and networking capabilities to build an Infrastructures as a
Service (IaaS) layer by leveraging appropriate virtualization technologies. This plane also includes
the network elements responsible for traffic forwarding, following the rules of SDN controllers,
and a distributed set of security probes for data collection to support the monitoring services.
The VNF domain accounts for the VNFs deployed over the virtualization infrastructure to enforce
security within network services. It provides advanced security VNFs (such as virtual AAA, and
Channel protection used in our proposal), capable of providing the defense mechanisms and threat
countermeasures requested by security policies. The IoT domain comprises the IoT devices to be
controlled. This includes the security enablers, actuators or software agents needed to enforce the
security directives coming from the orchestration plane and managed, at the enforcement plane, by
the IoT controller.

3.2. Solution Overview

The solution relies on the ANASTACIA framework architecture shown in Section 3.1, improving
it to support AAA, bootstrapping and channel protection mechanisms for SDN/NFV-based IoT
networks. Figure 2 depicts a general deployment overview of our SDN/NFV-based virtual AAA
(vAAA) and virtual Channel-Protection (vChannel-Protection) solution for IoT networks, which allows
dynamic management of authentication, authorization, bootstrapping, key management, and channel
protection configuration.
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Figure 2. vAAA and vChannel-Protection deployment in the IoT network.

As it can be seen in the figure, some of the components such as the virtual EAP (vEAP) Server
VNF and virtual Proxy (vProxy) VNF are meant to be deployed in a centralized location, accessible by
different IoT networks/domains. On the other hand, other components like the virtual PAA (vPAA)
VNF are deployed at the edge of those IoT Networks to facilitate the bootstrapping, authentication
and the key management, required to establish secure tunnels.

Namely, the vEAP VNF is responsible for making authorization/authentication decisions,
according to the security policies enforced by the ANASTACIA framework through the Orchestrator.
Likewise, the vProxy VNF is in charge of managing the channel protection set-up, in the other side
of the channel, abstracting end-point services from this task. Thus, vProxy can be deployed and
configured dynamically, on demand, by the Orchestrator to facilitate the security association set-up for
those entities (like for instance IoT context brokers or cloud-data repositories), which are not aware
and capable of establishing DTLS tunnels.

The SDN Controller, as demanded by the security Orchestrator, manages the network
communications between the different components, enforcing, through the southbound Application
Programming Interface (API), flow rules to drop, filter, allow or redirect traffic, from and towards
the IoT devices. Additionally, the IoT controller intermediates to perform key provisioning to the
IoT devices, according to the Orchestrator commands. In addition, although it is not shown in the
figure for the sake of simplicity, those VNFs are deployed by the NFV-MANO, whenever decided
and commanded by the Security Orchestrator. This solution assumes that the network has at least
one SDN capable switch located on the edge of the IoT network in order to be able to enforce traffic
rules dynamically.

The following sections describe in deep our SDN/NFV-based solution for vAAA and vChannel
protection management in IoT networks.

4. vAAA in SDN/NFV Enabled IoT Networks

Security has evolved from a desired feature to a requirement to be provided by networking
infrastructures. In order to provide a certain level of security, cryptographic material needs to be
deployed to the elements involved in the communication. To that end, AAA solutions have been used
historically and a whole area of research has been developed around them. This work aims not only to
face the AAA architecture virtualization as a network function (NFV) triggered by security or business
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originated policies challenge, but also taking into account the precise considerations needed to enable
these kind of solutions into IoT environments.

4.1. AAA Preliminaries

The Authentication, Authorization and Accounting (AAA) framework is used and instantiated,
typically, in protocols such as RADIUS [29] and Diameter [30] that give support to a great number
of devices. Examples of this are the Eduroam network, or TELCOS mobile deployments. They are
used to authenticate the devices, authorize access to the services offered (e.g., Access to the Internet)
and keep track of the use. Advanced features such as federation (e.g., exemplified in Eduroam) bring
scalability to the deployment of a great number of devices that may belong to different organizations
under deployment infrastructures of different operators. The Extensible Authentication Protocol
(EAP) is a protocol that offers a myriad of authentication methods, as well as a Key Management
Framework (EAP-KMF [31]) that enables the bootstrapping of different Unicast or Multicast security
association protocols (e.g., DTLS) to secure the communications. EAP lower layers, such as PANA [32]
or Low-Overhead CoAP-EAP (LO-CoAP-EAP) [33], transport EAP between a device and the domain
controller to authenticate and provide access to the different services of the domain.

4.2. Policy-Based AAA Management

Security management through policies endow administrators with abstraction capabilities of the
underlying systems, enabling the definition of high-level security intents independent from the low
configurations, which becomes a powerful tool for achieving interoperability and scalability. A policy
framework can even provide different abstraction levels through policy refinement, facilitating the
interaction with the user based on the later knowledge level. In this way, two users with different level
of knowledge could model the same security policy at different levels (e.g., high and medium levels)
obtaining the same effect. Likewise, medium level policies can be translated to vendor-specific technical
configuration over the system. The policy level separation allows abstracting policy definitions which
could potentially be implemented by many different end-points leveraging on different technologies,
and therefore making the policies entity and technology agnostic from the underlying system.

In this sense, our solution is based on developed plugins which translate authentication,
authorization, and channel protection medium-level security policies into specific device configurations
(e.g., vBootstraping VNF, AAA Server, Policy Decision Point, Policy Enforcement Point and so on).
The plugin selection decision is made by the Security Orchestrator who has a global cyber-situational
awareness [10] vision of the current architecture status (thanks to the monitoring components of
the system).

Following this approach, we have extended the ANASTACIA security framework in order to
apply security policies in AAA scenarios. To this aim, our proposal extends the security policy models
provided by SECURED [7] project (High-level Security Policy and Medium-level Security Policy).
Figure 3 shows a proactive high-level security policy enforcement workflow in order to allow the
IoT device network authentication as well as authorizing the IoT device to put information in the
IoT broker. This is, first, the security administrator models the High-level Security Policies (HSPLs)
through the Policy Editor Tool GUI (Figure 3-step 1). These HSPLs are then refined in one or several
Medium-level Security Policies (MSPLs) by the Policy Interpreter (Figure 3-step 2). In this case, it
generates three MSPLs. The first one authorizes the specified IoT device putting the specified resource
in the IoT broker as shown in Listing 1.
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Figure 3. Authentication and Authorization proactive policy enforcement process.

Listing 1. Medium-level Security Policy Language (MSPL) authorization example.
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1 <ITResource>
2 ...
3 <configuration xsi:type='RuleSetConfiguration'>
4 <capability>
5 <Name>AuthoriseAccess_resurce</Name>
6 </capability>
7 <configurationRule>
8 <configurationRuleAction
9 xsi:type='AuthorizationAction' >

10 <AuthZActionType>ALLOW</AuthZActionType>
11 <AuthZSubject>SensorA</AuthZSubject>
12 <AuthZTarget>IoT Broker</AuthZTarget>
13 </configurationRuleAction>
14 <configurationCondition
15 xsi:type='FilteringConfigurationCondition'>
16 ...
17 <packetFilterCondition>
18 <SrcAddress>SensorA IP</SrcAddress>
19 <DstAddress>IoT Broker IP</DstAddress>
20 </packetFilterCondition>
21 <applicationLayerCondition
22 xsi:type="IoTApplicationLayerCondition">
23 <URL>/60001</URL>
24 <method>PUT</method>
25 </applicationLayerCondition>
26 </configurationCondition>
27 ...
28 </configuration>
29 </ITResource>

Listing 1: MSPL Authorization example

<ITResource>
...
<configuration xsi:type='RuleSetConfiguration'>

<capability>
<Name>Traffic_Divert</Name>

</capability>
<configurationRule>

<configurationRuleAction
xsi:type='TrafficDivertAction' >
<TDivertActionType>FORWARD</TDivertActionType>

<packetDivertAction>
<packetFilterCondition>

<DstAddress>PAA IP</DstAddress>
<Interface>PAA Interface</Interface>

</packetFilterCondition>
</packetDivertAction>
</configurationRuleAction>
<configurationCondition

xsi:type='TDivertConfigurationCondition'>
...
<packetFilterCondition>

<SrcAddress>SensorA IP</SrcAddress>
<DstAddress>PAA IP</DstAddress>
<DstPort>PAA Port<DstPort>

</packetFilterCondition>
</configurationCondition>

...
</configuration>

</ITResource>

Listing 2: MSPL Traffic divert example

262

263

264

This kind of authorization policy is usually composed of a subject, which aims to perform some265

action over a specific target resource. In this case, the example is indicating that the SensorA (subject) is266

ALLOWED to access the resource /60001 using the PUT method (action) against the IoT Broker (target).267

Regarding the other two policies, they allow bidirectional communications, for the authentication268

protocol, between the IoT device and the network authentication service. Listing 2 shows an example269

of forwarding policy which indicates that the data from the SensorA with PAA destination and a270

specific destination port must be forwarded to the PAA through a specified interface. Once the security271

policies have been refined, the Policy Interpreter requests the MSPLs policy enforcement to the Security272

Orchestrator, also providing a list of the available security enablers (Fig. 3.3). Then, the Security273

Orchestrator analyzes the MSPLs, it selects the best security enabler available which will be able to274

fulfill the security policy for the underlying infrastructure (Fig. 3.4) and then it requests the policy275

translation to the Policy Interpreter in order to obtain the final configurations for each security enabler276

(Fig. 3.5). Finally, the Security Orchestrator (SO) receives the configurations (Fig. 3.6) and it enforces277

them through the selected security enablers, thereby installing new flow rules in the SDN network278

allowing the authentication protocol traffic (Fig. 3.7) and a new XACML authorization policy is279

installed in the Policy Decision Point (PDP) (Fig. 3.8).280

At this point it is important to highlight that in case the security enabler is not already deployed,281

the SO will request to a NFV-MANO the deployment of the VNF, and once it has been instantiated,282

it will be configured with the generated security enabler configuration. To this aim, the SO drives283

this process and the communication with the NFV-MANO. The SO holds the VNF definitions and NS284

catalogs, manages workflow of the service deployment and can query the status of already deployed285
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This kind of authorization policy is usually composed of a subject, which aims to perform some
action over a specific target resource. In this case, the example is indicating that the SensorA (subject) is
ALLOWED to access the resource /60001 using the PUT method (action) against the IoT Broker (target).
Regarding the other two policies, they allow bidirectional communications, for the authentication
protocol, between the IoT device and the network authentication service. Listing 2 shows an example
of forwarding policy which indicates that the data from the SensorA with PAA destination and a
specific destination port must be forwarded to the PAA through a specified interface. Once the security
policies have been refined, the Policy Interpreter requests the MSPLs policy enforcement to the Security
Orchestrator, also providing a list of the available security enablers (Figure 3-step 3). Then, the Security
Orchestrator analyzes the MSPLs, it selects the best security enabler available which will be able
to fulfill the security policy for the underlying infrastructure (Figure 3-step 4) and then it requests
the policy translation to the Policy Interpreter in order to obtain the final configurations for each
security enabler (Figure 3-step 5). Finally, the Security Orchestrator (SO) receives the configurations
(Figure 3-step 6) and it enforces them through the selected security enablers, thereby installing new
flow rules in the SDN network allowing the authentication protocol traffic (Figure 3-step 7) and a new
eXtensible Access Control Markup language (XACML) authorization policy is installed in the Policy
Decision Point (PDP) (Figure 3-step 8).

Listing 2. MSPL traffic divert example.
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<ITResource>
...
<configuration xsi:type='RuleSetConfiguration'>

<capability>
<Name>Traffic_Divert</Name>

</capability>
<configurationRule>

<configurationRuleAction
xsi:type='TrafficDivertAction' >
<TDivertActionType>FORWARD</TDivertActionType>

<packetDivertAction>
<packetFilterCondition>

<DstAddress>PAA IP</DstAddress>
<Interface>PAA Interface</Interface>

</packetFilterCondition>
</packetDivertAction>
</configurationRuleAction>
<configurationCondition

xsi:type='TDivertConfigurationCondition'>
...
<packetFilterCondition>

<SrcAddress>SensorA IP</SrcAddress>
<DstAddress>PAA IP</DstAddress>
<DstPort>PAA Port<DstPort>

</packetFilterCondition>
</configurationCondition>

...
</configuration>

</ITResource>

Listing 2: MSPL Traffic divert example

262

263

264

This kind of authorization policy is usually composed of a subject, which aims to perform some265

action over a specific target resource. In this case, the example is indicating that the SensorA (subject) is266

ALLOWED to access the resource /60001 using the PUT method (action) against the IoT Broker (target).267

Regarding the other two policies, they allow bidirectional communications, for the authentication268

protocol, between the IoT device and the network authentication service. Listing 2 shows an example269

of forwarding policy which indicates that the data from the SensorA with PAA destination and a270

specific destination port must be forwarded to the PAA through a specified interface. Once the security271

policies have been refined, the Policy Interpreter requests the MSPLs policy enforcement to the Security272

Orchestrator, also providing a list of the available security enablers (Fig. 3.3). Then, the Security273

Orchestrator analyzes the MSPLs, it selects the best security enabler available which will be able to274

fulfill the security policy for the underlying infrastructure (Fig. 3.4) and then it requests the policy275

translation to the Policy Interpreter in order to obtain the final configurations for each security enabler276

(Fig. 3.5). Finally, the Security Orchestrator (SO) receives the configurations (Fig. 3.6) and it enforces277

them through the selected security enablers, thereby installing new flow rules in the SDN network278

allowing the authentication protocol traffic (Fig. 3.7) and a new XACML authorization policy is279

installed in the Policy Decision Point (PDP) (Fig. 3.8).280

At this point it is important to highlight that in case the security enabler is not already deployed,281

the SO will request to a NFV-MANO the deployment of the VNF, and once it has been instantiated,282

it will be configured with the generated security enabler configuration. To this aim, the SO drives283

this process and the communication with the NFV-MANO. The SO holds the VNF definitions and NS284

catalogs, manages workflow of the service deployment and can query the status of already deployed285
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At this point, it is important to highlight that in case the security enabler is not already deployed,
the SO will request to a NFV-MANO the deployment of the VNF, and once it has been instantiated,
it will be configured with the generated security enabler configuration. To this aim, the SO drives
this process and the communication with the NFV-MANO. The SO holds the VNF definitions and NS
catalogs, manages workflow of the service deployment and can query the status of already deployed
services. The OS interfaces with the Service Orchestrator, and, in turn with the Resource Orchestrator
(RO) to provision services over a particular NFV Infrastructure (NFVI) provider (e.g., Openstack) in a
given location. Then, the VNFConfiguration and Abstraction (VCA) is contacted by the RO in order to
perform the the VNF configuration using Juju Charms. For more information about this process, the
reader is referred to our previous work [22].

Once the SDN policies have been enforced, the SDN switch is properly configured in order to
allow the authentication traffic among the IoT device and the PAA (Figure 3-step 9).

4.3. IoT Bootstrapping

IoT brings heterogeneity of devices and radio technologies, with different capabilities and
requirements which have to cooperate and coexist. This paper leverages ANASTACIA framework,
providing the design and implementation of different VNFs and security policies needed to deal with
bootstrapping AAA and channel protection in IoT. Namely, a VNF is deployed to deal with EAP lower
layer (PANA [32] or LO-CoAP-EAP [33] depending on the requirements) for IoT device bootstrapping,
authenticate them and manage network access authentication. By having a VNF which deploys an
EAP lower layer capable of adapting to each deployment needs, it provides technology flexibility
facing of heterogeneity and scalability.

Although bootstrapping encompasses several aspects, for the sake of simplicity, this paper
focuses mainly on the EAP authentication to provide network access, key derivation and distribution
to securely bootstrap other protocols. The proposed bootstrapping process is shown in Figure 4.
When the IoT device is turned on, it tries to perform a bootstrapping process against a Network
Authenticator IPv6 address provided at commissioning time (Figure 4-step 1). At this point, the
Network Authenticator as well as the AAA services may have been instantiated in a proactive approach
or as a reaction of the request, and it is important to highlight that the authentication request is able to
reach the Network Authenticator since the connectivity was allowed and addressed by the security
administrator in Section 4.2.

IoT device
Network

Authenticator AAA Server IoT Controller

1 bootstrapping(creds)

2 authN(creds)

3 authenticate(creds)

4 getIoTData()

5 iot_data

6
success:
[MSK,iot_data]

7 success(iot_broker)

8 register(iot_device)

Figure 4. IoT bootstrapping.
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Regardless the instantiation approach, once the Network Authenticator receives the bootstrapping
request, it starts the authentication process against the AAA infrastructure, providing the IoT device
credentials (Figure 4-step 2). Then, the AAA Server performs the authentication (Figure 4-step 3), it
derives a Master Session Key (MSK) and it also gets relevant information about the IoT device from
the IoT Controller such as the default IoT traffic target for the specific IoT device (Figure 4-steps 4,5).
Finally, the Network Authenticator obtains the values provided by the AAA Server (Figure 4-step 6),
sending the EAP success to the IoT device, including the default traffic target (Figure 4-step 7), and
also registering the IoT device to the IoT Controller (Figure 4-step 8).

In the case a device is compromised, thus sending wrong information or a malicious entity planted
in the smart building the ANASTACIA framework does the following: In the first place, all traffic not
related to bootstrapping is filtered. When the authentication is successful, the traffic according to the
permissions of the device is granted. If a device is planted, it will only be able to try to perform the
bootstrapping, which will fail due to lack of credentials. If the device is defective, the ANASTACIA
framework will point that out, filtering out the traffic and not allowing it to send more information nor
to gain access to the network until the device is checked out and repaired.

4.4. IoT Device Authorization

Once the IoT bootstrapping has been finished, IoT devices must be authorized prior publishing
information or accessing any service (e.g., IoT Context Broker). Figure 5 shows the proposed
authorization process which uses Distributed Capability-Based Access Control (DCapBAC) [34] as
the main authorization approach for constrained devices. That is, the IoT device requests a capability
token through the Network Authenticator in order to be able to publish a specific resource value
(e.g., temperature) into the IoT broker (Figure 5-step 1). The Ipv6 address of the IoT broker was
specified during the bootstrapping process as a default IoT traffic target. The Network Authenticator
forwards the request to the Capability Manager (CM) (Figure 5-step 2), who requests the authorization
decision to the Policy Decision Point (PDP) (Figure 5-step 3). The PDP verifies whether the specified
device is authorized or not to perform the specified operation for thespecified resource and target
(Figure 5-step 4). Since the Security Administrator authorized the operation in Section 4.2, the PDP
returns a positive authorization to the CM (Figure 5-step 5). Then, the CM generates the capability
token for the requested action, valid for a certain time period and signed by itself (Figure 5-step 6) and
it sends the result to the Network Authenticator (Figure 5-step 7), which delivers the capability token
to the device (Figure 5-step 8) and also requests the network authorization to the Security Orchestrator
in order to allow the IoT device reaches the IoT Broker (Figure 5-step 9). It should be noted that the
authorization polices, and, in turn, the generated authorization capability tokens can include validity
time-period conditions, which reduces the chances of impersonation risks and unauthorized accesses.

At this point, the Security Orchestrator verifies whether there is also some default reaction
behaviour for the specified IoT device. For this AAA case, the orchestrator is programmed with an
reactive behavior when an IoT device is authorized to use the network, the IoT Controller must be able
to reach the aforementioned device, so the Security Orchestrator not only generates a MSPL policy in
order to allow the connectivity among the IoT device and the IoT broker, but it also generates a second
security policy in order to allow the communication among the IoT Controller and the IoT device
(Figure 5-step 10). In this way, the IoT device will be able to receive command and control requests
from the IoT Controller.
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Policy
Interpreter

Security
Orchestrator
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device PAA
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Manager

Policy
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IoT device authorization (CapToken acquisition)

1

getCapToken(
SensorA,
PUT,RESOURCE,
iot_broker)

2

getCapToken(
SensorA,
PUT,
RESOURCE,
iot_broker)

3

getAuthZDecision(
SensorA,
PUT,
RESOURCE,
iot_broker)

4

makeAuthZ
Decision(
proactive
XACML
policies)

5 authZDecision

6

genCapToken(
SensorA,
PUT,RESOURCE,
iot_broker)

7 capToken

8 capToken

Network Authorization

9

authZNetwork(
SensorA,
PUT,
RESOURCE,
iot_broker)

10
genNetAuthZMSPLs(
iot_broker,
iot_controller)

11 selectBestEnabler()

12

policyTranslation(
[{Network_authZ
MSPL_Broker:ONOS},
{Network_authZ
MSPL_Controller:ONOS}])

13 List<authZ_ONOS_confs>

14 enforce([authZ_ONOS_confs])

15 flowMod()

IoT device Access

16 putResource(capToken,resource)

17
verify
CapToken(
capToken)

18 OK

Figure 5. Authorization process.

Once the security policies have been generated, the Security Orchestrator selects the best security
enabler which will be in charge of enforcing each security policy (Figure 5-step 11). Since the
security policies are networking related and in this case the networking Policy Enforcement Point is
a SDN-enabled switch managed by the SDN Controller (ONOS), the Security Orchestrator obtains
ONOS networking configurations by the MSPLs policy translation (Figure 5-steps 12,13). Once it
receives the SDN configurations, it performs the policy enforcement in the SDN Controller, allowing
the aforementioned traffic (Figure 5-steps 14,15). Regarding the IoT device, it tries to put the resource
each certain time, but, before doing this, it verifies the validity of the capability token based on a
timestamp. If so, the IoT device finally sends the request to the IoT broker Figure 5 -step 16). The IoT
Broker then verifies whether the capability token is valid by verifying the timestamp and the signature.
Finally, depending on the result, it accepts the resource value or it alerts the unauthorized attempting
to the framework Figure 5-steps 17,18). In the specific case where a malicious node is detected either
during bootstrapping or during the authorization process (e.g., using invalid credentials), notification
of the event is sent to the framework message queue that is processed into the monitoring and reaction
modules of the ANASTACIA framework. Then, the alert is evaluated and the framework infer the
proper countermeasures to enforce (e.g., apply new filters rules).
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Although it is out of the scope of this research, this authorization model can be improved further
to consider trust and reputation scores about IoT devices as proposed in [35], or, in our previous
work [36], thereby making authorization decisions not only based on authZ policies but also using a
trust-aware access control model.

5. Channel Protection in Softwarized IoT Networks

5.1. Channel Protection

Channel protection has become a main actor in secure communications for guarantying
confidentiality and integrity. Nowadays, several techniques are available to protect the communication
channel, depending on the Open System Interconnection (OSI) stack level we aim to protect. For
instance, at network level, Internet Protocol Security (IPSec) can be applied, while at transport level,
depending on the transport protocol used, Transport Layer Security (TLS) or Datagram Transport
Layer Security (DTLS) could be employed. The latter guarantees equivalent security levels than TLS
but using non connection oriented datagrams as underlying transport.

In the IoT deployment, we use DTLS to protect the communications for the aforementioned
reasons and because the current standard protocol to protect the communications defined within
CoAP [37] is DTLS. Maintaining the security parameters, credentials and cipher-suites in large
deployments can be considered as troublesome. To integrate the channel protection procedure into our
framework, we use different VNF such as vBootstrapping, AAA architecture, IoT Controller and IoT
Broker to provide security and dynamism into the process, with the use of policies.

5.2. Policy-Based DTLS Management in SDN Networks

Similarly to the AAA case, we have followed a policy-based security management approach. A
high-level channel protection policy allows for specifying protection requirement regardless of the
underlying channel protection techniques and protocols, and the high-level security policy is translated
into a medium-level security policy capable of defining more specific securization parameters but still
independent from the final implementation.

Listing 3 shows an example of channel protection medium-level security policy. This example aims
to provide confidentiality and integrity protection between a DTLS-enabled proxy (DTLS-Proxy) and
the IoTDevice using AES as encryption algorithm with a key size of 128 bits in Counter with CBC-MAC
(CCM) mode. Once the policy has been instantiated, the Security Orchestrator decides the suitable
technology to use. In this case, since the devices involved in the securization of the communications are
DTLS-enabled (a DTLS-Proxy service is running on the top of the IoT Broker), the Security Orchestrator
will choose a plugin in order to translate the DTLS policy to specific configurations of each involved
technology, e.g., it generates configurations in order to activate DTLS in the IoT device through the
IoT Controller and in the IoT Broker Server. On the other hand, if the device is not DTLS-enabled, a
DTLS-Proxy will be deployed at the edge, as close as possible to the mentioned device, and, in that
case, the Security Orchestrator will choose a DTLS-proxy plugin as a translator plugin, and it will be
also required to apply a forwarding policy in order to collocate the DTLS-Proxy in the path between
the two selected devices; ideally, the closer to the non DTLS-enabled device, the better.
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Listing 3. MSPL enabling DTLS example.
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In the IoT deployment we use DTLS to protect the communications for the aforementioned reasons381

and because the current standard protocol to protect the communications defined within CoAP[35] is382

DTLS. Maintaining the security parameters, credentials and cipher-suites in large deployments can be383

considered as troublesome. To integrate the channel protection procedure into our framework we use384

different VNF such as vBootstrapping, AAA architecture, IoT Controller and IoT Broker to provide385

security and dynamism into the process, with the use of policies.386

5.2. Policy-based DTLS Management in SDN networks387

Similarly to the AAA case, we have followed a policy-based security management approach.388

A high-level channel protection policy allows specifying protection requirement regardless of the389

underlying channel protection techniques and protocols, and the high-level security policy is translated390

into a medium-level security policy capable of defining more specific securization parameters but still391

independent on the final implementation.392

1 <?xml version='1.0' encoding='UTF-8' standalone='yes'?>
2 <ITResource>
3 ...
4 <configuration xsi:type='RuleSetConfiguration'>
5 <capability>
6 <Name>Protection_confidentiality</Name>
7 </capability>
8 <capability>
9 <Name>Protection_integrity</Name>

10 </capability>
11 <configurationRule>
12 <configurationRuleAction xsi:type='DataProtectionAction'>
13 <technology>DTLS</technology>
14 <technologyActionParameters>
15 <technologyParameter xsi:type='DTLSTechnologyParameter'>
16 <localEndpoint>DTLSProxyAddress</localEndpoint>
17 <remoteEndpoint>IoTDeviceAddress</remoteEndpoint>
18 </technologyParameter>
19 ...
20 </technologyActionParameters>
21 <technologyActionSecurityProperty xsi:type='Confidentiality'>
22 <encryptionAlgorithm>AES</encryptionAlgorithm>
23 <keySize>128</keySize>
24 <mode>CCM</mode>
25 </technologyActionSecurityProperty>
26 <technologyActionSecurityProperty xsi:type='Integrity'>
27 <integrityAlgorithm>sha1</integrityAlgorithm>
28 </technologyActionSecurityProperty>
29 </configurationRuleAction>
30 ...
31 </configurationRule>
32 ...
33 </configuration>
34 </ITResource>

Listing 3: MSPL Enabling DTLS example

393

Listing 3 shows an example of channel protection medium-level security policy. This example394

aims to provide confidentiality and integrity protection between the DTLS-Proxy and the IoTDevice395

using AES as encryption algorithm with a key size of 128 bits in CCM mode. Once the policy has396

been instantiated, the Security Orchestrator decides the suitable technology to use. In case, since397

the devices involved in the securization of the communications are DTLS-enabled (a DTLS-Proxy398

service is running on the top of the IoT Broker), the Security Orchestrator will choose a plugin in order399

to translate the DTLS policy to specific configuration of each involved technology, e.g. it generates400

5.3. IoT Channel Protection and Key Distribution

Depending on the requirements of the organization such as business strategies, the channel
protection could be mandatory or not. If the channel must be always protected, this process can be part
of the authorization process, establishing the channel protection policy as another default policy after
the authorization as it was shown in Section 4.4. Otherwise, Figure 6 shows the proposed workflow in
order to provide IoT end-to-end Channel Protection on demand. The Security Administrator models
a high-level security policy through the Policy Editor Tool, indicating that it is necessary to activate
channel protection among the IoT device and the IoT broker. The Policy Interpreter performs the
policy refinement, transforming the High-level Security Policy (HSPL) in two Medium-level Security
Policies (MSPL). After this policy refinement, the Policy Interpreter requests the policy enforcement to
the Security Orchestrator, also providing the security enabler candidates, which, in this case, they are
the IoT Controller and the DTLS Proxy. The Security Orchestrator decides the best security enabler for
each security policy (in this case, we only provide one candidate) and it requests the policy translation
to the Policy Interpreter, obtaining the channel protection configurations for the IoT Controller and the
Proxy DTLS, respectively (Figure 6-steps 5,6).
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Figure 6. Softwarized and centralized Channel Protection Flow.

Once the Security Orchestrator has received the configurations, it has to enforce them in the
security enablers. At this point, it is important to highlight that we have used PANA protocol
for carrying the authentication (note that Network Authenticator has been instantiated as PANA
Agent), and the PANA Client and Enforcement Point Master Key (PEMK) will be used for the
channel protection.

The PEMK is calculated from the MSK, but the IoT device generated the MSK in the bootstrapping
process; therefore, the configuration for the other side of the channel (IoT Broker) must be completed
with a valid PEMK to establish the tunnel. To this aim, the Security Orchestrator requests the PANA
Agent for a specific PEMK to be delivered to the IoT Broker through a secure channel.

The PANA Agent calculates the PEMK (using the MSK it obtained for the IoT device in the
bootstrapping process) following pseudo-random function (prf) defined in [38,39] as: PEMK =

pr f + (MSK, ”IETFPEMK”|SID|KID|EPID), where SID is the session identifier, KID is the KEY-ID
AVP associated with the MSK and PID is the identifier of the EP.

Then, such a PEMK is provided by PANA Agent to the Security Orchestrator trough a secure
channel. At this point the Security Orchestrator has ready the DTLS configurations translated from the
security policy, for both sides of the communication channel, i.e., the IoT device and and IoT Broker, so
it initiates the process to deliver the configuration to each them.

To this aim, on the one hand, the IoT Controller receives the request from the security orchestrator,
which in turn, it generates an IoT protocol specific message (we used CoAP, but it could be any other)
with the channel protection configuration to be enforced in the IoT device. The IoT device receives
the CoAP message and will try to create a DTLS connection against the IoT Broker using the specific
DTLS parameters received. On the other hand, the IoT Broker also receives the DTLS configuration
enforcement request from the Security Orchestrator, along with the PEMK required for establishing
the connection, and it prepares a DTLS socket, being able to receive DTLS secure connections from the
IoT device.

As a result, a softwarized, centralized and dynamic channel protection solution is obtained,
leveraging on the authentication process to provide dynamic key management for M2M channel
protection, driven by the security orchestrator. In addition, the solution allows for reacting dynamically
regenerating and redistributing a new set of keys in case of security breach.
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Regarding keys updates, the process is already addressed by PANA. Thus, when the PANA
session is close to expire, the PANA Client (PaC) and PAA engage in a re-authentication that has as a
result a new EAP exchange, and a new MSK derived from it. As a consequence, the new MSK and all
the keys used derived from MSK have to be updated.

It is important to highlight that we considered the end-points are DTLS-enabled, but this is not
a mandatory condition. The end-points (including the IoT device) could be DTLS-agnostic. In this
case, the framework provides a dynamic DTLS-Proxy VNF. When an end-point requires enabling a
channel protection, the Security Orchestrator can request the deployment of a DTLS-Proxy as closer
as possible to the end-point, and also request the SDN controller a network configuration in order to
redirect the traffic through the new VNF. We want to highlight that the DTLS channel protects the
communication between the IoT device and the Proxy-DTLS, the communication between the later
and the real end-point might be protected or not, it simplifies the integration of new end-points.

6. Proposal Evaluation

6.1. Smart Building Use Case

The use case considers an internal attacker performing a sabotage in the building, and the
ANASTACIA framework detecting and reacting with the deployment of the softwarized vAAA
architecture proposed in this paper.

The actors involved in this use case are the attacker and the security administrator. The attacker is
represented by an infected IoT device or a management terminal with a non-trusted operator. On the
other hand, the security administrator is the one managing the security policies of the framework.

The triggering of the use case occurs when a terminal within the building network is compromised
and starts attacking the infrastructure, thereby the external intrusion defense systems, such as
firewalls, are ineffective. At this point, the ANASTACIA framework is able to detect the intrusion and
react accordingly.

The ANASTACIA platform, through the Monitoring service and vID, is able to detect an intrusion,
firstly analyzing the detected abnormalities and outliers and evaluating the severity of the situation,
finally activating prediction mechanisms to ensure that the rest of the building’s system operations
continue as expected. Although it is out of the scope of this paper, it is worth mentioning that, in
ANASTACIA framework, the attack and intrusion detection can be done using diverse agents and
analysis tools, which can employ both signature-based pattern recognition and anomaly-based analysis,
according to deviations from the normal behavior of devices monitored by the agents [40].

The platform identifies the attacks and triggers the autonomic self-healing capabilities to deploy
dynamically, in the proper location, the vAAA VNF and vBootstrapping VNF and reconfigure the
system enforcing the authorization policies in the PDP, and enforcing also, through SDN, in the
vSwitch the AC network rules. The vBootstrapping VNF instantiation in our evaluation corresponds
to vPAA, but alternate bootstrapping mechanisms might be offered and instantiated based on security
or business policies as well as devices’ restrictions.

As a consequence, the devices must be authenticated to gain access to the network. The network is
configured to drop any communication from an unauthenticated device, therefore isolating the attacker
from the infrastructure. In addition, the communications from trustworthy devices are protected by
means of the DTLS tunneling to the vProxy, avoiding traffic inspection and man-in-the-middle attacks
among others.

ANASTACIA is currently being validated in a real Smart Building scenario; this paper takes
profit from ANASTACIA’s testbed to perform an evaluation of the proposal and integrate the vAAA
approach into ANASTACIA’s framework. The deployment used in the testbed follows the overall
schema depicted in Figure 2, together with architectural management software components not
shown in that figure for the sake of clarity (i.e., Policy Interpreter, Policy Repository, Enabler provider,
Capability Manager, PDP).



Sensors 2019, 19, 295 17 of 24

Regarding the hardware used for the experiment phase, all the components have been deployed
in the University of Murcia and they have the following features:

• The Policy Interpreter, Policy Repository, Security Enabler Provider and Security Orchestrator are
virtualized and dockerized in an Intel(R) Core(TM) i7-2600 CPU at 3.4 GHz, using three vCores,
3.5 GB of RAM and 30 GB of HDD.

• The IoT Controller is virtualized and dockerized in an Intel Core Processor at 1.5 GHz using
2vCores, 2 GB of RAM and 15 GB of HDD.

• The PAA Network Authenticator, Capability manager, AAA Server, PDP and IoT broker are
virtualized and dockerized in an Intel(R) Xeon(R) CPU E5-2603, v3 @ 1.60 GHz with 12 cores and
32 GB RAM and SATA 10k in mode RAID 1 disk drives.

• The SDN Controller is ONOS version 1.15.0.9e4972c5 which has been virtualized and dockerized
in an Intel Core Processor (Haswell) at 1.5 GHz using two vCores, 4 GB of RAM and 15 GB of
HDD. Control plane is assumed to be isolated from data plane, in this case by means of VLANs.

• The SDN Switch is an HP model 2920, software revision WB.16.04.0008, ROM version WB.16.03.
• The IoT devices are MSP430F5419A-EP at 25 Mhz, 128 KB ROM and 16 KB RAM, running a

customized version of Contiki OS 2.7 and erbium CoAP server.
• The 6lowPAN bridge is a MSP430F5419A-EP at 25 Mhz, 128 KB ROM and 16 KB RAM, running

a customized version of Contiki OS 2.7 in order to allow the communication between 802.15.4
and 802.3.

Regarding the software used for the experiment phase:

• The PANA authentication software is based on PANATIKI (https://sourceforge.net/projects/
panatiki/) implementation for the IoT device, and a modified version of the OpenPANA
implementation (https://sourceforge.net/projects/openpana/) for the PAA.

• The distributed authorization token is based on an implementation of the Capability Token [34].
• For the DTLS communication, tinyDTLS (https://sourceforge.net/projects/tinydtls/) is used

within the IoT device while Californium (https://github.com/eclipse/californium) is employed
within the DTLS proxy in charge of enable the DTLS communication and decrypt the IoT egressed
DTLS/CoAP messages to the CoAP required by the IoT broker to publish information.

• PDP, DTLS Proxy and IoT Controller plugins have been implemented from scratch in python.
• AAA policy refinement and translation, IoT registration, IoT Controller, Key management and

PDP APIs have been implemented from scratch in python.
• All the elements in the experiment have NTP synchronized avoiding false negative cases due to

clock mismatch with the capability Token.

6.2. Performance Evaluation

The performance evaluation of the proposed security solution within the ANASTACIA framework
implied the implementation of new plugins and the security enablers associated with them: the
XACML, DTLS proxy and DTLS IoT.

Similarly, the endpoints and APIs that allow the enforcement procedures from the Security
Orchestrator employing these new Security Enablers have been implemented.

There are three processes that involve a secured communication between IoT devices and the
broker: Authentication, Authorization and Channel protection. Each process consist of four different
phases: policies refinement, translation and enforcement within the architecture in one hand and IoT
devices’ actions in the other.

The IoT actions corresponding to each process are bootstrapping as the Authentication process,
Capability Token retrieval as the Authorization process and Handshake as the channel protection
mechanism, since the Handshake is considered the most expensive process during the data push from
the IoT device.

https://sourceforge.net/projects/panatiki/
https://sourceforge.net/projects/panatiki/
https://sourceforge.net/projects/openpana/
https://sourceforge.net/projects/tinydtls/
https://github.com/eclipse/californium
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Figure 7 shows the measurements for the policy refinement, translation and enforcement
operations for the three processes: network authorization, resource authorization and channel
protection, respectively.
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Figure 7. Mean time of policy operation per policy type.

As we can see, in the Policy Refinement phase, the network authorization is the most expensive
process because it generates two different medium level security policies to allow bidirectional traffic
for the authentication (0.74% of the total time). For the resource authorization, only one policy
is generated (0.64% of the total time). Lastly, for the channel protection, a medium-level policy
is generated and replicated (0.68% of the total time), therefore reducing the time consumption in
comparison with network authorization process where two complete policies need to be generated.

During the Policy Translation phase, the network authentication policies generate two different
SDN rules for the same technology (1.24% of the total time) and the resource authorization policy
only is translated in an XACML policy for the PDP (0.57% of the total time); meanwhile, the channel
protection security policies generate two different configurations, for the proxy DTLS and for the IoT
Controller (1.37% of the total time).

The Policy Enforcement phase implies the communication with the SDN controller to add the
SDN rules that will later be installed by the former into the devices (1.32% of the total time) that will
enable the Authentication, followed by the Authorization performed by simply installing the XACML
policy into the PDP (0.35% of the local time). Finally, as part of the channel protection phase Policy
Enforcement process (5.38% of the total time), the PEMK for the IoT, DTLS Proxy pair is retrieved by
the Security Orchestrator. The PEMK with the needed configuration is then provided to the DTLS
Proxy that will prepare a DTLS socket with the provided configuration (43% of this phase time) and
also provided in parallel to the IoT controller that provides the cryptographic material in addition to
the configuration via CoAP message through the IoT network (implying 57% of this phase time).

The evaluation of the solution from the perspective of the IoT devices is shown graphically in
Figure 8 and complemented by Table 1. The operations in sequential order are: Bootstrapping done
using the PANA protocol, obtain the distributed authorization token and finally establish the CoAP
connection to the proxy, which, in turn, communicates with the IoT Broker via HTTP (since fiware
does not support CoAP; otherwise, CoAP would have been used), which we have split into handshake
and the data publication. Each operation has been carried out 30 times in order to obtain statistically
meaningful results.
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Figure 8. Mean time of each IoT operation (AuthN, AuthZ, Channel Protection).

We can appreciate by observing the values in Table 1 that the time each operation takes to
be completed is directly proportional to the number of bytes and messages sent over the network.
The relevance of the obtained results is manifested by the fact that, using real hardware, they are
consistent with those obtained in previous research [12] based on simulations, in particular based on
the Cooja Simulator [41] for the Contiki operative system.

The first row of Table 1 shows the number of messages and total number of bytes exchanged for
the PANA Bootstrapping. This instance represents a complete exchange using the EAP-PSK method.
The next step, getting the Capability Token is done with the PANA for dynamic credential provisioning
extension [42]. The DTLS handshake in PSK mode is done next. The publication using DTLS to protect
the CoAP exchange is fragmented at application layer using the CoAP block option, fragmenting the
message for publication containing the Capability Token.

Table 1. Number of exchanges and bytes per IoT device operation.

IoT Device Operation Message Count Total Bytes µ s δ s

Bootstrapping w/PANA 11 636 1.7816 0.0059
Getting Cap Token w/PANA [42] 2 836 1.5058 0.2418

DTLS Handshake 9 1200 2.5634 0.3167
Publishing information w/DTLS 24 3081 8.4733 0.3254

Table 2 shows the time measurements for each process. The authentication process implies the
time since the security administrator enables the authentication in the front-end, until the IoT devices
performs the bootstrapping phase. For the authorization, the time since the administrator enables
the access to the resource until the IoT device retrieves the capability token is measured. Finally, the
channel protection process involves the time employed since the activation of DTLS channel protection
by the administrator to the IoT device DTLS handshake finalization. As can be seen, the solution
produces a time overload around 12% per operation. It means that an IoT device consumes around
seven seconds from boot until the channel to the IoT broker is protected, of which around one second
corresponds to framework processing.

Table 2. Measurements by process.

Process Policy Refinement Policy Translation Policy Enforcement IoT Actuation Total (s)

AuthN 0.049 0.082 0.087 1.781 (Bootstrapping) 1.999
AuthZ 0.043 0.038 0.023 1.505 (CapToken) 1.609

Channel Prot. 0.045 0.091 0.357 2.544 (Handshake) 3.037
Total (s) 0.137 0.211 0.467 5.83 6.645



Sensors 2019, 19, 295 20 of 24

The scalability evaluation has been focused on the DTLS management, from the point in which
the security administrator requests the policy deployment (which implies refinement, translation and
enforcement) until the DTLS Proxy receives the DTLS configuration and the IoT controller sends the
DTLS configuration to the IoT devices. It is worth mentioning that DTLS configuration provisioning to
the IoT devices is detached from this process using non-confirmable CoAP messages; the IoT controller
will then attend each device independently depending on specific factors such as the availability or
the network load.

Figure 9 shows the results for 30 use case executions for deployments running from 1 to 500 IoT
devices. Since the real testbed is composed by less IoT devices, multiple non-confirmable CoAP
messages were issued for each available IoT device until completing the total amount of desired
IoT devices.
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Figure 9. Scalability evaluation.

As can easily be seen, for one IoT device, the policy enforcement is more expensive than the
refinement and translation processes since the processing of one security policy is lighter than the
PEMK calculation, distribution and the IoT configuration through the IoT network. When the number
of IoT devices increases, the most expensive process becomes the policy translation (around 43% of
the DTLS policy deployment time for 100 devices); this process translates two completely different
MSPL policies per DTLS configuration into DTLS Proxy configurations and into IoT Controller DTLS
configurations. The following process in terms of time consumption is the policy enforcement (around
38% of the DTLS policy deployment time for 100 devices) in which the DTLS Proxy is configured while
the IoT Controller launches a thread for each IoT device configuration. The rest of the deployment time
is spent by the refinement process (around 19% of the DTLS policy deployment time for 100 devices),
which generates the same MSPL twice, one for each target of the DTLS connection.

It is important to highlight that Figure 9a blue enforcement bars represent the aggregation of IoT
device configuration by the IoT Controller with the Proxy DTLS enforcement times. In this case, while
for one IoT device, the IoT Controller enforcement took the 57% of the enforcement process, as the IoT
device number increases, the difference among the Proxy DTLS enforcement and the IoT Controller
enforcement also increases. In particular, for 500 IoT devices, the time spent by the IoT controller
becomes 97.73% of the whole enforcement process time.

As a global view, the biggest test, with 500 IoT device DTLS policies deployed (refinement +
translation + enforcement) took around 30 seconds. The data show that the solution clearly provides a
linear deployment time increase trend related to the number of IoT devices being secured.

Figure 9b shows how the CPU stays at 100% except on the base case with one device. This is why
time in Figure 9a is increasing in relation to the amount of IoT devices. At the same time, memory usage
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is stable for the refinement and translations processes as shown in Figure 9c, while it is increasing with
the number of IoT devices for the Enforcement, which is related to the fact that the CoAP messages
need to be sent over the IoT network; therefore, queuing is needed and memory is therefore reserved
longer nevertheless not exceeding 6%≈ 120MB of the devoted total amount of RAM.

Regarding the experimental replicability of the obtained results, similar results should be achieved
when similar hardware is employed. That is, the more constrained equipment and IoT devices, the
worse result in the performance. Furthermore, the radio technologies used are also a factor in the
performance. We consider that this deployment is an instantiation of the use case that provides a
reference by using affordable hardware (the newest CPU is five years old) and software, so enhancing
the CPUs employed would clearly lead to enhanced results.

7. Conclusions

This paper has evaluated a novel on-demand virtualized AAA and an associated channel
protection mechanism specially designed to work on IoT deployments and orchestrated by a wider
security architecture, the ANASTACIA framework.

The paper has described how the vAAA can bootstrap an IoT device and distribute the encryption
material to the involved network elements and how DTLS channel protection is achieved. In addition,
sample authorization and channel protection policies describing the aforementioned mechanisms
have been proposed and instantiated by implementing the refinement process as well as the proper
translation plugins. Finally, it has been also provided a performance evaluation of the solution for the
authentication, authorization and channel protection processes in a testbed that mimics a real scenario,
comparing the results with previous research based on simulation. The evaluation serves also as a
demonstration of the feasibility in terms of the time employed by an IoT device to join a secure IoT
deployment. Special focus have been put on the scalability of the system evaluating an IoT network
integrated by up to 500 IoT devices. The results show that complex security policy operation like the
DTLS enforcement for 500 IoT devices is achieved in around 30 s, which is an affordable response time
in the most common IoT deployments. An overload of 12% of the time per operation is a low price to
pay taking into account the solution capabilities.

Along with the experiments, we also identified interesting new challenges that we will consider
as future work, such as using different authentication protocols on demand in a transparent way
for the final devices, or extending the IoT controller functionality in order to enforce an adaptive
behaviour based on the contextual inferred decision taken by the cognitive framework. In addition, as
future work, we envisage managing AAA and Channel protection security functions in 5G-enabled
IoT networks (NB-IoT) to enable end-to-end network traffic isolation and slicing.
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